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Résumé

La prise de décision est un problème omniprésent qui survient dés qu’on fait face à plusieurs
choix possibles. Ce problème est d’autant plus complexe lorsque les décisions, ou les actions,
doivent être prise d’une manière séquentielle. En effet, l’exécution d’une action à un moment
donné entrâıne un changement à l’environnement, ou au système qu’on veut contrôler, et un tel
changement ne peut pas être prévu avec certitude. Le but d’un processus de prise de décision
consiste alors à choisir des actions en vue de se comporter d’une manière optimale dans un
environnement incertain. Afin d’y parvenir, l’environnement est souvent modélisé comme un
système dynamique à plusieurs états, et les actions sont choisies d’une telle manière à ramener
le système vers un état désirable.

Dans le cadre de cette thèse, nous avons proposé un ensemble de modèles stochastiques
et d’algorithmes, afin d’améliorer la qualité du processus de prise de décision sous l’incertain.
Les modèles développés sont une alternative aux Processus Décisionnels de Markov (MDPs),
un cadre formel largement utilisé pour ce genre de problèmes.

En particulier, nous avons montré que l’état d’un système dynamique peut être représenté
d’une manière plus concise lorsqu’il est décrit en termes de prédictions de certains évènements
dans le futur. Nous avons aussi montré que le processus cognitif même du choix d’actions,
appelé politique, peut être vu comme un système dynamique. Partant de cette observation,
nous avons proposé une panoplie d’algorithmes, tous basés sur des représentations prédictives
de politiques, pour résoudre différents problèmes de prise de décision, tels que la panification
décentralisée, l’apprentissage par renforcement, ou bien encore l’apprentissage par imitation.

Nous avons montré analytiquement et empiriquement que les approches proposées mènent
à des réductions de la complexité de calcul et à une amélioration de la qualité des solutions
par rapport aux approches d’apprentissage et de planification standards.



Abstract

The problem of making decisions is ubiquitous in life. This problem becomes even more
complex when the decisions should be made sequentially. In fact, the execution of an action
at a given time leads to a change in the environment of the problem, and this change cannot be
predicted with certainty. The aim of a decision-making process is to optimally select actions
in an uncertain environment. To this end, the environment is often modeled as a dynamical
system with multiple states, and the actions are executed so that the system evolves toward
a desirable state.

In this thesis, we proposed a family of stochastic models and algorithms in order to improve
the quality of of the decision-making process. The proposed models are alternative to Markov
Decision Processes, a largely used framework for this type of problems.

In particular, we showed that the state of a dynamical system can be represented more
compactly if it is described in terms of predictions of certain future events. We also showed
that even the cognitive process of selecting actions, known as policy, can be seen as a dynamical
system. Starting from this observation, we proposed a panoply of algorithms, all based on
predictive policy representations, in order to solve different problems of decision-making, such
as decentralized planning, reinforcement learning, or imitation learning.

We also analytically and empirically demonstrated that the proposed approaches lead to
a decrease in the computational complexity and an increase in the quality of the decisions,
compared to standard approaches for planning and learning under uncertainty.
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Chapter 1

Introduction

The problem of making decisions is ubiquitous in life. Everybody is confronted every day to
dozens of situations where a decision should be made, quickly and efficiently. Some of these
situations are simple daily routines, such as choosing how to dress for the day, while others
may require more mental efforts, such as driving a car to work. More importantly, one has
to make a big life decision every once in while, such as choosing a major at the university,
or a job after graduating. Therefore, we can certainly confirm that an important part of the
cognitive process is dedicated to making decisions. A simple example of that is writing a text,
such as this introduction, where the writer spends most of his time choosing lines of thought,
examples, and words.

So, what makes some decisions harder than others? The answer to this question is not
simple and has many facets, but it can be reduced to one principal cause: the uncertainty
about the outcome of the decision. More precisely, it is the uncertainty about the cost, or the
reward, that will be generated by a decision in a near or a far future.

This uncertainty is generally caused by a limited capacity of accurately modeling all the
parameters and the variables related to a decision-making problem, or by an inherent in-
determinacy within the problem itself, such as predicting the behavior of a human. This
uncertainty can also be caused by a limited capacity of enumerating and processing all the
possible outcomes of the decision, due to the high number of available choices, or to the
duration of the decision’s impact in the future.

In order to make a good decision, one should consider the outcome of the decision at any
moment in the future, how this decision will change the context of the problem, and how it
will interfere with other decisions that should be made in the future. This process, known
as Sequential Decision-Making Under Uncertainty, has shown to play a key role in solving a
large class of important problems, ranging from seemingly simple tasks, such as walking and
path planning, to playing complex games, or conversing with others.
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However, many real-world problems are so complex that they cannot be solved by humans.
The aim of Artificial Intelligence [Russell and Norvig, 2009] is to ultimately automatize the
process of solving these problems. In this context, the decision-maker is an autonomous entity
called an agent, evolving in an environment defined by parts of the world that are related to
the task of the agent. The decisions of the agent are called actions.

The computational approach to the decision-making problem is to represent the environ-
ment of an agent as a dynamical system. The definition of a dynamical system is intimately
related to the definition of a state. The state of the system is all the information that is neces-
sary for predicting the outcome of the agent’s actions. A dynamical system is then a system in
which the transition between different states can be formally described by a transition func-
tion. Markov Decision Processes (MDPs) are a popular formal framework for representing
such systems. Partially Observable MDPs (POMDPs) are a variant of MDPs for representing
systems where the agent cannot completely observe the state.

Given a dynamical system, a task is defined by associating a numerical reward, or cost, to
every executed action. The goal of the decision-maker is to choose actions to change the state
of the system so that it can maximize its total reward. The function that selects an action for
each possible state is called a policy. Therefore, solving a sequential decision-making problem
corresponds to finding a policy that maximizes the expected total reward, i.e., an optimal
policy.

The problem of finding an optimal policy turns out to be untractable in systems with
a large state space on a long planning horizon. The high dimensionality of the state space
is partly due to the fact that the states are generally defined as a simple conjunction of all
the variables describing the different aspects of the state. As an example of that, the state
of a mobile robot can be defined by the current position of the robot, the position of its
destination, its level of energy, the temperature of the weather, and so on.

In this thesis, we show that decision-making under uncertainty can be performed more
efficiently when the state of a system is represented by directly predicting its future after a
sequence of actions. Intuitively, a decision-maker should not be concerned by the complexity of
its environment, but only about how the environment responds to its actions from a subjective
point of view. For instance, if the task of a robot is to simply move forward while avoiding
obstacles, then its state should indicate only the probability of hitting an obstacle after each
move, and not the exact location of the robot. In general, a problem can be drastically
simplified by changing its representation. To see that, one can try to multiply two large
numbers using the Roman numerals, and then try to do the same operation using the Hindu-
Arabic numerals.

In the next section, we present the different categories of the methods used for sequential
decision-making under uncertainty. Then, we present the contributions of this thesis. We
finish by giving a brief description of the content of this thesis.
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1.1 A Categorization of Sequential Decision-Making Under

Uncertainty Techniques

There are four principal types of approaches to decision-making under uncertainty, as depicted
in Figure 1.1. Each one of these methods can or cannot be used depending on the available
parameters defining the problem. The first one, known as planning or optimal control, consists
in finding an optimal policy given a reward function (or a goal) and a model describing the
dynamics of the system. If the dynamics model is unknown, than one can either learn it by
observing the response of the system to different actions, or directly learn an optimal policy
by trying different actions several times, and choosing the ones that lead to a higher overall
reward. This latter type of approaches is known as reinforcement learning. Often, it would be
better to show to the decision-maker examples of how to perform the task and let him find the
general policy, rather than to let him execute costly actions. This type of learning is known as
direct imitation learning, and it is generally used when no model of the dynamics is available.
Even if a model is available, sometimes it is easier to specify the task by demonstrating it
with examples and letting the decision-maker learn a reward function, than to handcraft a
reward function. This method is called inverse optimal control. Finally, the decision-making
process can involve several rational agents, forming a multiagent system.

Rewards Model Policy

Optimal Control / Planning

Reinforcement Learning

Inverse Optimal Control Examples

Direct Imitation Learning

Figure 1.1: Different approaches to decision-making under uncertainty.

This thesis shows how efficient representations of states, rewards and policies can lead to an
improvement of each one of these different approaches to decision-making under uncertainty.
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1.2 Main Contributions

The key contributions of this thesis are:

A Predictive State Representation based on core histories (Chapter 2): In this
thesis, we introduce a Predictive State Representations (PSR) based on special past
events called core histories, that can be used for predicting the future events, and we
provide a Bayes update rule for the belief states in this new model. Predictive State
Representations (PSRs) are a family of predictive representations proposed by Littman
et al. [2001]. PSRs are based on representing states using the probabilities of special
future events called core tests. The probabilities of the core tests are a sufficient infor-
mation for predicting the future of the system. Note that the existence of core histories
has been already showed by James [2005], our contribution is the derivation of a Bayes
rule for updating the belief state using core histories.

An algorithm for transforming Partially Observable MDPs to Predictive State
Representations (Chapter 3): We propose an algorithm for finding an approxi-
mate and compact PSR model given a Partially Observable MDP (POMDP), based
on the work of Poupart [2005] on compressing POMDPs. We formulate this problem
as an optimization problem. Previously, Littman et al. [2001] proposed an algorithm
for transforming a given POMDP into an equivalent PSR. However, the dimension of
the equivalent PSR model is almost equal to the dimension of its original POMDP in
most of standard benchmarks. Our algorithm minimizes the potential error caused by
missing some core tests. In this context, we present an empirical evaluation on bench-
mark problems, illustrating the performance of this approach on prediction and planning
tasks.

A Predictive Policy Representation (Chapter 4): We present a new model for rep-
resenting stochastic policies in partially observable environments. This model, called
Predictive Policy Representation (PPRs), can be seen as the dual of PSRs by switching
the role of actions and perceptions. The principle of PPRs is to use PSRs for represent-
ing internal states of an agent instead of the states of the system. Note that the idea of
using tests for representing policies was suggested by Wiewiora [2005], our contribution
at this level is presenting a complete parametric model based on PPR and deriving a
Bayes’ update equation.

A point-based planning algorithm for Decentralized Partially Observable MDPs
(Chapter 4): We present a new fast algorithm for planning in decentralized POMDPs,
based on a simplified variant of the Predictive Policy Representations (PPRs). The
major drawback of decentralized POMDPs is the large dimensionality of the internal
state (the belief state) of a given agent. In this context, an internal state corresponds
to a probability distribution on all the possible policies of all the agents in the system.
Our algorithm is based on using the probabilities of specific events (tests) in order to
predict the behavior of the agents in the future.
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An optimal planning algorithm for Decentralized Partially Observable MDPs
(Chapter 4): We propose a lossless policy space compression technique for planning
with decentralized POMDPs. Our method is based on transforming high-dimensional
distributions on policies to equivalent low-dimensional vectors. These vectors, called
reduced belief states, indicate the probabilities of specific events using the predictive
policy representations.

An algorithm for reinforcement learning in a partially observable environment
(Chapter 5): We introduce a new model-free approach, based on PPRs, for reinforce-
ment learning in partially observable environments. We also present a policy gradient
algorithm for training PPRs. We empirically compare PPRs to Finite-State Machines,
and show that better results can be achieved using PPRs.

An algorithm for learning by imitation in a partially observable environment
(Chapter 6): We show how PPRs can be used for modeling the policy of an expert
agent, and how this policy can be learned from demonstrations. We also compare PPRs
to Finite-State Machines on tasks related to learning the behavior of a robotic wheelchair
user.

Techniques for improving the performance of inverse optimal planning algo-
rithms (Chapter 6): We propose to use local soft homomorphisms of Markov Decision
Processes, introduced by Sorg and Singh [2009], in order to generalize the demonstration
of an expert’s policy into new unseen states. We also provide a technique for generalizing
the expert’s policy by using the learned reward function for generating new examples
that cover the complete state space.

A Predictive Reward Representation (Chapter 6): We propose an alternative repre-
sentation of the reward function in inverse optimal planning. In inverse optimal plan-
ning, a reward function is learned from a demonstration, assuming that the reward is
a linear combination of basic features. In the predictive reward representation, the re-
ward function is a linear combination of the predictions of the basic features after a
sequence of actions. We show that these new features are more likely to be encountered
in larger regions of the state space than the basic features. Consequently, the quality of
the policies learned using this new representation of rewards can be improved.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 presents a background on discrete-time dy-
namical systems, Markov Decision Processes (MDPs), Partially Observable Markov Decision
Processes (POMDPs), Predictive State Representations (PSRs), and an overview of some
other models, in addition to basic planning and learning algorithms using these models. Chap-
ter 3 presents a new algorithm for compressing the state space in POMDP by transforming
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it into a PSR with a reduced dimension. Chapter 4 introduces the idea of Predictive Policy
Representations (PPRs). Novel approximate and exact algorithms for planning in Decentral-
ized POMDPs are also presented in Chapter 4. Chapter 5 introduces a new policy gradient
algorithm for reinforcement learning in partially observable environments. Chapter 6 covers
different techniques, based on predictive representations, for imitation learning. At the end
of each chapter, the proposed solutions are empirically compared to the alternative methods
using several simulated domains. Finally, Chapter 7 concludes with a summary of our contri-
bution, and a consideration of future research.

Publication notes

Some of the material from Chapter 2, related to predictive representations with core
histories, appeared in [Boularias and Chaib-draa, 2009]. The key results from Chapter 3,
related to state space compression, were reported in [Boularias et al., 2008]. Most of the
work in Chapter 4, related to the policy space compression, was published in [Boularias
and Chaib-draa, 2007], [Boularias and Chaib-draa, 2008a], and [Boularias and Chaib-draa,
2008b]. Most of the material in Chapter 5, related to reinforcement learning with PPRs,
was published in [Boularias and Chaib-draa, 2009]. Part of Chapter 6, related to imitation
learning in partially observable environments, was presented in [Boularias, 2008], the other
part, related to homomorphism of MDPs, appeared in [Boularias and Chaib-draa, 2010].
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Discrete-Time Dynamical Systems

2.1 Introduction

Decision-making under uncertainty can generally be casted as the problem of controlling a
dynamical system. The concept of dynamical systems is a mathematical formalization of
systems that can be described at any given time by a variable called state, and the future
values of this variable can be predicted by using a fixed evolution rule, called the transition
function. Examples of dynamical systems range from the mathematical models that describe
the working of mechanical devices, the movement of planets around the sun, to those describing
the fluctuations of a stock market, or modeling the global climate of Earth.

