Machine Learning Summer School in Algiers

Introduction to Reinforcement Learning J

Abdeslam Boularias

Monday, June 25, 2018

RUTGERS

What is reinforcement learning?

“a way of programming agents by reward and punishment without needing
to specify how the task is to be achieved.” [L Kaelbiing, M. Littman and A. Moore, 1996]

Example: Playing a video game

observation

o,

m Rules of the game are
unknown

m Learn directly from
interactive game-play

m Pick actions on
joystick, see pixels
and scores

from David Silver's RL course at UCL

Reinforcement learning in behavioral psychology

zi

The mouse is trained to press the lever by giving it food (positive reward)
every time it presses the lever.

Food tray

4/93

Reinforcement learning in behavioral psychology

More complex skills, such as maze navigation, can be learned from rewards.

reward
X

internal state

1 environment
action § |
—-
=

leamning rate o S
inverse temperature p
discount rate

observation

http://www.cs.utexas.edu/ eladlieb/RLRG.html

93

Instrumental Conditioning

B. F. Skinner
(1904-1990)

a pioneer of
Operant conditioning chamber: The pigeon is “programmed” to behaviorism
click on the color of an object, by rewarding it with food.

@ When the subject correctly performs the behavior, the chamber
mechanism delivers food or another reward.

@ In some cases, the mechanism delivers a punishment for incorrect or

missing responses. 6

93

Reinforcement Learning

Problems involving an agent

interacting with an environment, Stales,
which provides numeric reward

signals

Reward r,

Action a,
Next state s,

Environment

Goal: Learn how to take actions
in order to maximize reward

http://cs231n.stanford.edu/

93

7

Reinforcement Learning (RL)

Action a;

Reward r,

State s44

Reinforcement Learning Setup

http://www.ausy.tu-darmstadt.de/Research /Research

/93

Examples of Reinforcement Learning (RL) Applications

@ Fast robotic maneuvers

o Legged locomotion

o Video games

@ 3D video games

@ Power grids

@ Cooling Systems: DeepMind's RL Algorithms Reduce Google Data

Centre Cooling Bill by 40%
Automated Dialogue Systems (example: question-answering , Siri)

@ Recommender Systems (example: online advertisements)

@ Robotic manipulation

Basically, any complex dynamical system that is difficult to model
analytically can be an application of RL.

93

Interaction between an agent and a dynamical system

action

>

Agent Dynamical System

observation

In this lecture, we consider only fully observable systems, where the
agent always knows the current state of the system.

10/93

Decision-making

e Markov Assumption: The distribution of next states (at ¢ + 1)
depends only on the current state and the executed action (at t).

Action: J\, l

State: 77777 S \\"

Observations: \ ;) Zy

11/93

Example of decision-making problems: robot navigation

@ State: position of the robot

@ Actions: move east, move west, move north, move south.

EA EA

&
% @I w

|
Example

Path planning: a simple sequential decision-making
problem

13/03

|
Example

Path planning: a simple sequential decision-making
problem

14 /93

|
Example

Path planning: a simple sequential decision-making
problem

15/93

|
Example

Path planning: a simple sequential decision-making
problem

o]
Lo

16/93

Grid World: an example of a Markov Decision Process

17/93

Deterministic vs Stochastic Transitions

Deterministic Grid
World

Stochastic Grid

18/93

Notations

S: set of states (e.g. position and velocity of the robot)
A: set of actions (e.g. force)
T: stochastic transition function

T(s,a,s") = Pr(siy1 = §'|sy = s,a; = a)

next current current
state state action

R: reward (or cost) function

19/93

Markov Decision Process (MDP)

Formally, an MDP is a tuple (S, A, T, R), where:
@ S: is the space of state values.
o A: is the space of action values.
@ T': is the transition matrix.

@ R: is a reward function.

from http://artint.info

20/93

Example of a Markov Decision Process with three states and two actions

from Wikipedia 21/93

|
Markov Decision Process (MDP)

Example: Racing

= Arobot car wants to travel far, quickly
®* Three states: Cool, Warm, Overheated
* Two actions: Slow, Fast

= Going faster gets double reward

Slow

10 +1 Overheated

from Berkeley CS188
22/93

Example of a Markov Decision Process

N
W@E
S

pA

(a) A simple navigation problem

(b) MDP representation

23 /93

Markov Decision Process (MDP)

States set S:
@ A state is a representation of all the relevant information for
predicting future states, in addition to all the information relevant for
the related task.