Mathematical models of dynamical systems are used for two principal tasks. The first one
is predicting the state of the system in the future, this prediction is then used for correcting
the parameters of the model, or for making decisions related to the system. The second task is
the control of the system by performing actions so that the future states will be close or equal
to desirable states. Figure 2.1 shows a graphical view of the process of interaction between
an agent and a dynamical system.

Unfortunately, real-world systems are highly complex and cannot be precisely described
by using simple mathematical models. To deal with this complexity, one should make several
assumptions about the state space and the transition function of dynamical systems. One of
these assumptions is that the system is observed and controlled at discrete steps of time, and
the intermediate state of the system between two steps is not relevant for determining future
states. The actual time between two steps may be variable and unbounded. This assumption
is not really a strong one in practice, since a continuous time-dependant transition function can
be approximated by using a sufficiently small discretization of time. The second assumption
that we will consider in modeling dynamical systems, though not always necessarily, is that
the state space is discrete and finite. By considering this assumption, one can take advantage
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Agent Dynamical System

action

observation

Figure 2.1: The process of interaction between an agent and a dynamical system.

of well-known optimization techniques, such as dynamic programming [Bellman, 1957], in
order to find efficient and generic algorithms for controlling dynamical systems. Finally,
the most important assumption is known as Markov property: the state of the system is
a sufficient information for predicting its future states by using the transition function. In
practice, the dynamics of a system depends on many variables that cannot be all included in
a mathematical model, either for computational reasons or simply because they are unknown,
a stochastic transition function is used to overcome the effect of missing information.

In this thesis, we mainly focus on making decisions with a particular model of dynamical
systems known as (Partially Observable) Markov Decision Process (or (PO)MDP), as well
as an alternative model known as Predictive State Representation (PSR). An overview of
(PO)MDPs, PSRs, and some less known other models is given in this chapter.

2.2 Markov Decision Processes

The simplest model for representing discrete-time dynamical systems is known as Markov
Decision Process (MDP) [Markov, 1913] (named after the brilliant Russian mathematician
Andrey A. Markov (1856-1922)). Most of the research on MDPs was spawned by the publica-
tion of the book Dynamic Programming and Markov Processes by R. Howard [Howard, 1960].
This book presented a structured analysis of decision-making problems using the framework of
MDPs, and several algorithms, based on Dynamic Programming, for solving these problems.
MDPs provide a natural mathematical formalization of many real-world problems. Today,
they are used in a variety of areas, including robotics, automated control, manufacturing,
games, and economics. A survey of applications of MDPs can be found in [Powell, 2007].
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2.2.1 Example

A frequent task of an autonomous mobile robot is to find optimal paths (or plans) for reaching
goals while avoiding obstacles and minimizing the required time and the consumption of
energy. To decide where to go, the robot should know only its current location, level of energy,
and the location of the target. Figure 2.2 shows a simple navigation problem that can be
represented as a Markov Decision Process. Of course, one can imagine more complicated tasks,
suck as tracking a mobile target, collecting samples, or navigating in a hostile environment
using defective actuators. Most of these problems can be easily casted as MDPs.

↑↓←→
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W E

(a) A simple navigation problem
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(b) MDP representation

Figure 2.2: A simple decision-making problem and its MDP formalization. The state of the
system corresponds to the location of the robot, the actions correspond to movements between
adjacent states, and the goal of the robot is to reach the flower.

2.2.2 Definition

Formally, an MDP is a tuple 〈S,A, T, R〉. We now describe each one of these components.

State space S: This thesis is intimately related to the notion of state. The definition of
a state is recursive: A state is a representation of all the relevant information for pre-
dicting future states, in addition to all the information relevant for the related decision
problem. In the example of figure 2.2, the state space S = {s1, s2, s3, s4, s5, s6, s7, s8, s9}
corresponds to the set of the robot’s locations on the grid. The state space may be
finite, countably infinite, or continuous. We will focus on models with a finite set of
states. In our example, the states correspond to different positions on a discretized grid.
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Action space A: The states of the system are modified by the actions executed by an
agent. The goal of the agent is to choose actions that will influence the future of the
system so that the more desirable states will occur more frequently. The actions space
can be finite, infinite or continuous, but we will consider only the finite case. In our
example, the actions of the robot might be move north, move south, move east, move
west, or do not move, so A = {N,S,E,W, nothing}. In the MDP framework, the state
changes only after that an agent executes an action.

Transition function T : When an agent tries to execute an action in a given state, the
action does not always lead to the same result, this is due to the fact that the infor-
mation represented by the state is not sufficient for determining precisely the outcome
of the actions. T (st, at, st+1) returns the probability of transitioning to state st+1 after
executing action at in state st. In our example, the actions can be either deterministic,
or stochastic if the floor is slippery, and the robot might ends up in a different position
while trying to move toward another one 1.

Reward function R: The preferences of the agent are defined by the reward function R.
This function directs the agent towards desirable states and keeps it away from unwanted
ones. R(st, at) returns a reward (or a penalty) to the agent for executing action at in
state st. The goal of the agent is then to choose actions that maximize its cumulated
reward. The elegance of the MDP framework comes from the possibility of modeling
complex concurrent tasks by simply assigning rewards to the states. In our example,
one may consider a reward of +10 for reaching the goal state (the flower), a −2 for any
movement (consumption of energy), and a −1 for not doing anything (waste of time).

2.2.3 Finite or Infinite Horizons, Discount Factors

Given a reward function, the goal of the agent is to maximize the expected cumulated reward
over some number H of steps, called the horizon. The horizon can be either finite or infinite.
If the horizon is finite, then the optimal actions of the agent will depend not only on the
states, but also on the remaining number of steps until the end. In our example, if the agent
is at the top right position on the grid, and only two steps are left before the end, then it
would better to do nothing and receive an average reward of −1 per step, than to move and
receive an average reward of −2 per step, since the goal cannot be reached within two steps.
If the horizon is infinite, then the optimal actions depend only on the state. In our case, the
optimal action at any step is to move toward the goal. A discount factor γ ∈ [0, 1) is also used
to indicate how the importance of the earned rewards decreases for every time-step delay. A
reward that will be received k time-steps later is scaled down by a factor of γk. The discount
factor can also be interpreted as the probability that the process continues after any step.

1Throughout this thesis, we denote by at (respectively st) the current action (respectively state) at time

step t, and by ai (respectively si) a given action (respectively state) from the set A (respectively S).
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2.2.4 Policies and Value Functions

The agent selects its actions according to a special function called policy. A deterministic
stationary policy π is a function that maps every state s into an action a. A stochastic
stationary policy is a function that maps each state into a probability distribution over the
different possible actions. The value function of a policy π is a function V π that associates to
each state the expected sum of rewards that the agent will receive if it starts executing policy
π from that state. In other terms:

V π(s) = Est,at

[ H∑
t=0

γtR(st, at)|π, s0 = s

]
The value function of a stationary policy can also be recursively defined as:

V π(s) = Est,at

[ H∑
t=0

γtR(st, at)|π, s0 = s

]

= Est,at

[
R(s0, a0) +

H∑
t=1

γtR(st, at)|π, s0 = s

]

= R(s, π(s)) + Est,at

[ H∑
t=1

γtR(st, at)|π, s0 = s

]

= R(s, π(s)) + γEst,at

[ H∑
t=0

γtR(st, at)|π, s0 ∼ T (s, π(s), .)
]

= R(s, π(s)) + γ
∑
s′∈S

T (s, π(a), s′)V π(s′)

where π(s) is the action associated to state s.

This latter equation is well-known under the name of Bellman equation. An optimal policy
π∗ is one that satisfies:

∀s ∈ S : π∗ ∈ arg max
π

V π(s)

The value function of an optimal policy is called the optimal value function, it is defined as:

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)
]

In his seminal work on Dynamic Programming, Bellman [1957] proved that a stationary
deterministic optimal policy exists for any discounted infinite horizon MDP. In this thesis, we
will mainly focus on finding deterministic optimal policies.
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2.2.5 Planning with Markov Decision Processes

Planning in MDPs refers to the problem of finding an optimal (or a near optimal) policy
π∗ given the model parameters 〈S,A, T, R〉. Before presenting some planning algorithms for
MDPs, we will first need to introduce the Q-value function. A Q-value is the expected sum of
rewards that the agent will receive if it executes an action a in a state s then follows a policy
π for the remaining steps. Formally, a Q-value function is defined as:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V π(s′) (2.1)

Similarly, the optimal Q-value function is defined as:

Q∗(s, a) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)
]

Most of planning algorithms for MDPs fall in one of the two categories: policy iteration and
value iteration [Sutton and Barto, 1998]. These two categories are described in the remaining
of this subsection.

2.2.5.1 Policy Iteration

This method is depicted in Algorithm 1. It consists in starting with a randomly chosen policy
πt and a random initialization of the corresponding value function Vk, for k = 0 and t = 0
(Steps 1 to 4), and iteratively repeating the policy evaluation and the policy improvement
operations. Policy evaluation (Steps 6 to 10) consists in calculating the Q-values of policy
πt+1 by solving the system of linear equations 2.1 for all the states s ∈ S. An efficient iterative
way to solve this equation is to initialize the value function of πk+1 with the value function
Vk of the previous policy, and then repeat the operation:

∀s ∈ S : Vk+1(s) = R(s, πt(s)) + γ
∑
s′∈S

T (s, πt(s), s′)Vk(s′)

until ∀s ∈ S : |Vk(s)− Vk−1(s)| < ε, for a predefined error threshold ε.
Policy improvement (Steps 11 to 13) consists in finding the greedy policy πt+1 given the value
function Vk:

∀s ∈ S : πt+1(s) = arg max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)Vk(s′)
]

This process stops when πt = πt−1, in which case πt is an optimal policy, i.e. πt = π∗.
The main drawback of policy iteration is that a complete policy evaluation is involved in each
iteration. Value iteration consists in overlapping the evaluation and improvement steps.
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Input: An MDP model 〈S,A, T, R〉 ;
/* Initialization */ ;1

t = 0, k = 0;2

∀s ∈ S: Initialize πt(s) with an arbitrary action;3

∀s ∈ S: Initialize Vk(s) with an arbitrary value;4

repeat5

/* Policy evaluation */;6

repeat7

∀s ∈ S : Vk+1(s) = R(s, πt(s)) + γ
∑

s′∈S T (s, πt(s), s′)Vk(s′);8

k ← k + 1;9

until ∀s ∈ S : |Vk(s)− Vk−1(s)| < ε ;10

/* Policy improvement */;11

∀s ∈ S : πt+1(s) = arg maxa∈A

[
R(s, a) + γ

∑
s′∈S T (s, a, s′)Vk(s′)

]
;

12

t← t + 1;13

until πt = πt−1 ;14

π∗ = πt;15

Output: An optimal policy π∗;
Algorithm 1: The policy iteration algorithm.

2.2.5.2 Value Iteration

Value iteration, described by Algorithm 2, can be written as a simple backup operation:

∀s ∈ S : Vk+1(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)Vk(s′)
]

This operation is repeated until ∀s ∈ S : |Vk(s) − Vk−1(s)| < ε (Steps 3 to 6), in which case
the optimal policy is simply the greedy policy with respect to the value function Vk (Step 7).

Input: An MDP model 〈S,A, T, R〉 ;
k = 0;1

∀s ∈ S: Initialize Vk(s) with an arbitrary value;2

repeat3

∀s ∈ S : Vk+1(s) = maxa∈A

[
R(s, a) + γ

∑
s′∈S T (s, a, s′)Vk(s′)

]
;

4

k ← k + 1;5

until ∀s ∈ S : |Vk(s)− Vk−1(s)| < ε ;6

∀s ∈ S : π∗(s) = arg maxa∈A

[
R(s, a) + γ

∑
s′∈S T (s, a, s′)Vk(s′)

]
;

7

Output: An optimal policy π∗;
Algorithm 2: The value iteration algorithm.
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Both policy iteration and value iteration algorithms update the values of the different
states in an arbitrary order, using the values of the previous iteration. Therefore, most of
the planning time is wasted in propagating zero values if the reward function is sparse, which
is the case in most systems with a final goal state, such as the example of Figure 2.2. An
interesting solution to this problem is called prioritized sweeping [Wingate and Seppi, 2005;
Moore and Atkeson, 1993], where the priority of updating the value of a state is related to
the change that occurred in the values of its immediate neighbors.

2.2.6 Learning with Markov Decision Processes

Learning with MDPs generally refers to the problem of finding an optimal policy π∗ for an
MDP with unknown transition function T ; the reward function R also can be unknown. This
problem is better known under the term of Reinforcement Learning (RL), or also Approximate
Dynamic Programming (ADP). RL algorithms can be regrouped in three main categories:
model-based algorithms, bayesian RL algorithms, and model-free algorithms. In the first
category, the agent learns the unknown parameters by interacting with the environment and
perceiving the outcome of every executed action. The agent uses a planning algorithm after
a period of time to find an optimal policy. Examples of model-based algorithms include
E3 [Kearns and Singh, 2002] and R-MAX [Brafman and Tennenholtz, 2003].

In the second category, bayesian RL algorithms, the uncertainty about the model pa-
rameters is itself regarded as a parameter of the model. At any moment, the state of the
agent is a probability distribution on all the possible models, in addition to its state in the
original model. The initial distribution over unknown parameters is called a prior, and it is
sequentially updated by using Bayes’ Rule, where the evidence correspond to the perceived
transitions and rewards. Examples of Bayesian RL techniques can be found in [Ross and
Pineau, 2008; Ross et al., 2008a; Ghavamzadeh and Engel, 2007].

In model-free RL algorithms, an optimal policy is directly learned by interacting with the
environment, without attempting to learn the unknown parameters. A popular example of
theses algorithms, described in Algorithm 3, is Q-learning [Watkins, 1989]. In its simplest
form, Q-learning starts by initializing the Q-values with any randomly chosen values. After
executing action a in state s, transiting to state s′, and perceiving reward r, the Q-value
Qt+1(s, a) is calculated by using the following Temporal-Difference (TD) rule [Sutton and
Barto, 1998]:

Qt+1(s, a) = (1− αt)Qt(s, a) + αt

[
R(s, a) + γ max

a′∈A
Qt(s′, a′)

]
where αt ∈ [0, 1], the other Q-values remain unchanged.

These Q-values converge to the optimal ones under the following conditions (known as
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Robbins-Monro conditions):
∞∑

t=0

αt =∞,
∞∑

t=0

α2
t <∞

A recent survey of reinforcement learning algorithms can be found in [Szepesvári, 2009].

Input: An MDP model 〈S,A, R〉 with unknown transition function;
t = 0, s0 is an initial state;1

∀s ∈ S,∀a ∈ A: Initialize Qt(s, a) with an arbitrary value;2

repeat3

π(st) = arg maxa∈AQt(st, a);4

Choose action at corresponding to π(st) with probability 1− εt, and a random5

action at with probability εt;
Execute action at and observe the received reward R(st, at) and the next state st+1;6

Qt+1(st, at) = (1− αt)Qt(st, at) + αt

[
R(st, at) + γ maxa′∈AQt(st+1, a

′)
]

;
7

t← t + 1;8

until the end of learning ;9

Output: A learned policy π;
Algorithm 3: The Q-learning algorithm.

Learning with MDPs may also refer to the problem of recovering an optimal policy from
examples of actions provided by an expert, this type of learning is known as imitation learn-
ing. In this context, one can generally distinguish between direct and undirect imitation
approaches [Ratliff et al., 2009]. In direct methods, the agent learns a function that maps
states into actions by using a supervised learning technique [Atkeson and Schaal, 1997]. The
best known example of a system built on this paradigm is ALVINN [Pomerleau, 1989], where
a neural network was trained to learn a mapping between a road image and a vehicle steering
action. Despite the remarkable success of the ALVINN system and others, direct methods
suffer from a serious drawback: they can learn only reactive policies, where the optimal action
of a state depends only on its features, regardless of the future states of the system. To over-
come this drawback, Ng and Russell [2000] introduced a new approach of undirect imitation
learning known as Inverse Reinforcement Learning (inverse RL). The aim of inverse RL is
to recover a reward function under which the expert’s actions are optimal, rather than to
directly mimic the actions of the expert. The learned reward is then used to find an optimal
policy. Contrary to direct methods, inverse RL takes into account the fact that the different
states of the system are interrelated by transition and value functions. Consequently, the ex-
pert’s actions can be predicted in states that were not encountered during the demonstration.
Imitation learning will be discussed with more details in Chapter 6.

A major restriction of finite-state MDPs is that the agent must at any moment know ex-
actly the state of the system. Unfortunately, this assumption often does not hold in practice.
In fact, the agent observes the world through limited and imperfect receptors, and the infor-
mation contained in the perceptions is not sufficient for determining the state. In our previous
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example depicted in Figure 2.2, the robot’s sensors may be limited to only distinguishing be-
tween states where the robot faces a wall and the other states. Partially Observable Markov
Decision Processes (POMDPs), introduced in the next section, provide a powerful tool for
representing such systems.

2.3 Partially Observable Markov Decision Processes

2.3.1 Definition

Formally, a POMDP [Smallwood and Sondik, 1971] is a tuple 〈S,A,O, T, Z, R〉 where
〈S,A, T, R〉 is an MDP, O is a set of observations (perceptions), and Z is an observation
function: Z(o, s, a) is the probability of observing o ∈ O if the state of the system is s and
the action that led to this state is a.

The observations can be aliased (the same observation may be observed in different states)
and stochastic (different observations may be observed in the same state). Consequently, the
state of the system cannot be determined from the observations. Instead, an observation
can be seen as an evidence about the state. The agent’s belief about the hidden state is a
probability distribution on all the possible states, called the belief state 2:

bt = [Pr(st = s0), P r(st = s1), . . . , P r(st = s|S|−1)]T

The agent starts with an initial belief state b0, and every time an action at is executed and
an observation ot+1 is received, the belief state bt is updated by using Bayes’ Rule:

bt+1(s) = Pr(st+1 = s|bt, at, ot+1)

=
Pr(st+1 = s, ot+1|bt, at)

Pr(ot+1|bt, at)

=

∑
s′∈S

bt(s′)T (s′, at, s)Z(ot+1, s, at)∑
s′∈S

∑
s′′∈S

bt(s′)T (s′, at, s′′)Z(ot+1, s′′, at)
(2.2)

Therefore, the belief state bt+1 is a nonlinear function of the previous belief state bt, action
at and observation ot+1:

bt+1 = τ(bt, at, ot+1)

The belief state bt at time-step t allows us to calculate the probability of any observation o

at time-step t + 1 as:

Pr(ot+1 = o|bt, at) =
∑
s∈S

∑
s′∈S

bt(s)T (s, at, s
′)Z(o, s′, at)

2Through this thesis, a vector b corresponds to a column, and bT corresponds to its transpose.
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The expected reward of executing action a for a belief state bt is given by:

R(a|bt) =
∑
s∈S

bt(s)R(s, a)

Hidden states s0 s1 st st+1

Belief states b0 b1 bt bt+1

a0 a1 at
at+1

a0 a1 atat−1 at+1

o1 otat−1 ot+1

Figure 2.3: A Partially Observable Markov Decision Process, adapted from [Pineau, 2004].

Figure 2.3 illustrates the temporal series of belief states. The Markov property implies
that the belief state and the full history of the system (sequence of actions and observations)
contain exactly the same information about the current state, and consequently, about all the
future events.

2.3.2 Planning with Partially Observable Markov Decision Processes

Planning with a POMDP model consists in finding for every possible belief state an optimal
action, i.e. an action that maximizes the expected cumulated reward. This is a robust way of
planning that takes into account the uncertainty about the hidden state. However, planning
with POMDPs is known to be a very hard problem. In fact, finding an optimal policy for
a finite horizon POMDP is proven to be a PSPACE-complete problem [Papadimitriou and
Tsitsiklis, 1987], and verifying the existence of a policy with an expected value greater than a
given threshold ε for an infinite horizon POMDP is undecidable [Madani et al., 1999]. Even
finding a near-optimal policy (a policy with a bounded value loss compared to the optimal
one) for a finite horizon POMDP is NP-hard [Lusena et al., 2001].

The main factor behind the poor scalability of POMDP planning algorithms is known
as the curse of dimensionality [Bellman, 1957]. In fact, the number of possible belief states
grows double-exponentially with respect to the number of observations and the length of the
horizon. Numerous algorithms (both exact and approximate) have been proposed for planning
in POMDPs. Examples include a variant of value iteration [Smallwood and Sondik, 1971],
point-based approaches [Paquet et al., 2005; Pineau et al., 2003; Smith and Simmons, 2004],
structure-based approaches [Bonet and Geffner, 2003; Dai and Goldsmith, 2007; Dibangoye
et al., 2009b], compression-based approaches [Roy et al., 2005; Poupart and Boutilier, 2002;
Li et al., 2007; Lee and Seung, 2000], and forward search approaches [Paquet, 2006; Ross
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et al., 2008b]. The issue of planning with POMDPs will be discussed with more details in
Chapter 3.

2.3.3 Learning with Partially Observable Markov Decision Processes

There are two major families of learning algorithms that can be used for finding the optimal
parameters of a policy for a given POMDP. In the first family, a value function is used for
estimating the expected long-term reward of each action for every belief state. The parameters
of the policy are adjusted so that in each belief state, the actions with the highest estimated
long-term reward will be executed more frequently. In the second family, the optimal policy
is gradually learned by searching in the space of the policy parameters. These parameters
are updated according to the immediate reward after executing each action, or according
to the cumulated reward at the end of each trial. This family includes, for instance, most
policy gradient algorithms, such as GAPS [Peshkin, 2001] or GPOMDP [Baxter and Bartlett,
2000]. Actor-critic algorithms [Sutton et al., 2000; Peters and Schaal, 2006; Aberdeen et al.,
2007; Wierstra et al., 2009] combine the advantages of both value-function and policy search
methods. The actor part maintains a parametric policy that is gradually improved according
to the evaluation provided by the critic part. The critic learns a value function where the
variables correspond to the policy parameters. The problem of reinforcement learning in
POMDPs is discussed in chapter 5.

A special class of POMDPs, known as Hidden Markov Model (HMM) [Rabiner and Juang.,
1986], is used for representing uncontrolled systems, with no actions or rewards. An HMM is a
POMDP where the transition function depends only on the state of the system and not on the
actions executed by the agent. Therefore, HMMs are used for recognition tasks rather than
decision-making. HMMs have many successful applications in machine learning and temporal
pattern recognition such as speech, handwriting, and gesture recognition [Yang et al., 1997].

There are two major issues related to POMDPs. First, finding optimal actions is com-
putationally intractable. In fact, existing techniques for finding exact optimal policies for
POMDPs typically cannot handle problems with more than a few thousands states [Paquet
et al., 2005; Virin et al., 2007; Ross et al., 2008b; Amato et al., 2007a; Prentice and Roy,
2009]. This is principally due to the way the states are specified in POMDPs: a state is
an instantiation of all the possible variables in the system, whereas only a small number of
variables might be needed for predicting the future states of the system. The second issue
is learning unknown parameters in POMDPs. The parameters of a POMDP model (or a
POMDP policy) are a function of the hidden states, which cannot be directly observed in
the training data, they can be efficiently estimated only when a prior knowledge about the
structure of the system is available.
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2.4 Predictive State Representations

In this section, we present an alternative model, known as Predictive State Representations
(PSRs), where the parameters are a function of completely observable variables, and no hidden
variables are used in the specification of the model.

2.4.1 Definition

Contrary to POMDPs, where the state is represented by hidden variables, PSRs [Littman
et al., 2001; Singh et al., 2004] are based on testable experiences. The notion of tests, used in
the definition of PSRs, carries the central idea of relating states to verifiable and observable
quantities. A test q is an ordered finite sequence of action-observation pairs a0o1...ak−1ok. The
prediction of a test q, is the probability of perceiving the sequence of observations o1, . . . , ok

if the agent executes the sequence of actions a0, . . . , ak−1. The probability of a test q starting
after a history ht is defined by:

Pr(q|ht)
def
= Pr(qo|ht, q

a) = Pr(ot+1 = o1, . . . , ot+k = ok|ht, at = a0, . . . , at+k−1 = ak−1)

where qa denotes the sequence of actions in q and qo denotes the sequence of observations.
Through this thesis, when both superscripts and subscripts indices are used in the same
equation, superscripts indices (such as ak and ok) are used for distinguishing between the
elements of a given a set, and subscripts indices (such as at and ot) are used for indicating
time-steps.

Planning and learning in dynamical systems are basically problems of predicting the ex-
pected value of a random variable (such as a reward), or the probability of an event (such
as an observation), after a given sequence of actions. In POMDPs for example, the belief
state at a given moment is used only for predicting the future rewards and observations,
and choosing actions accordingly. Rewards can be considered as part of the observations
in a certain way. Therefore, the principal function of a POMDP model is predicting the
probabilities of tests, the belief states can then be replaced by these probabilities. How-
ever, the length of tests grows infinitely, and their number quickly becomes higher than the
number of hidden states. Fortunately, it has been proved by Littman et al. [2001] that the
probability of any test depends only on the probabilities of a finite subset of tests called
core tests and denoted by Q = {q1, q2, . . . , qk} (Figure 2.5). The prediction of core tests,
Pr(Q|h) = [P (q1|h), P (q2|h), . . . , P (qk|h)]T , forms a sufficient statistic for the system after an
arbitrary h, and can be used as the belief state. In other terms, the prediction for any test q

after any history h can be calculated based on Pr(Q|h):

Pr(q|h) = fq(Pr(Q|h))

where fq : [0, 1]|Q| → [0, 1]. It is important to note that fq, which is called projection function,
is independent of the history h.



Chapter 2. Discrete-Time Dynamical Systems 20

Assume in our previous example of Figure 2.2 that the robot can only sense the presence
of an obstacle when it tries to move beyond a wall. To simplify furthermore the example,
assume that the actions and observations are deterministic. At a given time-step, the belief
state of the robot using a POMDP model is a probability distribution over the nine hidden
states (positions on the grid). Using a PSR model, the belief state becomes the probabilities of
the following four core tests: {North Obstacle,South Obstacle,East Obstacle,West Obstacle}
(the form of these tests is: action observation, the first part is a direction of a movement and
the second part is a resulting observation). The probabilities of these tests can be used to cal-
culate the underlying state distribution, and then to calculate the probability of any test. For
instance, if {Pr(North Obstacle|h) = 0, P r(South Obstacle|h) = 0, P r(East Obstacle|h) = 0,

P r(West Obstacle|h) = 0}, then certainly Pr(s5|h) = 1 (s5 being the middle position).
Also, if {Pr(North Obstacle|h) = 1, P r(South Obstacle|h) = 0, P r(East Obstacle|h) = 1,

P r(West Obstacle|h) = 0}, then certainly Pr(s3|h) = 1 (s3 is the upper right position).

After executing an action a and perceiving an observation o, the probability of a core test
q is updated by using Bayes’ Rule:

Pr(q|hao) =
Pr(aoq|h)
Pr(ao|h)

=
faoq(Pr(Q|h))
fao(Pr(Q|h))

(2.3)

The parameters of the model correspond to the projection function of the set of extension
tests: {aoqi, ao|∀qi ∈ Q, a ∈ A, o ∈ O}. The number of extension tests, is proportional to the
number of core tests, |Q|, which is called the dimension of the model. The PSR representation
of a dynamical system has at most a number of core tests equal to the number of hidden states
in the equivalent POMDP representation [Littman et al., 2001]. In fact, the PSR model is
potentially more compact than the corresponding POMDP, as in the previous example.

Nearly all the PSR literature is devoted to a special class of PSRs where the projection
function is linear. If we denote the projection function by a vector mq, then for any test q :

Pr(q|h) = Pr(Q|h)T mq

A linear PSR model is a tuple 〈A,O, Q, {mao}, {maoqi}〉, where A and O are action and
observation sets, Q is a finite set of core tests {q1, q2, . . . , qk}, mao are weight vectors for
one-step tests, defined for each action a ∈ A and observation o ∈ O, and maoqi are weight
vectors for one-step extensions of core tests, defined for each action a ∈ A, observation o ∈ O
and core test qi ∈ Q. In the PSR literature, the immediate reward is usually considered as
part of the observation [James et al., 2004; Izadi, 2007; Rudary, 2008; Wingate, 2008; Wolfe,
2009].

The matrix containing the predictions of core tests given the hidden states is called the
the outcome matrix U (a |S| × |Q| matrix, Figure 2.4), which is defined as U(s, q) = Pr(q|s).
This matrix can be found by searching for a maximum family of linearly independent tests.
Littman et al. [2001] presented a polynomial time algorithm that incrementally finds all core
tests in an iterative fashion, given a POMDP model. Belief states in PSRs, denoted by b̃t, are
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linked to the belief states bt in POMDPs through the definition of the matrix U :

b̃
def
= Pr(Q|h) = UT b


. . . . . . . .
...

...
...

...
. . . . P r(qi|si) . . .
...

...
...

...


s1
...
si...

. . .qj. . .q1

Figure 2.4: The outcome matrix U .