@ A state describes the configuration of the system at a given moment.

@ In the example of robot navigation, the state space
S = {s1, s2, 3, S4, S5, S6, S7, S8, S9 } corresponds to the set of the
robot's locations on the grid.

@ The state space may be finite, countably infinite, or continuous. We
will focus on models with a finite set of states. In our example, the
states correspond to different positions on a discretized grid.

24 /93

Markov Decision Process (MDP)

Actions set A:

@ The states of the system are modified by the actions executed by an
agent.

@ The goal is to choose actions that will steer the system to the more
desirable states.

@ The actions space can be finite, infinite or continuous, but we will
consider only the finite case.

@ In our example, the actions of the robot might be move north, move

south, move east, move west, or do not move, so
A={N,S, E,W,nothing}.

25/93

|
Markov Decision Process (MDP)

Transition function 7':

o When an agent tries to execute an action in a given state, the action
does not always lead to the same result, this is due to the fact that
the information represented by the state is not sufficient for
determining precisely the outcome of the actions.

@ T'(s¢, a4, se+1) returns the probability of transitioning to state sy41
after executing action a; in state s;.

T'(st,at, se41) = P(se1 | 8¢, a1)

@ In our example, the actions can be either deterministic, or stochastic
if the floor is slippery, and the robot might ends up in a different
position while trying to move toward another one.

26 /93

Markov Assumption:

P(seq1 | St,at, Se—1,a4-1, St—2, Gt—2, . .. S0, a0) = P(se41 | st,a¢)
— — ——

TV
future history future present

The current state and action have all the information needed to predict
the future.

Example:

If you observe the position, velocity and acceleration of a moving vehicle
at a given moment, then you could predict its position and velocity in the
next few seconds without knowing its past positions, velocities or
accelerations.

State = position and velocity

Action = acceleration

Open illustration from engadget.com

27 /93

|
Markov Decision Process (MDP)

Reward function R:

The preferences of the agent are defined by the reward function R.

This function directs the agent towards desirable states and keeps it
away from unwanted ones. R(s¢, a;) returns a reward (or a penalty)
to the agent for executing action ay in state s;.

The goal of the agent is then to choose actions that maximize its
cumulated reward.

The elegance of the MDP framework comes from the possibility of
modeling complex concurrent tasks by simply assigning rewards to the
states.

In our previous example, one may consider a reward of +100 for
reaching the goal state, a —2 for any movement (consumption of
energy), and a —1 for not doing anything (waste of time).

28 /93

How to define the reward function R?
Examp|es (from David Silver's RL course at UCL)

@ Fly manoeuvres in a helicopter

e positive reward for following desired trajectory
e negative reward for crashing

Defeat the world champion at Backgammon

e positive reward for winning a game
e negative reward for losing a game

Manage an investment portfolio
e positive reward for each dollar in bank

Control a power station

e positive reward for producing power
o reward for exceeding safety thresholds

@ Make a humanoid robot walk

e positive reward for forward motion
o negative reward for falling over

Play many different Atari games better than humans
o reward for increasing/decreasing score 29/9:

Examples: Cart-pole (inverted pendulum)

0 Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

http://cs231n.stanford.edu/

30/93

Examples: Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

From OpenAl Gym (MUJOCO SimUlator) http://cs231n.stanford.edu/

31/93

Examples: Video Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Why so much interest on video games? Skills learned from games can be
transferred to real-life (e.g, self-driving cars).

http://cs231n.stanford.edu/

32/93

Examples: Go game

ABCDETFGH]KLMNOPR QRS ST

19
[TT

[
18
[

=
%

ABCDETFGH]KLMNOPQRST

http://cs231n.stanford.edu/

Objective: Win the game!
State: Position of all pieces

Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

33/93

Horizons

Given a reward function, the goal of the agent is to maximize the expected
cumulated reward over some number H of steps, called the horizon.