Histories also can be used as a sufficient statistics for predicting future tests, as depicted
in Figure 2.6. In fact, James [2005] showed that for any finite-state POMDPs with |S| states,
there is a finite set H of core histories {h1, h2, . . . h|H|}, such that:

∀h, q ∈ {A ×O}∗ : Pr(q|ht) =
|H|∑
i=0

αi
tPr(q|hi) (2.4)

In other terms, the probability of any test q after a history ht depends on the probabilities
of the same test after the different core histories. Although the existence of a finite set of
core histories has been noticed before [James, 2005], no PSR model based on core histories
has been proposed before in the literature. The remaining of this section will be devoted to
the description of PSRs based on core histories.

The PSR belief state3 is a vector bt, where b̃t(h) is the weight of the core history h ∈ H
in the current history ht. The probability of any test q after a history ht is given by:

Pr(qo|ht, q
a) =

∑
h∈H

b̃t(h)Pr(qo|h, qa) = b̃T
t mq (2.5)

where mq(h)
def
= Pr(qo|h, qa) is independent of ht, and b̃t(h) is independent of q. The belief

state b̃t ∈ RH is a vector of real-valued weights and not probabilities.

After executing an action a and receiving an observation o, the PSR belief is updated by
3The same notation is used for different types of belief state; the interpretation depends on the model.
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∀q ∈ {A ×O}∗ : Pr(q|ht) = αPr(q1|ht) + βPr(q2|ht)

Figure 2.5: A Predictive State Representation with linear core tests

Bayes’ Rule:

Pr(qo|ht, a, o, qa) =
Pr(oqo|ht, a, qa)

Pr(o|ht, a)

=

∑
h∈H

b̃t(h)Pr(oqo|h, a, qa)∑
h∈H

b̃t(h)Pr(o|h, a)

=

∑
h∈H

b̃t(h)Pr(o|h, a)Pr(qo|h, a, o, qa)∑
h∈H

b̃t(h)Pr(o|h, a)

=

∑
h∈H

b̃t(h)mao(h)
∑

h′∈H
b̃hao(h′)mq(h′)∑

h∈H
b̃t(h)mao(h)

=
∑
h∈H

b̃t+1(h)mq(h) = b̃T
t+1mq
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Figure 2.6: A Predictive State Representation with linear core histories

where

b̃t+1(h) =
∑

h′∈H b̃t(h′)b̃h′ao(h)mao(h′)∑
h′∈H b̃t(h′)mao(h′)

(2.6)

The parameters of a PSR based on core histories are then: A, O, the set of core histories
H, and the vectors mao and b̃hao, ∀a ∈ A, o ∈ O, h ∈ H. The vector b̃hao denotes the belief
state at the history hao. Notice that the vectors mao define a probability distribution over
the observations o for each action a and core history h, thus, they can be represented by a
softmax function:

mao(h) =
eTθha(o)∑

o′∈O
eTθha(o′)

where θha is any real-valued function defined on O, and T ∈ R.
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Notice that this latter property (the fact that the parameters of a PSR with core histories
are distributions of probabilities) is not satisfied in the parameters of PSRs with core tests.
In fact, the weight vector mao with core tests can take any real value. On the other hand, the
belief state with core histories is a vector of real values, whereas with core tests, the belief
state is a vector of probabilities, although these probabilities do not necessarily sum to one.
Besides this difference, core test representations are basically equivalent to core history ones.

2.4.2 Planning with Predictive State Representations

As for POMDPs, planning algorithms for PSRs aim to find a policy that maps every belief
state into an action that maximizes the expected future rewards. Except for the definition
and interpretation of belief states, planning with PSRs can be done in a very similar way to
POMDPs, and most of planning algorithms for POMDPs can easily be transferred to PSRs
after a little change. The first change that should be made is the inclusion of rewards in the
observations, the extended set of observations becomes O′ = O × R, where R is the set of
all possible rewards [Izadi, 2007]. Since the rewards are real-valued, considering the set of all
possible rewards may not be the optimal way of including rewards in the observations. This
issue will be furthermore discussed in Chapter 3.

The first method for planning with PSRs was a policy iteration algorithm [Izadi and
Precup, 2003]. The expected value of each action at the end of every possible test was
evaluated, and the optimal actions selected accordingly. The main drawback of this algorithm
is that the number of possible tests grows exponentially with respect to the number of actions
and observations, and the core tests were not considered in the formulation. Shortly later,
another exact algorithm was proposed by James et al. [2004]. This algorithm is basically
an adaptation of another algorithm for POMDPs known as Incremental Pruning [Cassandra
et al., 1997]. James et al. [2004] principally showed that, as for POMDPs, the value function
of a policy is linear in the belief space (the probabilities of core tests).

More recently, a look-ahead planning method for PSRs was introduced by Izadi [2007],
which is close to forward-search methods for POMDPs [Paquet et al., 2005]. Izadi [2007]
also investigated the use of core beliefs to reduce the number of beliefs in Point-Based Value
Iteration (PBVI) [Pineau et al., 2003]. A recent framework including an approach for learn-
ing approximate PSRs, and a point-based algorithm for planning with approximate PSRs
was introduced by Boots et al. [2010]. This latter algorithm is basically an adaptation of
PBVI [Pineau et al., 2003].

In general, we notice a lack of interest in planning with PSRs in the literature. This
is due to the fact that, as mentioned above, planning with PSRs is virtually equivalent to
planning with POMDPs, or any other model based on beliefs. The more important issue that
should be considered is rather how to find a compact, possibly approximate, PSR model given
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a POMDP. A theoretical analysis of the prediction error introduced by the use of compact
PSRs was provided by Wolfe [2009] for the case of factored representations (where each state is
a tuple of several variables). This issue, known as dimensionality reduction, will be addressed
in Chapters 3 and 4.

2.4.3 Learning with Predictive State Representations

Most of the PSR literature is devoted to the problem of learning a model from a sequence of
actions and observations. Learning a PSR model can be divided into two parts: discovery of a
set of core tests, and learning the parameters corresponding to the core tests (the vectors mao

and maoq). The first algorithm for learning PSRs focused only on learning the parameters,
and assumed that the set of core tests was given [Singh et al., 2003]. The authors defined
an error function corresponding to the squared difference between the probabilities of future
tests according to the PSR model and the actual probabilities of the same tests. A stochastic
gradient-descent was then used to update the parameters at each time-step and to gradually
converge to a local optimum.

For their part, James and Singh [2004] proposed the Analytical Discovery and Learning
(ADL) algorithm. It was the first algorithm that considered the problem of discovering a
set of core tests. To address that, the authors constructed a large matrix D, known as the
dynamics matrix, that captures all the dynamics of the system [Singh et al., 2004]. The rows
of the dynamics matrix correspond to the histories and the columns correspond to the future
tests, and the entries of the matrix are the conditional success probabilities of the tests after
each possible history, i.e. D(h, q) = Pr(q|h). This matrix can be directly estimated from
the training data if the system can be reset to an initial distribution at the end of each trial.
The core tests are the tests corresponding to linearly independent columns of the matrix D.
Rosencrantz et al. [2004] proposed a learning algorithm close to ADL, where the dimensionality
of the model was reduced even more by performing a Singular Value Decomposition (SVD)
on the dynamics matrix. An analysis of ADL-style algorithms is given in [Wiewiora, 2005].

Resetting the system into an initial state distribution is not always possible in practice.
To solve this problem, Wolfe [2009] proposed an algorithm for learning the parameters of a
PSR model from a single trajectory of actions and observations. Another solution to the
problem of learning PSRs in dynamical systems without reset was given by McCracken and
Bowling [2006]. As in [Singh et al., 2003], a gradient-descent method was used to update the
PSR parameters, while a dynamics matrix was learned and used for discovering core tests, as
done in ADL [James and Singh, 2004]. Moreover, a set of constraints was used to restrict the
entries of the dynamics matrix to be valid probabilities. A family of simple sufficient, but not
necessary, constraints for defining valid vectors mao and maoq was given by Wolfe [2010b].

Finally, the problem of learning with non-blind (non-uniform) policies was considered
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in [Bowling et al., 2006]. We notice that most of the recent advancements on learning PSRs
have been focused on models with continuous states and observations, such as Linear Gaussian
Models [Rudary, 2008; Wingate, 2008; Boots et al., 2010]. We will return to the problem of
learning PSRs in Chapter 5.

2.4.3.1 Comparing PSRs to POMDPs

The main advantage of POMDPs over PSRs is the simplicity of the model description and
the straightforward interpretation of the belief state. Another advantage is the use of only
probability distributions in the parameters and the belief state of POMDPs, so that the
belief remains a distribution after an arbitrary number of bayesian updates. In PSRs, the
probabilities in the belief state are not necessarily a distribution, and the parameters used in
the belief update are not even probabilities. Consequently, there are no known sufficient and
necessary constraints ensuring that the probabilities in the belief state remain in [0, 1] after
an arbitrary number of updates [Wolfe, 2010b].

There are two potential advantages of PSRs over POMDPs: First, PSRs are event-directed
models, so they provide a basic compression of POMDPs by regrouping together states which
have the same outcome (trace equivalence), and states which have linearly dependent vectors
(transition and reward vectors). Indeed, for every belief state in a POMDP, there is a unique
corresponding belief state in the equivalent PSR, but the contrary is not always true, a PSR
belief state may correspond to an infinite number of POMDP belief states. Second, PSRs
are generally easier to learn than POMDPs (or HMMs) since their parameters are function of
observable quantities [James and Singh, 2004]. In fact, to calculate the probability of a core
test q at history h, we should only repeat h several times and count the number of times q

occurs after h. But to calculate the probability of a state s at history h, even if we repeat
h several times, we should use the parameters of the POMDP to estimate Pr(s|h) since we
cannot observe s. The POMDP parameters cannot be known during the learning process.
Hence, POMDP learning algorithms start with random parameters, and then alternate be-
tween the phase of estimating the belief states bi at each step i of the training sequence and
the phase of optimizing the POMDP parameters [Koenig and Simmons, 1996]. Consequently,
the result depends heavily on the initial parameters, and is subject to local optima.

2.5 Other Frameworks for Modeling Discrete-Time

Dynamical Systems

In this section, we will briefly review some other models for representing discrete-time dy-
namical systems, and discuss their advantages and limitations.
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2.5.1 History-based Models

Histories and belief states both carry the same information about predicting the future be-
havior of the system. A typical history-based model keeps in memory the full history of the
interaction with the system, and uses it as the agent’s internal state. This approach is very
useful to overcome the problem of learning transition probabilities, since internal states will
correspond to histories, and the transition between two histories is always deterministic. In
that case, we should learn only the probabilities of immediate observations after each history,
or the values of actions after each history if we rather want to directly learn an optimal control
policy.

The principal drawback of history-based models is the huge number of histories that we
have to keep in memory: (|A||O|)t different histories for t steps of interacting [Mccallum, 1996],
where |A| and |O| are respectively the number of actions and observations. This problem has
been partially addressed in Utile Distinction Memory (UDM) [McCallum, 1993] and Utile
Suffix Memory (USM) [McCallum, 1995] models, where we keep in memory only the last
sequence (suffix) of each history that is necessary to distinguish it from other histories. Two
histories are considered as equivalent if all the actions have almost the same value at these
histories. A statistical test (Kolmogorov-Smirnov for example) is used to verify if there is a
significant divergence between two histories, in such case we consider longer suffixes for them,
until an acceptable divergence is achieved.

The main problem of history-based models remains the fact that the agent often should
remember the full history from the beginning in order to make accurate predictions about
the future behavior (think of a system where the first executed action can determine the last
observation after an arbitrary number of time-steps). This problem was a major factor that
severely restrained the applicability of this type of models.

2.5.2 Diversity-based Machines

PSRs are based on the previous work of Rivest and Schapire [1994] on Diversity-based inference
of deterministic Finite-State Automata (FSA). A deterministic FSA M(S, O, δ : S → S,

γ : S ×O → {true, false}) is defined by S: a finite set of states; O: a finite set of observations
(called labels); δ: a deterministic transition function; γ: a deterministic observation function.
A test t is defined as a non empty finite sequence of observations, i.e. t = o1 . . . on. The set
of all possible tests that can be executed on the automaton is indicated by T . Rivest and
Schapire [1994] used the notation 〈s|t〉 ∈ {true, false} to indicate if test t will succeed when it
is executed from s. Two tests t1 and t2 are equivalent if and only if: ∀s ∈ S : 〈s|t1〉 = 〈s|t2〉,
and two states s1 and s2 are equivalent if and only if: ∀t ∈ T : 〈s1|t〉 = 〈s2|t〉. We indicate by
Dt(M) the test diversity of the automaton M , which is the number of equivalence classes of
tests.
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Rivest and Schapire [1994] proved that after eliminating duplicated states (states that are
equivalent to others) the diversity of the automaton is bounded as:

log(|S|) 6 Dt(M) 6 2|S|

Rivest and Schapire [1994] also showed that these bounds are the best possible. The
Diversity-Based Machine that is equivalent to M is a deterministic machine where the states
correspond to the tests equivalence classes, this machine can make predictions about any
test, thus, it can be used as a generative model for predicting observations. Models based
on deterministic automaton are relatively easy to understand and to interpret. However,
diversity-based machines are limited to deterministic dynamical systems, PSRs are basically
a generalization of these machines for handling stochastic dynamical systems.

2.5.3 Observable Operators Models

Predictive State Representations share many of their properties with another class of models
known as Observable Operators Models (OOMs) [Jaeger, 2000]. As for PSRs, OOMs are
motivated by the fact that HMMs are difficult to learn from a given stream of observations.
There are two versions of OOMs: an interpretable version, in which the parameters correspond
to probabilities and can be used for learning a dynamical system or predicting its future
behavior, and an uninterpretable one, which generalizes the first version by relaxing the
constraints on probability distributions.

OOMs were designed to model uncontrolled systems (without actions). The sufficient
information in OOMs is given by the probabilities of sets of sequences, called characteristic
events. A characteristic event is a set Ei = {q1, q2, . . . , qni} where q1, q2, . . . , qni are tests of the
same length. A PSR core test is a special characteristic event containing only one sequence.
However, OOMs constrain all the tests to have the same length, which is a restriction of PSR
tests. OOMs make this restriction in order to force the tests contained in a characteristic
event to be mutually exclusive, the probability of an event Ei is then given by the sum of the
probabilities of its elements.

Singh et al. [2004] proved that OOMs and uncontrolled PSRs are equivalent, but there
has been no empirical study comparing PSRs and OOMs learning algorithms, OOMs could
be easier to learn given that the likelihood of observing a specific characteristic event (set of
tests) in a sampled sequence is higher than the likelihood of observing a specific single test.
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2.5.4 Temporal-Difference Networks

Temporal-Difference Networks [Sutton and Tanner, 2004, 2005; Makino and Takagi, 2008]
are another predictive model very close to PSRs. The state of the system is represented
by predictions about future events, as in the case of PSRs. However, the core tests are
interconnected between them in a compositional and recursive way. For example, a test aq

is connected to the test q with the action a. Thus, TD-learning methods [Sutton and Barto,
1998] can be used to learn the parameters related to a test by back-propagating the values of
all its descendants. This is not trivial in PSRs where the core tests are treated independently,
and the parameters are generally learned by Monte Carlo methods [Singh et al., 2003].

Although TD-Networks are very attractive for learning, they lack rigorous theoretical
properties compared to PSRs. As an example of this, the update function defined in TD-
Networks is a nonlinear operator inspired from neural networks and it is not clear how it is
related to the Bayesian update, as in PSRs or POMDPs. Empirically, PSRs and TD-Networks
learning algorithms exhibit similar performances on most benchmark problems [Sutton and
Tanner, 2004], for this reason, we are more interested in PSRs since they can be used for
learning, planning and even for reducing the state space dimensionality as we will show in the
next chapter.

2.5.5 Duality-based Machines

Based on the work of Rivest and Schapire [1994] on diversity-based machines (described in
subsection 2.5.2), Hundt et al. [2006] proposed a new model known as Duality-based machines
by using the notion of equivalence of experiments. A test t is defined as a non empty finite
sequence of observations followed by an action, i.e. t = o1 . . . ona. An experiment e ∈ E is a
non empty sequence of tests t1t2 . . . tm. Two experiments e1 and e2 are equivalent if and only
if ∀s ∈ S : Pr(e1|s) = Pr(e2|s). The equivalence class of an experiment e is denoted by [e]M,
whereM is the POMDP model of the considered system. Two states s1 and s2 are equivalent
iff ∀e ∈ E : Pr(e|s1) = Pr(e|s2), the equivalence class of a state s is denoted by [s]M.

Given a POMDP model M, a dual machine M′ is generated by considering each equiva-
lence class [e]M as a state, i.e. S ′ = {[e]M}. The transition function in M′ is deterministic:
δ′a([e]M) = [ae]M. A history h in M′ is defined as a state followed by a non empty se-
quence of tests: h = st1t2 . . . tm. Two histories h1 and h2 are equivalent if and only if
∀e ∈ E : Pr(e|h1) = Pr(e|h2), the equivalence class of a history h is denoted by [h]M′ .

Given a dual machine M′, a double-dual machine M′′ is generated by considering each
equivalence class [h]M′ as a state, i.e. S ′′ = {[h]M′}. Similarly, the transition function inM′′

is deterministic, the observation function returns the probabilities of all the experiments in a
given history equivalence class [h]M′ .
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The double-dual machine M′′ can be used for planning or predicting observations as
with the original machine M. Interestingly, the number of states in M′′ can be significantly
smaller than the number of states in M. However, one can find very simple examples where
the number of states inM′′ is higher than the number of states in M, or even infinite.

2.5.6 Causal-State machines

Causal-State machines (CSMs) [Shalizi and Shalizi, 2004] are similar to duality-based ma-
chines, each state of a CSM corresponds to a history equivalence class. CSMs are restrained
to uncontrolled systems, but can be generalized to controlled systems.

Shalizi and Shalizi [2004] proposed an efficient algorithm for learning a CSM model from a
given sequence of observations. This algorithm, called Causal-State Splitting Reconstruction
(CSSR), is close to USM [McCallum, 1995] in the sense that it starts with the empty history
class as the only state, and then uses a statistical test to check the accuracy of the model
predictions. If the test fails with some probability α, then the corresponding state is split and
longer histories are considered in the new states. This operation is repeated until no more
states can be split or the maximum length of histories is reached.

Contrary to USM, the histories of the same equivalence class in CSMs do not necessarily
share a common suffix. In fact, we can find two equivalent histories with completely different
observations, which can be reflected by a smaller number of equivalence classes compared
to USM. As for duality-based machines, the main drawback of CSM is the fact that many
systems have an infinite number of history equivalence classes.

2.6 Summary

This chapter introduces the concept of discrete-time dynamical systems, and shows how it can
be used as a mathematical framework for decision-making. A simple, yet powerful, model of
dynamical systems known as Markov Decision Process (MDPs) is described, as well as some
algorithms for planning and learning with this model. Partially Observable MDPs (POMDPs)
are presented as a generalization of MDPs for handling noisy and aliasing input observations.
Other models of partially observable dynamical systems are also discussed in this chapter.

One of the major issues of planning with POMDPs is the high dimensionality of the
belief space. Predictive State Presentations (PSRs) have been introduced as an alternative
model to POMDPs, with the hope of leading to more compact representations of the belief
space. Despite their theoretical potential, PSRs had been found to have almost the same
dimensionality as POMDPs in most of benchmark problems.
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Instead of dealing with exact high-dimensional models, approximate compact models may
be a better option for efficient planning. The next chapter presents a new algorithm for
transforming a POMDP model into an approximate PSR with a customized compression
ratio. Empirical results in simulated domains show how an online planning algorithm has
been accelerated by using approximate PSRs, with no significant loss of performance.



Chapter 3

State Space Compression in

POMDPs with Predictive

Representations

High dimensionality of the belief space in POMDPs is one of the major causes that severely
restricts the applicability of this model in planning and prediction tasks. Previous studies have
demonstrated that the dimensionality of a POMDP can eventually be reduced by transforming
it into an equivalent Predictive State Representation (PSR). In practice, the equivalent PSR
will have a dimension close or equal to the one of the original POMDP. In this chapter, we
address the problem of finding an approximate and compact PSR model corresponding to
a given POMDP. We formulate this problem as an optimization problem. Our algorithm
minimizes the potential error caused by missing some core tests. In this context, we present
an empirical evaluation on benchmark problems, illustrating the performance of this approach
on prediction and planning tasks.

3.1 Introduction

A number of representations for dynamical systems have been proposed during the past two
decades beside Partially Observable Markov Decision Processes (POMDPs) (presented in Sec-
tion 2.3 of Chapter 2). However, they either impose restrictions to the underlying environment,
or they do not seem to provide any advantages over POMDPs. Among these representations,
PSRs (presented in Section 2.4 of Chapter 2) seem appealing for several main reasons. First,
PSRs are grounded in the sequence of actions and observations of the agent, and hence relate
the state representation directly to the agent’s experience. Another reason why the predictive
approach is considered to be a good choice for state representation is related to the generaliza-
tion problem. Indeed, the predictive representation does not rely on a specific physical layout
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of an unobservable environment, so it has the potential of being useful for fast adaptation to
a new similar environment. Finally, PSRs offer a representation for dynamical systems which
is as general as POMDPs, and can be potentially more compact than POMDPs [Singh et al.,
2004]. This is particularly useful for planning and predicting observations in large domains,
where the dimensionality of the state space is a major drawback.

However, the equivalent PSR of a POMDP model has generally almost the same dimen-
sionality as the original model [James et al., 2004; Izadi, 2007]. Consequently, it is natural to
look for approximation algorithms that generate a subset of core tests more appropriate for
planning purposes. We are also interested in reducing the uncertainty by having a problem
formulation as detailed as possible. These two goals involve a trade-off between the dimension-
ality of the PSR model and the accuracy of the solution that can be obtained. The reduced
PSR model, which contains only a subset of core tests, conveys this trade-off.

In this thesis, we address the issue of dynamically generating a subset of core tests for
predictive representations in partially observable domains. We are interested in a lossy com-
pressed PSR with a number of core tests fewer than the number of states in the corre-
sponding POMDP. We formulate this problem as an optimization problem that minimizes
the loss function related to prediction of observations and rewards. We also show how to
use the compressed PSR for online planning. Most of the compression methods that we
will review use matrix notations. To be conform with these methods, we will denote by
T a,o the transition-observation matrix for action a ∈ A and observation o ∈ O, defined as:
T a,o(s, s′) = T (s, a, s′)Z(o, s, a), s, s′ ∈ S, where T and Z are respectively the transition and
observation functions defined in Section 2.3 of Chapter 2. For the same reason, we also make
the weak assumption that the rewards depend only on states, and use the vector R to represent
the reward function.

3.2 Exact Planning with POMDPs

Planning with POMDPs refers to the task of finding an optimal policy for a given horizon
H. In this context, a policy is a function from belief states to actions, or to a distribution on
actions:

π : ∆S → ∆A

where ∆S is the set of belief states (an |S| − 1 dimensional simplex), and ∆A is the set of
distributions on actions (an |A| − 1 dimensional simplex). When a policy π is deterministic,
π(b) refers to the action selected by π in the belief state b. The value function of a deterministic
policy π starting from the belief state b is given by:

V π(b) = Ebt,at

[ H∑
t=0

γtbT
t R|π, {T a,o}, b0 = b

]
(3.1)
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where bT
t is the transpose of bt, the belief state at time-step t, R is the vector of rewards, and

bT
t R is the expected reward given the belief state bt.

As the set of belief states is infinite, not every policy can be finitely represented. However,
given an initial belief state b0, the set of upcoming beliefs bt for a finite horizon H is finite,
and each one of these beliefs can be calculated by using b0 and the sequence of actions and
observations that lead to it. Therefore, a policy π can be represented by a decision tree, where
each node correspond to a particular belief state and is labeled by an action, and each edge
is labeled by an observation, as depicted in Figure 3.1. the first action (root) of policy π is
denoted by A(π), and the subtree of π under action a and observation o is denoted by P (π, o).

(a) A simple POMDP problem.

↓

←

←

obstacle

↓

nothing

obstacle

↓

←

obstacle

↓

nothing

nothing

(b) A policy represented as a decision tree.

Figure 3.1: Representing a POMDP policy as a decision tree. The robot can detect the
presence or absence of an obstacle after moving into it, the actions correspond to movements
to east, west, north, and south.

If policy π is a decision tree, then Equation 3.1 can be rewritten as a linear function of the
belief state b. In fact, the value of policy π for H = 0 corresponds to the expected immediate
reward given the belief b: V π(b) = bT R, which is a linear function of b. Therefore, the value
function V π can be represented by a vector απ, called an α-vector. The value of policy π for
a given horizon H can be written as:

V π(b) = Ebt,at

[ H∑
t=0

γtbT
t R|π, {T a,o}, b0 = b

]

= bT R + γ
∑
o∈O

Pr(o|b, A(π))Ebt,at

[ H∑
t=0

γtbT
t R|π, {T a,o}, b0 = τ(b, A(π), o)

]
= bT R + γ

∑
o∈O

Pr(o|b, A(π))V P (π,o)(τ(b, A(π), o))

(The belief update function τ is defined by Equation 2.2)

= bT R + γ
∑
o∈O

Pr(o|b, A(π))V P (π,o)(
bT TA(π),o

Pr(o|b, A(π))
)
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V π(b) = bT R + γ
∑
o∈O

Pr(o|b, A(π))
bT TA(π),o

Pr(o|b, A(π))
αP (π,o)

= bT R + γ
∑
o∈O

bT TA(π),oαP (π,o)

= bT απ (3.2)

where

απ = R + γ
∑
o∈O

TA(π),oαP (π,o) (3.3)

One can generally distinguish between two types of planning: online and offline. Offline
planning consists in finding a policy π before starting to interact with the environment or to
execute any action. An advantage of offline approaches is that the running time of a planning
algorithm is only limited by the computational resources that are available to the decision-
maker, and not the response time of the system. However, the initial belief state is not always
available when one is planning offline.

There have been many algorithms for offline planning in POMDPs that find an optimal
policy covering the entire belief space [Cassandra, 1998; Zhang and Zhang, 2001; Feng and
Zilberstein, 2005; Sondik, 1971]. Among these algorithms, Sondik’s Enumeration algorithm
is the most straightforward to describe [Sondik, 1971]. Let us denote by ΠH the set of all
possible policies (decision trees) for horizon H. The value functions of these policies is a set of
α-vectors απ, π ∈ ΠH (from Equation 3.2). The optimal policy for a belief state b corresponds
to arg maxπ∈ΠH bT απ. Therefore, the optimal value function for the entire belief space is a
piecewise linear function corresponding to the α-vectors of non-dominated policies1. Sondik’s
algorithm consists in enumerating all the possible α-vectors for horizon H by performing a
backup of the α-vectors for horizon H − 1 using Equation 3.3. A linear program is then used
to determine dominated policies and eliminate them.

Even when an initial belief is available, one should find an optimal policy that covers all
the possible beliefs within a horizon H. Given an initial belief state b, and a finite horizon H,
this problem can be solved by a forward search algorithm. Algorithm 4 describes the principal
steps of a generic forward search. To accelerate the search, a heuristic lower bound V

¯
and a

heuristic upper bound V̄ on the optimal value function V ∗ are used for pruning sub-trees that
are obviously not optimal (steps 1 to 5). A survey of such heuristics can be found in [Ross
et al., 2008b]. The algorithm recursively calculates the values of all the other actions (steps 6
to 11) and returns the optimal one (steps 12 to 15).

Forward search is mostly used in online planning algorithms, where the decision-maker
should find optimal actions while interacting with system. Since the time-window available

1A policy is said non-dominated if there is at least one belief state where the value of this policy is higher

than the values of other policies.
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for making a decision is generally very small, most forward search methods use a short planning
horizon, along with several heuristics, in order to reduce their runtime [Paquet, 2006; Ross
et al., 2008b].

Input: A POMDP model 〈S,A,O, T, Z, R〉, an initial belief state b, and a horizon H ;
/* V

¯
and V̄ are respectively lower and upper bounds on V ∗ */;1

V ∗(b)← V
¯
;2

foreach a ∈ A do3

V (b)← bT R + γ
∑

o∈O Pr(o|b, a)V̄ (τ(b, a, o));4

if V (b) > V ∗(b) then5

V (b)← bT R ;6

foreach o ∈ O do7

Let V ∗(τ(b, a, o)) be the optimal value for horizon H − 1 returned by a8

forward search starting at the belief τ(b, a, o);
V (b)← V (b) + γPr(o|b, a)V ∗(τ(b, a, o));9

end10

end11

if V (b) > V ∗(b) then12

V ∗(b)← V (b) ;13

π∗(b)← a ;14

end15

end16

Output: An optimal policy π∗ and value V ∗(b) for horizon H;
Algorithm 4: A generic forward-search algorithm.