(8tyaty Tt), (St1, A1, Tt41)s (St42, G425 T142), - -+ (St4H—1, G+ H—1, Tt+-H-1)
horizon |

The goal of the agent is to maximize the sum of rewards
Tt +Te41 + T2 T T3+ T H-1-

34 /93

Finite or Infinite Horizons

@ The horizon H can be either finite or infinite.

o If the horizon is finite, then the optimal actions of the agent will
depend not only on the states, but also on the remaining number of
steps until the end.

Example

There is a —1 reward for moving and a +100 reward for reaching the goal.
If only 2 steps are left before the end of the episode, then it would better
to do nothing and receive a cumulated reward of 0, than to move and
receive a cumulative reward of —2, since the goal cannot be reached in 2
steps anyway. N

35 /93

Finite or Infinite Horizons

o If the horizon is infinite (H = oc0), then the optimal actions depend
only on the state. In our case, the optimal action at any step is to
move toward the goal.

e A discount factor -y € [0, 1) is also used to indicate how the
importance of the earned rewards decreases for every time-step delay.
A reward that will be received k time-steps later is scaled down by a
factor of v*.

@ The discount factor can also be interpreted as the probability that the
process continues after any step.

The goal of the agent is to maximize the sum of discounted rewards
re+ et + Y2 rere + 1Pres + ytrea 9 res

36 /93

Policies

@ The agent selects its actions according to a policy 7 (a strategy).

@ A deterministic stationary policy 7 is a function that maps every state
s into an action a.
m : State — Action.

m(State) = Action.

37/93

Examples of Policies

H T T*
el — |+
o o+

Sub-Optimal Policy Random Policy Optimal Policy

-l

0
4+

4+
4 -

] K

38/93

Value Functions

The value function of a policy 7 is a function V™ that associates to each
state the sum of expected rewards that the agent will receive if it starts
executing policy 7 from that state. In other terms:

VT(s) = Y AR, [R(st,w(st))mso:s
t=0

= Sum of discounted rewards that are expected to be received

= How good is policy .

where 7(s;) is the action chosen in state s.

39/93

The value function of a policy can also be defined as:

V7(s) :Zq/tlﬁlst [R(st,ﬂ(st))lw, Sop=8
t=0

40 /93

The value function of a policy can also be defined as:
(0.9}

VH(5) = 3B | Rt m(s)lms0 = 3
t=0

=~9R(s, m(s)) + Z'yt]ESt [R(st,w(st))hr, S0 = 8:|
t=1

41 /93

The value function of a policy can also be defined as:

Zﬂﬁrst [st m(s0)ims0 =
+ZVE&[o st>>|w,so=s}

=R(s,m(s)) + ’yZ’ytil]Est [R(st,ﬂ'(st))hr, S0 = s}

t=1

42 /93

The value function of a policy can also be defined as:
Zq/tlﬁlst [st, m(s¢))|m, so = s}
)+ Z'y E, [s, m(s¢))|m, s = 8:|
=R(s,7(s)) + ’yZ’ytil]Est [R(st,ﬂ'(st))hr, 50 = s}

t=1

S)) + v Z ’ytlEst, |:R(8t/, ﬂ'(St/)) ’71', S0 ~~ T(S, 7'('(8), .):|with t=t-1

43 /93

The value function of a policy can also be defined as:
Zq/tlﬁlst [st, m(s¢))|m, so = s}
)+ Z'y E, [s, m(s¢))|m, s = 8:|
=R(s,7(s)) + ’yZ’ytil]Est [R(st,ﬂ'(st))hr, 50 = s}
t=1

S)) + v Z ’ytlEst, |:R(St/, ﬂ'(St/)) ’71', S0 ~~ T(S, 7'('(8), .):|with t=t-1

)+ Z T(s,n(Z'yt/Est, [(spr, m(spr))|m, 80 = 8/:|

s'eS

44 /93

The value function of a policy can also be defined as:

Zﬂﬁrst [st m(s0)ims0 =
+ZVE&[o st>>|w,so=s}

=R(s,m(s)) + ’yZ’ytil]Est [R(st,ﬂ'(st))hr, S0 = s}

t=1

S)) + v Z ’ytlEst, |:R(St/, ﬂ'(St/)) ’71', S0 ~~ T(S, 7'('(8), .):|with t=t-1

)+ Z T(s,n(Z'yt/Est, [(spr, m(spr))|m, 80 = 8/:|

s'eS
s))—i—’yZT(s,ﬂs,s (s
s'eS

45 /93

The value function of a policy can also be defined as:

Z’ytESt |: St, T 8t))|7r7 So = 3:|
)+ Zv E[stz ot =]

=R(s,m(s)) + ’yZ’ytilEst [R(st, m(s¢))|m, s0 = 5]

t=1

5)) + Z fyt/ESt, [R(st/, m(sp))|m, so ~ T(s,m(s), .):|with T
#=0

)+ Z T(s,n(nyt,E sy [(sg,m(sp))|m, so = s']

s'eS
s))+’yZT(s,7rs,s T(s")
s'eS

46 /93

Bellman Equation

Vi(s) = R(s,m(s)+v Y T(s,m(s),s)V(s)
s'eStates
value = immediate reward + ~y(expected value of next state)

This equation plays a central role in dynamic
programming, a family of methods for solving a
complex problem by breaking it down into a
collection of simpler subproblems.

In dynamic programming, invented by Richard
Bellman in 1957, sub-problems are nested
recursively inside larger problems.

) Richard Bellman ,
(1920-1984) 47/93

Optimal policies

Bellman Equation

VT(s) = R(s,m(s) +v > T(s,m(s),s)V7(s)

s'eStates

@ An optimal policy 7" is one that satisfies:
Vs e S: 71" € argmax V" (s)
s

@ The value function of an optimal policy is called the optimal value
function, it is defined as:

V*(s) = max {R(s,a)—i—’y Z T(s,a,s)V*(s)

a€Actions
s'eStates

48 /93

Optimal policies

@ In his seminal work on dynamic programming, Richard Bellman
proved that a stationary deterministic optimal policy exists for any
discounted infinite horizon MDP.

o If the value function V™ of a given policy 7 satisfies
VT(s) = R T(s,a,s)V™(s")],
(5) = max| (v 7 3 Tl V)

then V™ = V* and « is an optimal policy.
@ The equation above is a necessary and sufficient optimality condition.

v

In other terms, 7 is optimal if and only if

Vs, a : [R(s,a) + Z T(s,a,s)VT(s)| <V7™(s).

s'eS

4
497793

Planning

Planning: finding an optimal policy 7* given an MDP (S, A, T, R).)

Most of planning algorithms for MDPs fall in one of the two categories:
@ Policy iteration

@ Value iteration

50/93

Policy Iteration

@ Start with a randomly chosen policy 7; at t =0

@ Alternate between the policy evaluation and the policy
improvement operations until convergence.

evaluation Ty improvement evaluation 771 improvement evaluation
o Vo ™ Vv T
o improvement evaluation 9 improvement evaluation T4 improvement

V2 3 Vs Ty Ve

x evaluation qr* improvement *
...... V O

>
convergence
Vi Ty

Figure from Sutton and Barto:
51/93

Policy Iteration

@ Start with a randomly chosen policy 7y at t =0

@ Alternate between the policy evaluation and the policy
improvement operations until convergence.

Policy evaluation
@ Randomly initialize the value function V%, for k = 0.

@ Repeat the operation:

Vs € States : Vii1(s) < R(s,m(s) —i—vZTsm YV (s")
s'eS

until Vs € S 1 [Vi(s) — Vie—1(s)| < € for a predefined error threshold e.

v

52 /93

Policy Iteration

@ Start with a randomly chosen policy 7y at t = 0

@ Alternate between the policy evaluation and the policy
improvement operations until convergence.

Policy improvement

Find a greedy policy 711 given the value function Vj, (computed in the
policy evaluation phase):

Vs € S:mp1(s) < arg max [R(s, a)+ -y Z T(s,a,s)Vi(s)

a€ Actions
s’ EStates

The policy iteration process stops when 7; = 7;_1, in which case m; is an
optimal policy, i.e. m = 7*.