3.3 The Curse of Dimensionality

Planning with POMDPs in real-world domains is known to be a very hard problem. In fact,
finding an optimal policy for a POMDP is proved to be a PSPACE-complete problem [Pa-
padimitriou and Tsitsiklis, 1987], and verifying the existence of a policy with an expected
value greater than a given threshold ε is undecidable [Madani et al., 1999]. Even finding a
near-optimal policy for a POMDP is NP-hard [Lusena et al., 2001]. These complexity results
remain valid for PSRs too, since each POMDP model can be transformed to a PSR in a
polynomial time [Littman et al., 2001]. There are two main factors, known as the curse of
dimensionality [Bellman, 1957], behind the poor scalability of a POMDP planning algorithm:

The dimensionality of the state space: A state is generally defined as a joint instantia-
tion of many variables. Thus, the dimension of the state space grows exponentially with
respect to the number of variables. The size of belief states, value vectors, and of many
other structures used in POMDP algorithms corresponds to the number of states.
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The dimensionality of the policy space (also knows as the curse of the history): The
number of policies that should be evaluated at each step of the planing horizon is a
double-exponential of the number of observations and the length of the horizon. Indeed,
if we have |A| actions and |O| observations, then the total number of policies with

horizon t is |A|
|O|t−1
|O|−1 . The expected value of each policy π is given by a value vector

απ, defined on the state space, where απ(s) is the expected value of the policy π, if
we start executing this policy from state s (see the previous section). The number of
basic operations required to calculate the value of a policy is O(|S|), and we have to

repeat this computation for every policy, i.e. O(|A|
|O|t−1
|O|−1 ) times. Consequently, if we can

reduce the number of states involved in calculating value vectors, then we will be able
to significantly improve the computational efficiency of POMDP planning algorithms.

PSRs have been initially proposed as a tentative to address the problem of the dimension-
ality of the state space. By using only linearly independent tests to define the parameters,
a PSR model has at most the same dimension as the equivalent POMDP. We will show how
to furthermore reduce this dimension in Section 3.7. PSRs have also been used to address
the curse of the history in POMDPs [Izadi, 2007], where policies were kept only in pertinent
belief states, corresponding to core histories. In Chapter 4, we will show how to use PSRs
to address the same issue in a more difficult problem related to decentralized POMDPs. But
before that, we will first review in the next section the principal techniques used for dealing
with the curse of dimensionality.

3.4 Approximate Planning with POMDPs

The techniques used to overcome the curses of dimensionality in POMDPs can be regrouped
into the following categories: heuristic, grid-based, point-based, policy search, forward search,
structure-based, and compression-based approaches.

3.4.1 Heuristic Approaches

Heuristics are often used to compute upper and lower bounds on the optimal value function,
with a very low computational cost. These bounds can be directly used as an approximation
of the optimal value function, or combined with other planning algorithms (such as forward-
search, Algorithm 4) in order to orient the search in promising directions and to apply branch-
and-bound pruning techniques [Ross et al., 2008b]. Most of heuristic approaches for POMDPs
are based on using the underlying MDP by assuming that the states are complectly observable.
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Among these heuristics, the simplest one is given by the value function of a Blind pol-
icy [Hauskrecht, 2000; Smith and Simmons, 2005]. A blind policy is a policy where the
same action is always executed, regardless of the belief state. The value of a blind policy is
obviously a lower bound on the optimal value function, as it corresponds to a specific pol-
icy. Given a belief state b, a lower bound on the optimal value function V ∗(b) is given by
V blind(b) = maxa∈A bT αa, where

αa(s) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)αa(s′)

Although this latter bound can be computed very quickly, by solving |A| systems of |S|
linear equations with |S| variables, it is generally loose and not very informative. Another
simple heuristic consists in executing the optimal action of the Most Likely State (MLS) [Nour-
bakhsh et al., 1995]. This heuristic is given by V MLS(b) = maxa∈AQ∗(arg maxs∈S b(s), a),
where Q∗(s, a) is the Q-value of action a in state s, defined in Equation 2.2. This heuristic
is generally tight only when there is one state with a probability that is significantly higher
than the other states.

The MDP heuristic consists in approximating the optimal value function of a POMDP by
using the optimal value function of the underlying MDP [Littman, 1996]. An upper bound
on the optimal value function V ∗(b) for a belief b is given by V MDP (b) = bT α∗, where

α∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)α∗(s′)
]

The QMDP heuristic is a slight improvement of the MDP heuristic, where the underlying
current state is partially observable, but the future states are supposed to be completely
observable. The QMDP heuristic is defined as V MDP (b) = maxa∈A

∑
s∈S b(s)Q∗(s, a). Note

that this bound is tighter than the MDP bound. An interesting generalization of this heuristic,
known as k-QMDP [Besse and Chaib-draa, 2009], consists in taking into account the partial
observability of the environment for k steps, and then using the policy of the underlying MDP
for the remaining steps.

Finally, the Fast Informed Bound (FIB) [Hauskrecht, 2000] takes into account the proba-
bilities of the observations for one time-step. This bound is computed as in QMDP, by using
the following modified Q-values:

QFIB(s, a) = R(s, a) + γ
∑
o∈O

max
a′∈A

∑
s′∈S

Z(o, s′, a)T (s, a, s′)Q∗(s′, a′)

Despite the low computational cost associated to heuristic approaches, they are gener-
ally not used for planning because of their poor performance. They are more often used as
subroutines for accelerating the search in other planning approaches.
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3.4.2 Policy Search Approaches

Instead of computing the value function of a belief state, and then finding an optimal function
accordingly, policy search methods directly optimize a parametric policy. This type of algo-
rithms depends on the model and the parameters used for representing policies. A popular
model for representing infinite-horizon policies is known as Finite-State Machines (FSMs).
An FSM policy is defined by a finite set of internal states, where each internal state is labeled
by an action to be executed in that state, and a transition function that maps each internal
state and observation into a next internal state. Based on this model, Hansen [1998] proposed
a policy iteration algorithm where internal states are iteratively added and removed.

Most of the other optimization techniques for FSMs are based on using parametric sto-
chastic machines, where the parameters correspond to the probabilities of selecting actions
and transitioning to next internal states. The gradient of the value function of the FSM is
then computed and used for updating the parameters [Chrisman, 1992; Meuleau et al., 1999;
Baxter and Bartlett, 2000].

More recently, Vlassis and Toussaint [2009] proposed a new policy approach for both
MDPs and POMDPs, where the planning (and learning) problem was casted as the problem
of maximizing the likelihood of a probabilistic mixture model via sampling. The principal idea
behind this framework is to use rewards between 0 and 1 and to reinterpret the value function
as the probability of succeeding a task. An Expectation Maximization (EM) algorithm is then
used to find the parameters of the policy that maximizes the likelihood of succeeding the task.

Policy search techniques are well-suited for planning in problems where the value of a policy
cannot be easily expressed as a function of the states, such as in problems with continuous
state spaces for example. However, both policy gradient and likelihood maximization methods
for searching policies are local optimization methods, and can be trapped in a poor locally
optimal solution.

3.4.3 Grid-based Approaches

A straightforward approach for approximating the optimal value function, defined on the entire
belief space, is to discretize the belief space by the means of a regular grid [Hauskrecht, 1997;
Bonet, 2002; Zhou and Hansen, 2001]. In this context, the value function is approximated by
extrapolating the value function at the beliefs corresponding to the nodes of the grid. These
beliefs are selected in a grid pattern in order to ensure a maximum covering of the belief space.
An extended overview of Grid-based approaches can be found in [Pineau, 2004]
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Given a set of grid belief points B, the optimal value function for each belief b ∈ B is
approximated as:

V (b) = max
a∈A

[
bT R + γ

∑
o∈O

Pr(o|b, a)V (τ(b, a, o))
]

where V (τ(b, a, o)) is the value of the next belief τ(b, a, o). If τ(b, a, o) /∈ B, then the following
approximation is used: V (τ(b, a, o)) ≈

∑
bi∈B λi(τ(b, a, o))V (bi), where λi(τ(b, a, o)) > 0 and∑

bi∈B λi(τ(b, a, o)) = 1. The convex combination λi can be found by solving a linear program.

A major inconvenience of regular grid approximations lies in the fact that the distribution
of reachable belief points is generally not uniform over the belief space. In practice, the belief
points are concentrated in small dense regions. We also note that the interest in grid-based
methods dropped down after the introduction of point-based methods, which are presented
in the next section.

3.4.4 Point-based Approaches

Although the space of belief states is an |S|-dimensional continuous simplex (the set of valid
probability distributions over the states), only a few regions of it are reachable in practice.
Thus, one should look only for the policies that are optimal in these regions. Moreover, one
can choose a finite set of belief points that are very likely to occur during the control process,
and evaluate the candidate policies only in these points. This type of approaches, known
as point-based algorithms, have become very popular due to their ability to solve real-world
problems with a large state space, where exact methods are almost useless [Pineau, 2004].

Point-Based Value Iteration (PBVI) [Pineau et al., 2003] is an offline algorithm that uses
a limited list Bt = {b1

t , b
2
t , . . . , b

n
t } of belief points that are reachable at time-step t, and keeps

the best policy for every point in this list. More specifically, the value function of a policy is
an α-vector (from Equation 3.2), and the optimal policy for a belief state bi

t corresponds to
arg maxπ∈Πt

∑
s∈S bi

t(s)α
π(s), where Πt denotes the set of policies at step t. Finding the best

policy for a given belief point can be performed in O(|Πt||A|) operations, which is much faster
than solving O(|Πt|) linear programs for finding the non-dominated policies over the whole
belief space. At the end of each step, a new set of policies Πt−1 is created by extending the
policies of the previous set Πt. Regarding the set of reachable belief points, PBVI starts with
a single belief point b0, then it gradually adds more belief points based on the probability of
reaching them during the execution phase, and their distance from the previous belief states.
Given a set of beliefs Bt, PBVI generates for each belief bt ∈ Bt and action a ∈ A a new belief
τ(bt, a, o), where o is an observation randomly sampled according to bt and a. Finally, only
the farthest beliefs, using the L1 norm, are kept and added to the list Bt to create Bt+1.

The Heuristical Search Value Iteration (HSVI) [Smith and Simmons, 2004] algorithm de-
fines upper and lower bounds on the optimal expected value over the whole belief space.
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Similarly to PBVI, HSVI keeps only the policies that are optimal in some belief points, these
points are selected according to their reachability and the difference between their lower and
upper bounds. This manner of collecting belief points leads to a gradual decrease in the
difference between the upper bound and the true optimal value function over the whole belief
space. As a consequence of that, less belief points are needed in HSVI than in PBVI, and a
near-optimal policy can be found in a shorter time.

Other methods of selecting belief points include the Belief-Based Error Minimization Algo-
rithm (PEMA) [Pineau and Gordon, 2005], where the beliefs are selected so that a theoretical
bound on the error of the algorithm is minimized, Perseus [Spaan and Vlassis, 2005], where
the beliefs are selected in a randomized greedy manner, and Forward Search Value Iteration
(FSVI) [Virin et al., 2007; Shani et al., 2008a], where the value function of the underlying
MDP is used to sort the belief points, and to perform prioritized backups according to this
order.

Point-based approaches are very efficient in practice, however, they require that the initial
belief state be known in advance, while in many problems, the initial belief state may change
from an instance to another.

3.4.5 Forward Search Approaches

Offline planning methods should find a policy for each possible initial belief state. However,
in many real-world problems, the initial belief state cannot be known in advance. Online
planning methods, based on Forward Search, provide an efficient solution to this problem by
focusing the search on the belief points that are reachable in a short-term horizon, and using
heuristic bounds, calculated offline, for the remaining beliefs.

Real-Time Belief Space Search (RTBSS) [Paquet et al., 2005] was the first Forward Search
algorithm for POMDPs used for solving problems with large state and action spaces. This
algorithm starts with an initial belief point, and construct a decision tree of the optimal policy
by using heuristics, such as QMDP and blind policy, for pruning dominated actions. This
algorithm is very efficient for real-time applications with a long planning horizon and a large
state space [Paquet, 2006; Wolf, 2009].

Anytime Error Minimization Search (AEMS) [Ross and Chaib-draa, 2007] is another online
search algorithm. The search tree in AEMS is explored in an order that minimizes the expected
error that can result from ignoring some observations in the backup operation, while focusing
only on the most significant observations. This algorithm is well suited for real-world problems,
characterized by a large number of observations.

A forward search algorithm was used by Doshi et al. [2008] in a framework for bayesian
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active learning in POMDPs, where phases of forward search and learning were interleaved.
In this context, the belief state is a probability distribution over states and POMDP models.
Given the high number of possible POMDP models, one cannot sample all the reachable belief
points during a forward search. The proposed solution consists in accelerating the search by
assuming that the received observations will be used to update the beliefs about the state
only, and not the model, which leads to a smaller search tree.

Another forward search algorithm was used in a bayesian framework by Martinez-Cantin
et al. [2009]. The considered POMDP model was high-dimensional, continuous, nonlinear,
and non-Gaussian, representing a challenging path planning problem for a mobile robot. To
evaluate a parametric policy for a given belief state, Martinez-Cantin et al. [2009] proposed
to sample several trajectories starting from that belief, and then use a direct policy search to
estimate the stochastic gradient of the value function. The estimated gradient is then used
for updating the parameters of the policy.

Finally, Roy and He [2009] proposed another efficient forward search planner for contin-
uous domains, known as Posterior Belief Distribution (PBD) algorithm. Roy and He [2009]
showed that for a special class of transition and observation functions, namely gaussian and
exponential families, the belief states can be calculated in a closed-form, without enumerating
the observations. This property enables one to plan in problems with large observation spaces,
and also to search deeper by considering policies composed of multi-step action sequences.

Although they are very practical, forward search methods, as well as point-based ap-
proaches, tackle only the problem of the policy space dimensionality (the curse of the his-
tory), leaving the problem of the dimensionality of the state space untouched. The next two
approaches that we will present try to solve this latter issue.

3.4.6 Structure-based Approaches

The planning process can be accelerated by exploiting the specific structure of the problem.
This idea had been widely explored in Markov Decision Processes (MDPs) to solve problems
with a large state space. Most of the work in this topic is based on decomposing the global
problem into smaller sub-problems, and solving each sub-problem separately. There are two
general approaches for decomposing the global problem: state space decomposition methods
and policy space methods approaches.

In the state decomposition methods, it is assumed that the state space is composed of
several loosely coupled sub-regions, with a weak mutual interaction between them. The
transition between two regions should pass through an intermediate bottleneck state [Dean and
Lin, 1995]. The optimal value of each couple (state, action) is calculated following a topological
order of the state space, defined according to the location of the target states [Bonet and
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Geffner, 2003; Dai and Goldsmith, 2007; Dibangoye et al., 2009b; Dibangoye, 2010].