53/93

Input: An MDP model (S, A, T, R) ;

/* Initialization */ ;

t=0,k=0;

Vs € S: Initialize 7(s) with an arbitrary action;

Vs € S: Initialize Vi (s) with an arbitrary value;

repeat

/* Policy evaluation */;

repeat
Vs €S : Vipi(s) « R(s,m(s)) + 7> ges T(s,mi(s),s") Vi(s');
k+—k+1;

until Vs € S 1 |Vi(s) — Vi_1(s)| < &

/* Policy improvement */;

Vs €S :myy1(s) < argmaxgea |R(s,a) + 7> ycs T(s,a,8) Vi(s)|;

t+—t+1;
until m = m_q;
=Ty,

Output: An optimal policy 7*:

Example

@ State space § =
{511, 812, 513, 521, 522, 523, 531, 532, 533 }
@ Action space
A = {«,—,1,],do nothing}
@ Deterministic transition function
@ Reward function Va : R(s33,a) =1,
Va,Vs # s33: R(s,a) =0
@ Discount factor v = 0.9.

Initial policy

55 /93

Example

Let's perform the policy evaluation on the initial policy

=

State
S11
512
513
$21
522
523
531
532
533

O O OO OO OoO oo

J Initial policy

VSES:Vk+1() RSTFt +’)’ZTS7Tt Vk()
s'eS

56 /93

Example

Let's perform the policy evaluation on the initial policy

Vo Wi
State
S11 0 |0+09x%x0
512 0 |04+09x0
513 0 |0+09x%x0
521 0 |04+09x0
522 0 |0+09x%x0
523 0 |0+09x%x0
531 0 |0+09x%x0
532 0 |04+09x%x0
533 0 |1+09x%x0 J Initial policy
Vs €S : Viyi1(s) = R(s,m(s —l—’yZTsm Vi(s')

s'eS

57 /93

Example

Let's perform the policy evaluation on the initial policy

Wil W
State
S11 0 0
S12 0 0
S13 0 0
S91 0 0
S99 0 0
5923 0 0
S31 0 0
532 0 0
s | 0| 1 J Initial policy
Vs €S : Viyi1(s) = R(s,m(s —l—’yZTsm Vi(s')
s'eS

58 /93

Example

Let's perform the policy evaluation on the initial policy

Vo | Vi Vo
State
S11 0] 0 |0+09x0
S12 0] 0 |04+09x%x0
513 0|0 [0409x%x0
S21 0] 0]04+09x%x0
522 0] 0]|04+09x%x0
523 0] 0]04+09x1
831 0] 0]04+09x%x0
532 0] 0 |04+09x%x0
533 01 |14+409x1 J Initial policy
Vs €S : Viyi1(s) = R(s,m(s —l—’yZTsm Vi(s')

s'eS

59 /93

Example

Let's perform the policy evaluation on the initial policy

Vo | Vi| Ve
State
S11 00| O
812 0|0 O
513 00| O
$91 00| O
S99 0 0 0
523 0] 0|09
S31 0 0 0
532 0 0 0
533 01119 J Initial policy
Vs €S : Viyi1(s) = R(s,m(s —l—’yZTsm Vi(s')

s'eS

60 /93

Example

Let's perform the policy evaluation on the initial policy

State
S11
512
513
$21
522
523
531
532
533

=

O O OO OO OoO oo

~

—H O OO OO OoOOoOOo

O O O O o

0.9

o

0
1.9

V3

0+09x0
0+09x0
0+09x0.9
0+09x%x0
04+09x0
0+09x1.9
04+09x0
0+09x%x0
1+09x1.9 J

Initial policy

Vs €S : Viyi(s) =

Sﬂ't

)+ > T(s,mi(s), s) Vi(s)

s'eS 61/93

Example

Let's perform the policy evaluation on the initial policy

Vo | Vi|Val| V3
State
S11 0] 0| O 0
512 00| O 0
S13 0 0 0 0.81
S21 00| O 0
522 0|0 O 0
5923 0 0 09| 1.71
531 0j]0| O 0
532 00| O 0
ss3 | 0| 1]19]271 J Initial policy
Vs €S : Viyi1(s) = R(s,m(s —l—’yZTsm Vi(s')

s'eS

62 /93

Example

Let's perform the policy evaluation on the initial policy

State
S11
512
513
$21
522
523
531
532
533

=

O O OO OO OoO oo

=

—H O OO OO OoOOoOOo

O O O O o

0.9

o

0
1.9

Vs e S: Viyi(s) =

Va | ... | Viooo
0 43
0 7.3
0.81 8.1
0 4.8
0 6.6
1.71 9
0 5.3
0 5.9
2.71 10 J Initial policy
R(s,m(s)) +v Y _ T(s,m(s),s')Vi(s")
s'eS