In the policy decomposition approaches, also known as abstraction approaches, the global
task is divided into smaller subtasks, each subtask can be solved by a set of sub-policies (or
options), defined a priori by the designer. There are at least two planning levels: a lower level,
where one should find the optimal sub-policy for each sub-task; and a higher level, where one
should use these sub-policies as macro actions in order to find the optimal global policy.

There has been some interesting attempts to apply the decomposition techniques in par-
tially observable domains. The proposed solutions generally make the strong assumption
that the structure of the domain was previously decomposed. As an example, Hierarchical
Q-learning algorithm [Wiering and Schmidhuber, 1997] finds optimal policies through a se-
quence of subgoals, assuming that the subgoal states are completely observable. Another
approach, called HPOMDPs (Hierarchical POMDPs) [Theocharous et al., 2001, 2005; Foka
and Trahanias, 2007; Toussaint et al., 2008] extends the Hierarchical Hidden Markov Model
(HHMM) [Fine et al., 1998] to POMDPs. In the HPOMDP model, there can be different
levels of abstraction (detail), each level is a POMDP model itself with a transition and obser-
vation function. A special transition function, called the vertical transition function, defines
the probabilities of transitioning from a high level state to a state of a lower level. This
model assumes the existence of fully observable terminating states that indicate the end of
planning for a given level and the return to a higher level. Policy-Contingent Abstraction
(PolCA+) [Pineau, 2004] is a hierarchical planning algorithm close to HPOMDP. However,
the full observability of terminating states assumption was not necessary in this algorithm.

Factored POMDPs are a well known model that is used to overcome the problem of state
dimensionality. Instead of decomposing the state space into weakly coupled components,
Factored POMDPs [Boutilier and Poole, 1996; Boutilier et al., 1999; Shani et al., 2008b; Khan
et al., 2009] decompose the feature space into independent sets. A state is usually defined
as a joint instantiation of different variables (features), and often some of these variables
are independent of others. Calculating value vectors on small subsets of variables leads to a
significant gain in the computational complexity. One can also decompose the action space
based on the independence between action variables and the additive separability of the reward
function. Consequently, the global policy can be decomposed into partial policies, defined over
subsets of action and state variables.

3.4.7 Compression-based Approaches

Belief compression refers to the methodology of projecting high-dimensional belief state points
onto low-dimensional points in order to alleviate the problem of state space dimensionality.
Contrary to structure-based approaches where the decomposition depends on the domain
topology, compression techniques are based on analytical properties of the transition, obser-
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vation, and reward matrices. Most of these properties rely on the regularity of belief points.
In fact, while the full belief space is uncountable, the set of belief points that could be vis-
ited during the execution is countable (starting from a given initial belief point). Moreover,
most of these points are related to each other, and centered around a few of them. If we can
identify these points, then we will have a representation of the belief state in terms of a small
set of basis variables, and finding value functions will generally be easier than in the original
high-dimensional space.

Most of the compression techniques are based on finding a linear transformation func-
tion, characterized by a matrix F , that associates to every high-dimensional point b, a low-
dimensional point b̃, such that b̃ = bT F . Roy et al. [2005] used Principal Components Analysis
(PCA) to find the low-dimensional points. Given a set of sampled belief points b1, b2, . . . , bn,
regrouped column by column in a matrix B, PCA technique returns low dimensional points
b̃1, b̃2, . . . , b̃n, regrouped in a matrix B̃, such that the reconstruction error ‖ B − GB̃ ‖2F is
minimal2, where G is a matrix corresponding to a linear function from B̃ to B.

Roy et al. [2005] noted that PCA performs poorly on probability distributions, and pro-
posed a more general nonlinear compression technique based on exponential families of PCA
(EPCA). In EPCA, the matrix of high-dimensional points B is given by f(GB̃), where f is an
exponential family function and G is a function corresponding to a linear function. However,
both of linear and exponential PCA cannot be used easily for planning in POMDPs, since
the compression is performed only on the sampled belief points b1, b2, . . . , bn, and given a new
belief point b̃i, one cannot find the corresponding compressed belief b̃i = bT

i F , unless one
can calculate F = G−1. Nevertheless, the authors showed that one can construct an MDP
where the states correspond to the reduced sampled belief points b̃1, b̃2, . . . , b̃n, and a Value
Iteration or a Policy Iteration algorithm can be used for finding the optimal policy of this
MDP. The main drawback of this approach lies in the processing time needed to transform
every possible belief state into a reduced one. Note that there is a growing interest in apply-
ing spectral methods, such as PCA and EPCA, for handling problems with continuous state
spaces [Huynh, 2008; Kurniawati et al., 2008; Bush and Pineau, 2009]

Based on the work of Pfeffer [2001] on self-sufficient families, Poupart and Boutilier [2002]
proposed a compression algorithm for POMDPs where the values of policies are preserved in
the compression. The algorithm, known as Value Directed Compression (VDC), uses a linear
program to find a transformation matrix F , such that b̃ = bT F , while minimizing the errors
‖R̃−RT F‖∞ and ‖T aoF −FT̃ ao‖∞, where R̃ is the reward vector in the reduced belief space
and T̃ ao is the transition function in that space, as depicted in Figure 3.2. These constraints
are nonlinear since the matrices F and T̃ a,o and the vector R̃ are variables. This problem can
be loosely reduced to a series of several linear programs (LPs): one can initialize the matrix
F with random values, and alternate between optimizing T̃ a,o and R̃ while F is constant, and
optimizing F where T̃ a,o and R̃ are constant. However, this iterative method can get stuck

2‖ A ‖F is the Frobenius norm, defined as ‖ A ‖F =
qP

i,j A(i, j)2



Chapter 3. State Space Compression in POMDPs with Predictive Representations 45

in a bad local optimum, and it is very time consuming, involving dozens calls of an LP solver
for relatively small domains.

bt b̃t

rt

bt+1 b̃t+1

rt+1

R R̃ R R̃

T a,o T a,o
T̃ a,o T̃ a,o

F F

Figure 3.2: Value-directed compression [Poupart and Boutilier, 2002].

To deal with this latter problem, Poupart and Boutilier [2002] proposed to efficiently
initialize F and then make only one call of a linear program solver to find the remaining
parameters T̃ a,o and R̃. In this context, the compression matrix F is initialized with the
first vectors R, T aoR, . . . , T ao . . . T aoR that are linearly independent. This algorithm is value-
directed because it preserves the prediction of the immediate rewards in the compressed space.

The low-dimensional belief states b̃ in VDC are vectors of expected rewards instead of
probabilities. Given the current belief b̃t, the transition function T̃ ao can be used to calculate
the next belief as b̃t+1 = b̃tT̃

ao, but it cannot be used to calculate the probability of the next
observation o alone. Thus, this method cannot be directly used for online planning algorithms,
where belief states are updated after receiving each new observation o by calculating Pr(o|bt, a)
and using Bayes’ rule (Equation 2.2). We will return to this issue in Section 3.6, where we
discuss the relation between PSRs and VDC. Finally, Poupart [2005] showed that this method
is efficient for planning in large domains. Indeed, VDC was successfully used with the Perseus
algorithm in a spoken dialogue system.

Another interesting compression algorithm, proposed by Li et al. [2007, 2009], makes use
of a fast decomposition technique known as Non-Negative Matrix Factorization (NMF) [Lee
and Seung, 2000]. As in [Roy et al., 2005], the NMF compression algorithm is sample-driven,
i.e. given the sampled belief points b1, b2, . . . , bn, it finds a transformation matrix F such that
B = F T B̃. Moreover, this matrix satisfies the value preservation property as in [Poupart and
Boutilier, 2002], i.e. one should find a matrix T̃ a,o and a vector R̃ such that FT̃ a,o = T a,oF

and R̃T = FR . Finally, and more importantly, the function F should be orthogonal, i.e.
F T F = FF T = I. This latter property allows us to pass from a high-dimensional space into a
low-dimensional one. Therefore, we can use any planning algorithm to find optimal policies,
yet we cannot directly use online algorithms, for the same raison as for VDC, i.e. there are
no constraints used during the compression for preserving the prediction of observations.

In the remainder of this chapter, we will show that approximate PSRs provide an inter-
esting linear compression of POMDPs, while preserving the predictions of both rewards and
observations within the reduced state space. To do so, we will start by describing an efficient
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way of handling rewards in PSRs.

3.5 Representing Rewards with PSRs

In order to predict observations with PSRs, one only need to know the set of core tests
Q, the initial belief b̃0 (defined by the probabilities of the core tests at the begining, i.e.
b̃0(qi) = Pr(qi|h0), qi ∈ Q), and the vectors maoq and mao, corresponding to the weights of the
probabilities of the tests aoq and ao, i.e. ∀a ∈ A,∀o ∈ O : Pr(o|a, ht) =

∑
qi∈Q mao(qi)b̃0(qi).

The vectors maoq and mao are used to update the belief state by using Equation 2.3.

But, what about predicting rewards? In previous works on planning with PSRs [Izadi,
2007; James et al., 2004], the immediate reward was treated as a part of the observation.
Consequently, the dimensionality of the observation space is multiplied by the number of
different reward values, which can be as high as the dimension of the state space, since the
rewards are real values. To solve this problem, we propose the following method for predicting
rewards in PSRs.

We first define the expected final reward of a test q as:

r(q|h) = Pr(q|h)
∑
s∈S

Pr(s|hq)R(s) (3.4)

This value corresponds to the expected reward that will be received at the end of the test
q, weighted by the probability of the test. One can show that the expected final reward
of any test q depends linearly on the expected final rewards of a few tests, that we will
refer to as reward core tests. In fact, if we denote by M the |S| × ∞ matrix defined as
M(s, q) = r(q|s), s ∈ S, q ∈ {A × O}∗, then the rank of M is at most equal to the number
of lines |S|. Let us denote by P = {p1, p2, . . . , pn} a maximal set of tests corresponding
to linearly independent columns in M . These latter columns spans all the columns in M ,
therefore:

∀q, h ∈ {A ×O}∗ : r(q|h) =
∑
s∈S

Pr(s|h)r(q|s)

=
∑
s∈S

Pr(s|h)
n∑

i=0

wq(pi)r(pi|s)

=
n∑

i=0

wq(pi)r(pi|h)

where wq ∈ R|P | is a vector of weights. Therefore, the expected final rewards of the core
tests pi are sufficient for predicting the expected final rewards of other tests. Note that P is
defined independently from Q, the set of core tests used for predicting observations, and P is
generally different from Q.
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The reduced reward belief is a |P |-dimensional vector r̃t, defined as:

r̃t(pi)
def
= r(pi|ht), pi ∈ P (3.5)

The expected final reward of any test q is given by:

r(q|ht) = r̃T
t wq

where wq is a |P |-dimensional weight vector. After executing action a and receiving observa-
tion o, the reduced reward belief is updated by using Bayes’ Rule:

∀pi ∈ P : r̃(pi|htao) = Pr(pi|htao)
∑
s∈S

Pr(s|htaopi)R(s) (From Equation 3.4)

=
Pr(aopi|ht)

∑
s∈S Pr(s|htaopi)R(s)

Pr(ao|ht)
(Bayes’ Rule)

=
r̃(aopi|ht)
Pr(ao|ht)

(3.6)

So:

r̃t+1(pi) =
r̃T
t waopi

b̃T
t mao

(3.7)

Note that the probability Pr(ao|ht) is calculated by using b̃t, the belief state of the PSR
observation model. Similarly to the outcome matrix U containing the probabilities of tests
(see Section 2.4), we define the |S| × |P | reward outcome matrix F as (see Figure 3.3):

F (s, q)
def
= r(q|s) (3.8)

The matrix F can be found by searching for a maximum set of linearly independent columns in
the matrix M . A simple iterative search algorithm for independent tests was given by [Littman
et al., 2001]. We will return to this algorithm in Section 3.6.



0.2 0.5 1 0
0.5 0.8 0.3 0.7
0.5 0.9 0.1 0.3
1 0 1 0.2

0.5 0.3 0.8 0.9
0.9 0.6 0.7 0.3
0.9 0.9 0.5 0
0.9 0.5 0.3 0
0.7 0.1 0 0


U

s1
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s3
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q1 q2 q3 q4 

−1 0.9 0
−1 −1 0.9
−1 3.2 −1
−1 0 1.2
−1 −2 5.9
−1 4 6.3
−1 2 −5
−1 −6.1 0
10 5 0
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s1

s2

s3

s4

s5

s6

s7

s8

s9

∅ q′1 q′2

Figure 3.3: An example of the outcome matrices U and F . The entries of U are the proba-
bilities of core tests, whereas the entries of F are the expected reward of the core tests.
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At a given time-step t, the immediate reward corresponds to r(∅|ht), the expected final
reward of the empty test ∅, so F (., ∅) = R. We use w, the weight vector of the empty test, to
find the expected immediate reward F (∅|ht) = r̃T

t w given a reduced reward belief r̃t.

To conclude, both the PSR reward model 〈A,O, P, w, {waopi}〉 and the PSR observation
model 〈A,O, Q, {mao}, {maoqi}〉 are needed for predicting rewards. The belief of the obser-
vation model is used to predict observations and to update the belief of the reward model
(Equation 3.7). Before presenting the compression algorithm that transforms a POMDP
model into a reduced PSR model, we show in the next section the equivalence between the
PSR reward model and Value-directed Compression (VDC) [Poupart and Boutilier, 2002].

3.6 PSRs and Krylov subspaces

To show the relation between PSRs and VDC, we will first briefly review a linear algebraic
concept called Krylov subspace, the interested reader can find an extended presentation of this
concept in [Saad, 1996].

Let V be a vector space, v a n-dimensional vector contained in that space, and M a n×n

matrix. A Krylov subspace Kr(M,v) is the subspace of V that contains the vector v and that
is invariant with respect to the matrix M , i.e.

∀x ∈ Kr(M,v) : Mx ∈ Kr(M,v)

So

Kr(M,v) = {v,Mv,MMv, MMMv, . . . }

This definition can be generalized to subspaces with many matrices M1,M2, . . . ,Mk. Similarly,
a Krylov subspace Kr({Mi}, v) is the subspace of V that contains the vector v and that is
invariant with respect to each matrix Mi:

∀M ∈ {Mi},∀x ∈ Kr({Mi}, v) : Mx ∈ Kr({Mi}, v)

The krylov subspace Kr({Mi}, v) can be ordered by enumerating the vector v, then all
the vectors Miv, then all the vectors MiMjv, MiMjMkv, . . . etc. A basis of Kr(M,v) can
be constructed by keeping the first linearly independent vectors of the list Kr(M,v). In fact,
one can show that ∀m > n: the vector MiMj . . .Mk︸ ︷︷ ︸

m matrices

v can be written as a linear combination

of the vectors MiMj . . .Mk︸ ︷︷ ︸
l matrices

v, with l 6 n.