63/93

Now, we improve the previous policy based on the calculated values

Vo | Wi| V| V3 V1000
State
S11 0 0 0 0 4.3
S12 0 0 0 0 7.3
513 0] 0| 0 |0281 8.1
S921 0 0 0 0 4.8
599 0] 0| O 0 6.6
$923 0 0 09| 1.71 9
831 0 0 0 0 53
532 0 0 0 0 5.9
ss33 | 0| 1]19]27 10 J Improved policy

Vs €S :mii(s) = arg max [R(s, a)+y /ZGST(S, a, S')Vk(sl)] .
S

Repeat policy evaluation with the new policy m¢4+1. Stop if w1 = 3. 64 /93

Value lteration

Value iteration can be written as a simple backup operation:

Vs €S : Viyi(s) < max [R(s, a) + 'yzggT(s,a, 3’)Vk(3/)}

This operation is repeated until Vs € S : |Vi(s) — Vi_1(s)| < €, in which
case the optimal policy is simply the greedy policy with respect to the
value function Vj

Vs € §: 7m"(s) = argmax [R(s, a)+y Z T(s,a, s')Vk(sl)]
acA s'eS

65 /93

Value lteration

Input: An MDP model (S, A, T, R) ;

k = 0;

Vs € S: Initialize Vi (s) with an arbitrary value;
repeat

Vs € S : Viyi(s) < maxgea [R(s, a) +v> gesT(s,a, S,)Vk(S/):| :

k<« k+1;
until Vs € S 1 |Vi(s) — Vi—1(s)| < €

Vs € S : 7*(s) = argmaxge 4 [R(s,a) +9> s T(s,a, s’)Vk(s’)] ;

Output: An optimal policy 7*;
Algorithm 2: The value iteration algorithm.

66 /93

Learning with Markov Decision Processes

How can we find an optimal policy when we do not know the transition
function 1?7)

Reinforcement Learning (RL)
@ Generally refers to the problem of finding an optimal policy 7* for an
MDP with unknown transition function 7.

@ The agent learns, the best actions from experience, by acting and
observing the received rewards, i.e. by trial-and-error.

image credit: Remi Munos

67 /93

]
Model-based vs Model-free RL

Model-based Approach to Reinforcement Learning
o Collect data: Data = {(s¢,a, S¢+1),for t =0,... N}

e Estimate the transition function as: for any states s and s’, and
action a

T " = P(s|s, a) Number of times (s, a,s’) appears in Data
s,a,8)= F£(s|s,a)~
) @, ’ Number of times (s, a, anything) appears in Data

where the denominator is the total number of times that action a was
executed in state s in the data, regardless of the next state.

@ These estimates converge to the true model T if S and A are finite.

e Find an optimal policy using the Policy Iteration or the Value
Iteration algorithms with the learned model T'.

68 /93

Model-based vs Model-free RL

Model-free Approach to Reinforcement Learning

Learn the policy directly from the rewards, without learning the transition
function

@ It is not necessary to learn a model
@ More robust to modeling errors

@ Much simpler than model-based approaches

o Typically requires more data for training

69 /93

Q-value

Before presenting some learning algorithms, we will first need to introduce
the Q-value function.

Q-value

A Q-value is the expected sum of rewards that an agent will receive if it
executes action « in state s then follows a policy 7 for the remaining steps.

Q7 (s,a) = R(s,a) + v Z T(s,a,s V(s

s'eS

a can be any action, it is not necessarily 7(s).

70 /93

Value Function and Q-Value Function

Following a policy produces sample trajectories (or paths) s, a,, 1o, S, @, I, -

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
V7(s) = ny |80 = 8,

t>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s and then following the policy:

Q" (s,a) = Z’yn\so—sao—aﬂ
t=0

http://cs231n.stanford.edu/

71/93

The Q-learning algorithm
We'd like to do Q-value updates to each Q-state:

Qr+1(s,a) ZT(s,a, s") [R(s,a, s+~ maellx Qr(s',a")

= Butcan’t compute this update without knowing T, R

Instead, compute average as we go
= Receive a sample transition (s,a,r,s’)
= This sample suggests

Q(s,a) = r+ymax Q(s', ')

= Butwe want to average over results from (s,a) (Why?)
= So keep a running average

Q(s,0) — (1 - 2)Q(s,0) + (@) |r + ymax Q(s',a")

« is just any number between 0 and 1 that is decreased over time.

https://courses.cs.washington.edu/courses/cse473 /17wi/slides/11-r12.pdf
72 /93

Input: An MDP model (S, A, R) with unknown transition function;

t =0, s is an initial state;

Vs € S,Va € A: Initialize Q*(s,a) with an arbitrary value;

repeat

7(s¢) = argmaxae 4 Q' (s, a);

Choose action a; as 7(s;) with probability 1 — ¢, (for exploitation), and
as a random action (for exploration) with probability e;

Execute action a; and observe the received reward R(s;,a;) and the
next state s;41;

QtH(St, at) = (1 — at)Qt(Styat) + oy R(St,at) + ’Yg}gi Qt(8t+1a a’)

t<+—t+1;
until the end of learning;
Output: A learned policy 7;

Algorithm 3: The Q-learning algorithm.

73/93

Alternative Formulation of the Update Equation

observed value predicted value

t+1 At ¢ Nt
Q" (s, ar) = Q" (S, a) + oy | R(s¢, ar) +’7£I}gi\<Q (S¢41,0a") Q" (st, ar)

~

Temporal Difference (TD)

New Value = Old Value + (learning rate) * (Observed Value - Predicted Value)

74 /93

Convergence conditions of tabular Q-learning (discrete states and actions)

Robbins-Monro conditions for the learning rate
)
°) C,af <ooand,
m —
® Do =00
In other terms
@ Learning rate oy decreases over time,

@ but not too fast.

The exploration probability ¢; should be non-zero.

Example of good a; and ¢

1
oy = -, €+ —
t n t

Sl -

75/93

Suppose

@ The agent selects action move left in state sg

time-step 0:

-
S0

76 /93

Suppose
@ The agent selects action move left in state sg

@ The agent gets a reward R(sg, move left) = 10 and moves to state s;

“He A

time-step 0: time-step 1:

77/93

Suppose

@ The agent selects action move left in state sg

@ The agent gets a reward R(sg, move left) = 10 and moves to state s;

@ The old Q-value of (sg, move left) is Q(sg, move left) = 3

time-step 0:

-
S0

time-step 1:

8

78/93

Suppose

The agent selects action move left in state sg

The agent gets a reward R(sg, move left) = 10 and moves to state s;
The old Q-value of (sg, move left) is Q(sg, move left) = 3

The max Q-value in state s1 is Q(s1, move up) =7

time-step 0:

-
S0

time-step 1:

K-

79/93

Suppose
@ The agent selects action move left in state sg

The agent gets a reward R(sg, move left) = 10 and moves to state s;
The old Q-value of (sg, move left) is Q(sg, move left) = 3

The max Q-value in state s1 is Q(s1, move up) =7

The discount factor v = 0.95

The learning rate a = 0.1

—

S0 Slﬁ

time-step 0: time-step 1:

80/93

| Suppose

@ The agent selects action move [eft in state s

@ The agent gets a reward R(sg, move left) = 10 and moves to state s;
@ The old Q-value of (sg, move left) is Q(sg, move left) = 3

@ The max Q-value in state s; is Q(s1, move up) =7

@ The discount factor v = 0.95

@ The learning rate « = 0.1

Then the Q-value is updated as
Q(so, move left) <— Q(so, move left) + a[

Q(s0, move left) < 3+ 0.1x [10 +0.95%7

— 3] = 4.365

R(sp, move left)
F4Q(s1, move up)
—Q(sg, move /eft)]

81/93

Exploration vs. Exploitation

https://courses.cs.washington.edu/courses/cse473 /17wi/slides/11-rl2.pdf
82/93

How to Explore?

Several schemes for forcing exploration

= Simplest: random actions (g-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

= Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower g over time
= Another solution: exploration functions

https://courses.cs.washington.edu/courses/cse473 /17wi/slides/11-r12.pdf

83/93

How to Explore?

When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring S—

Exploration function

= Takes a value estimate u and a visit count n, and =
returns an optimistic utility, e.g. f(u,n) = v+ k/n

Regular Q-Update: Q(s,a) <a R(s,a,s") +ymaxQ(s',a)
Modified Q-Update: Q(s,a) <o R(s,a,5") +~ max f(Q(s,d"),N(s,ad"))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

https://courses.cs.washington.edu/courses/cse473/17wi/slides/11-r12.pdf

84/93

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

= Too many states to visit them all in training

= Too many states to hold the g-tables in memory

Instead, we want to generalize:
= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

= Thisis a fundamental idea in machine learning, and we’'ll
see it over and over again

https://courses.cs.washington.edu/courses/cse473/17wi/slides/11-r12.pdf

85/93

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

»

»

[4
»
»
»
-
»
»
-

.
.

https://courses.cs.washington.edu/courses /cse473 /17wi/slides/11-rl2.pdf

Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)
LR etc.
= |sit the exact state on this slide?
= (Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

https://courses.cs.washington.edu/courses/cse473/17wi/slides/11-r12.pdf

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) = w1 f1(s) +wafo(s) + ...+ wnfn(s)
Q(s,a) = w1 f1(s,a)twofa(s,a)+...+wnfn(s,a)

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

https://courses.cs.washington.edu/courses/cse473 /17wi/slides/11-r12.pdf

88 /93

If everything is summed up in weights w, how can we learn them?

Q) = wifils a)ytusfols, @)t Aunfalse) |

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r +’Ym€}><Q(s’,a’)J — gl
Q(s,a) «— Q(s,a) + a [difference] Exact Q's

w; «— w; + « [difference] f;(s,a) Approximate Qs

Intuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

Formal justification: online least squares

https://courses.cs.washington.edu/courses/cse473 /17wi/slides/11-r12.pdf

89 /93

Q(s,a) = 4.0fpor(s,a) — 1.0fgsr(s,a)
N\

fpor(s,NORTH) =0.5
2= NORTH /
r = —500 s
fasT(s, NORTH) = 1.0
J
Q(s, NORTH) = +1 O,) =0

r+ymaxQ(s',a’) = —500 + 0
a
a. ~501]0.
difference = —501 |:> wpor <+ 4.0+ a[-501]0.5
wgsT ¢ —1.0 + a[-501] 1.0

Q(S, Cl/) = 3.0fDOT(S, CL) 5= 3ofGS’T(S, a) [Demo: approxima

Where the learning rate « is set in this example to ~ 1/250

https://courses.cs.washington.edu/courses/cse473/17wi/slides/11-r12.pdf
90 /93

Deep Q Learning (DQN, Mnih et al., 2013)

1st hidden 2nd hidden 3rd hidden

Input layer layer layer output
Q(s¢.a’)
Q(sy,at)
fully fully Q(Nf.ll)

connected :connected :

4x4x16 filter ™. : :
stride 2 D/Q/C)

84x84x4 20x20x16 9x9x32 256 4~18

8x8x4 filter ™.
stride 4

Loss Function

N observed value predicted value
% N\ 2
My (R(St; ay) + Y MAX Qu (541, a') = Qu(st, ar))
a
t=0

Temporal Difference (TD) FLJGE

Dueling Network Architectures for Deep RL (Wang et al., 2015)

1st hidden 2nd hidden 3rd hidden

Input layer layer layer output
Q(s¢.a’)
Q(sy al)
fully fully Q(Nf.ll)

connected :connected :

4x4x16 filter ™. : :
stride 2 D—/Q/C)

84x84x4 20x20x16 9x9x32 256 4~18

8x8x4 filter ™.
stride 4

Loss Function

N observed value predicted value
7 A - N 2
Miny, (R(St, ay) + v max Qw(st41,0") = Qu(st, ar))
a
tIO "

Temporal Difference (TD) CE

Questions