VDC finds a basis matrix F for the Krylov subspace Kr({T a,o}, R) by iteratively enu-
merating linearly independent vectors of this space. The first column of F is R, then all
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the vectors T a1o1
R,∀a1 ∈ A,∀o1 ∈ O are generated, and the linearly independent vectors

are added to F . At step k, we generate only the vectors T akok
T ak−1ok−1

. . . T a1o1
R such that

T ak−1ok−1
. . . T a1o1

R are already in F . This process is repeated until no more independent vec-
tors can be added to F . The basis matrix F is used as a transformation matrix for mapping
belief states into reduced belief states and planning within the reduced space.

By noticing that for any test q = a1o1 . . . akok we have P (., q) = T a1o1 . . . T akokR, one can
see that F is the same outcome matrix defined in Section 3.5, hence, what the VDC algorithm
finds is exactly the reward model of a PSR. As for the observation model, one can show that
the PSR transformation matrix U (a |S| × |Q| matrix, Figure 2.4) is in fact a basis of the
Krylov subspace Kr({T a,o}, e|S|), where eT

|S| = (1, 1, . . . , 1). In fact, the vector containing the
probabilities of the empty test starting from different states is given by Pr(∅) = U(., ∅) = e|S|,
and for any test q, Pr(q) = U(., q) = T a1o1 . . . T akoke|S|.

VDC algorithm can make predictions about future rewards, but cannot update the reduced
belief states after perceiving an observation o, thus it cannot be used for online planning for
example. Poupart [2005] showed that this problem can be overcome by considering the Krylov
subspace Kr({T a,o}, R, e|S|) instead of Kr({T a,o}, R). In this case, some parts of the belief
state will correspond to probabilities of tests, and other parts will correspond to expected
rewards. Unless the rewards are normalized to values between 0 and 1, mixing rewards and
probabilities can be problematic when it comes to define the loss function of the compression.
In our approach, we keep the reward and observation models separated, and define a different
loss function for each one of them, as we show in the next section.

3.7 Lossy compression of POMDPs with PSRs

Exact linear transformation is considered insufficient in practice. This is a motivation to fur-
ther investigate a lossy transformation which scales better. Building on the lossy compression
version of VDC, we develop an algorithm for finding compact PSRs. Given a POMDP model
and the required reduced dimensions |Q| and |P |, our algorithm finds the best parameters of
an approximate PSR model that minimize the loss function, which measures the difference be-
tween the predictions of the accurate POMDP model and the predictions of the approximate
PSR model. We use here the optimization Equations 3.9 and 3.10 to find the parameters of
the approximate PSR.

minimize: c1

∑
∀a∈A,∀o∈O

εao + c2

∑
a∈A,o∈O,qi∈Q

εaoqi (3.9)

subject to:

∀a ∈ A,∀o ∈ O : ‖T aoe|S| − Umao‖∞ 6 εao

∀a ∈ A,∀o ∈ O,∀q ∈ Q : ‖T aoU(., q)− Umaoq‖∞ 6 εaoq
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minimize: c3εr + c4

∑
a∈A,o∈O,pi∈P

εaopi (3.10)

subject to:

‖R− Fw‖∞ 6 εr

∀a ∈ A,∀o ∈ O,∀pi ∈ P : ‖T aoF (., pi)− Fwaopi‖∞ 6 εaopi

These latter equations are nonlinear, but can be solved with a linear program by using
an iterative technique. To achieve that, we alternate between solving Equation 3.9, using
a linear program solver, to find the parameters mao and maoqi while keeping U fixed, and
solving the same equation to find U while keeping the parameters mao and maoqi fixed. We
do the same thing for the reward model Equation 3.10. In our first algorithm, the matrices
U and F are initialized with random values. The parameters c1, c2, c3 and c4 are the weights
(the importance) given to the errors on mao, maoqi , w and waopi respectively. Convergence
is guaranteed just as argued in [Poupart, 2005] since the objective function decreases at each
iteration; however, the resulting fixed point may be local optimum.

Our first experiments with this algorithm showed that a large number of iterations are
necessary for converging to an optimum, which is often a local optimum, and one should try
several random initializations before getting the global optimum. To alleviate this problem, we
propose an improved algorithm (Algorithm 5), where we initialize the matrix U with the first
|Q| linearly independent vectors of Kr({T a,o}, e|S|) (step 1). The matrix F is initialized with
the first |P | linearly independent vectors of Kr({T a,o}, R) (step 2). These vectors can be found
in polynomial time by a depth-first search in the spaces Kr({T a,o}, e|S|) and Kr({T a,o}, R).
The linear program solved in step 6 returns the weight vector mao that minimizes the difference
between the probability of observation o after executing action a calculated by the POMDP
model as T aoe, and by the approximate PSR as Umao. Similar linear programs are solved in
steps 6, 13 and 18 for finding the vectors maoq, used for predicting the probability of tests aoq,
waopi , used for predicting the expected final reward of tests aopi, and w, used for predicting
the immediate reward. Notice that if we set |Q| = |P | = |S| then Algorithm 5 will return an
exact PSR model that is equivalent to the original POMDP.

3.8 Analysis of the approximation error

The value function V π of a policy π is represented by an |S|-dimensional vector απ, such that
απ(s) is the expected cumulated reward if we start executing π from state s (see Section 3.2).
Given a POMDP belief state bt, the value of policy π is bT απ. Similarly, a reduced value
function α̃π is a |P |-dimensional vector defining the value of π over the reduced belief space.
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Input: A POMDP: 〈S,A,O, T, Z, R〉. A number of core tests |Q| 6 |S|. A number of
reward core tests |P | 6 |S|;

Output: The parameters U , F , mao, maoqi , w, waopi of the compressed model,
∀a ∈ A,∀o ∈ O,∀qi ∈ Q,∀pi ∈ P ;

Construct the matrix U using the |Q| first linearly independent vectors of1

Kr({T a,o}, e|S|), and let Q be the set of tests corresponding to these vectors;
Construct the matrix F using the |P | first linearly independent vectors of2

Kr({T a,o}, R), and let P be the set of tests corresponding to these vectors;
for a ∈ A do3

for o ∈ O do4

Find mao by solving the following linear program:5

minimize εao s.t. ‖T aoe− Umao‖∞ 6 εao6

for qi ∈ Q do7

Find maoqi by solving the following linear program:8

minimize εaoqi s.t. ‖T aoU(., qi)− Umaoqi‖∞ 6 εaoqi9

end10

for pi ∈ P do11

Find waopi by solving the following linear program:12

minimize εaopi s.t. ‖T aoF (., pi)− Fwaopi‖∞ 6 εaopi13

end14

end15

end16

Find the vector w by solving the following linear program:17

minimize εr s.t. ‖R− Fw‖∞ 6 εr18

Algorithm 5: Transforming a POMDP into an Approximate Compact PSR.

Given a PSR reward state r̃t, the value of policy π can be written as:

bT απ =
H∑

t=0

γt
∑

q∈{A×O}t
Pr(q|ht)

∑
s∈S

Pr(s|htq)R(s)

=
H∑

t=0

γt
∑

q∈{A×O}t
r(q|ht) (From Equation 3.4)

=
H∑

t=0

γt
∑

q∈{A×O}t

∑
pi∈P

r(pi|ht)wq(pi)

=
∑
pi∈P

r(pi|ht)
H∑

t=0

γt
∑

q∈{A×O}t
wq(pi)

= r̃T α̃π

where α̃π(pi)
def
=

∑T
t=0 γt

∑
q∈{A×O}i wq(pi), and H is a planning horizon, which can be infi-

nite. Since we have ∀b ∈ ∆S : bT απ = r̃T α̃π and r̃T = bT F , then απ = Fα̃π (see the definitions
of the reward belief r̃ and the reward compression matrix F given by Equations 3.5 and 3.8).
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We assumed in this latter derivation that the expected final reward of any test q is exactly
given as a linear combination of the reward core tests. In fact, since the compression that
we used is lossy, one cannot guarantee that the equality απ = Fα̃π will be preserved. In the
remaining of this section, we provide a bound on the margin between the α-vector απ of a
policy π according to the POMDP model, and the estimated α-vector Fα̃π according to the
approximate PSR model, as a function of the errors εaopi and εr made by Algorithm 5 (the
errors εaoqi and εao were not included in this bound). This bound is adapted from the proof
of [Poupart, 2005].

Let us denote by Πt the set of all policies that will be executed at time-step t. Given a
policy π ∈ Πt, we define επ as the difference between the value vector απ of π, according to the
POMDP model, and the value vector Fα̃π of the same policy, according to the approximate
PSR reward model. Also, let ε∗t be the worst such error over all the policies at time-step t,
i.e.

ε∗t = max
π∈Πt

επ = max
π∈Πt

‖απ − Fα̃π‖∞

We define the reduced transition matrix W ao as W ao(pi, aopj) = waopj (pi), for pi, pj ∈ P ,
a ∈ A, o ∈ O. We also use A(π) to denote the first action of policy π, and P (π, o) the
remaining policy of π after executing its first action A(πt) and receiving the observation
o ∈ O. The error ε∗t can be bounded as follows:

ε∗t = max
π∈Πt

‖(R− Fw) + γ
∑
o∈O

(TA(π)oαP (π,o) − FWA(πt)oα̃P (π,o))‖∞ (From Equation 3.3)

6 max
a∈A
‖R− Fw‖∞ + γ

∑
o∈O

max
π∈Πt+1

‖T aoαπ − FW aoα̃π‖∞

6 εr + γ‖
∑
o∈O

max
π∈Πt+1

(T aoαπ − T aoFα̃π − FW aoα̃π + T aoFα̃π)‖∞

6 εr + γ‖
∑
o∈O

max
π∈Πt+1

(T aoαπ − T aoFα̃π)‖∞ + γ
∑
o∈O

max
π∈Πt+1

‖T aoFα̃π − FW aoα̃π‖∞

6 εr + γ‖
∑
o∈O

max
π∈Πt+1

(T aoαπ − T aoFα̃π)‖∞ + γ
∑
o∈O

max
π∈Πt+1

‖T aoF − FW ao‖∞‖α̃π‖∞

6 εr + γε∗t+1‖
∑
o∈O

T ao‖∞ + γ
∑
o∈O

max
π∈Πt+1

εaop‖α̃π‖∞

6 γε∗t+1 + γ|O|εaop‖α̃∗‖∞ + εr

6
εr + γ|O|εaop‖α̃∗‖∞

1− γ

where ‖α̃∗‖∞ = max
π∈
∞S

t=0
Πt

‖α̃π‖∞. In these substitutions, we used the following properties:

‖A + B‖∞ 6 ‖A‖∞ + ‖B‖∞ and ‖AB‖∞ 6 ‖A‖∞‖B‖∞.
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3.9 Empirical evaluation

3.9.1 Online prediction

The main purpose of a dynamical system model is to predict the probabilities of different ob-
servations, and the expected immediate reward, given an arbitrary history ht (see Section 2.1).
After finding the compressed PSR model of a given problem by the means of Algorithm 5,
we test its accuracy by simulating a sequence of H action-observations and compare the pre-
dictions of the reduced model to the predictions of the original POMDP. The initial belief
state b0 of the POMDP is randomly generated, and the initial PSR belief state is calculated
by b̃0 = bT

0 U for the observation model, r̃0 = bT
0 F for the reward model. At each time-step

t, we sample an action at according to a uniform distribution, and calculate the prediction
Pr(o|at, ht) by using the exact model and the prediction P̃ r(o|at, ht) by using the approximate
model, for each observation o ∈ O. We also calculate the expected rewards R(ht) = bT

t R and
R̃(ht) = r̃T

i w. Then, we sample a next state and an observation ot according to the accurate
model. Action at and observation ot are used by both models to update their internal beliefs,
each one using its own parameters and bayesian update function.

The root mean squired error (RMSE) is used to measure the divergence between the
predictions of the reduced model and the predictions of the accurate model. It is given by:

RMSEobservation =

√√√√ 1
H × |O|

H∑
t=1

∑
o∈O

(P̃ r(o|ht, at)− Pr(o|ht, at))2 (3.11)

RMSEreward =

√√√√ 1
H

H∑
t=1

(R̃(ht)−R(ht))2 (3.12)

In our experiments, we considered a horizon of H = 100, this was sufficient for testing
the model since the system was reset to an initial state distribution often before reaching
this horizon. The prediction error becomes more important as the horizon grows, this is due
to the fact that the bayesian update function (Equations 2.3 and 3.6) of PSR belief states
uses approximate probabilities P̃ r(o|h, a) in the denominator of Bayes’ Rules, so that, after a
long sequence, the cumulated errors make the PSR belief state significantly inaccurate. As an
example of that, if the true probability of an observation is Pr(o|h, a) = 0.01 (which can be
the case when the number of observations is large) and the estimated probability of the same
observation is P̃ r(o|h, a) = 0.02, then even if one uses the true probability Pr(aoq|h) of an
extended core test aoq, the estimated posterior probability P̃ r(q|hao) of test q will be twice
its true value, and could be higher than 1. However, the belief states of both POMDP and
PSR models are always reset to an accurate value after executing a reset action, or perceiving
a landmark (deterministic and non-aliasing) observation.
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We tested Algorithm 5 on different standard benchmarks taken from the literature: 4× 4
grid (16 states, 4 actions, 2 observations), Shuttle (8 states, 3 actions, 5 observations), Network
(7 states, 4 actions, 2 observations), Hallway problem (60 states, 5 actions, 21 observations),
Hallway2 problem (92 states, 5 actions, 17 observations) [Cassandra, 1998], Coffee domain
(32 states, 2 actions, 3 observations) [Boutilier and Poole, 1996], and Spoken Dialogue Man-
agement (433 states, 37 actions, 16 observations) [Williams, 2006].

Table 3.1 presents the average error on predictions (Equations 3.11 and 3.12) as a function
of the number of core tests used for each problem. The error on predicting rewards is contained
in the interval [0, 1] because it measures a difference between two probabilities. For the
Coffee problem, we reported only the error on predicting rewards, the error on predicting
observations becomes null by using only two core tests. In fact, most of the states in this
problem have similar transition and observation dynamics, they are distinguished only by the
reward function. For the other problems, we reported the error on predicting observations,
because the error on rewards was almost null even when we use only one core test. In these
specific domains, all the states have a null reward, except for the final state. With a random
policy, we could rarely get to these final states, so the cumulated reward was null for both
PSR and POMDP.

For small problems (Shuttle, Network and 4 × 4 grid), we used the first version of the
compression algorithm (see Section 3.7), where all the parameters of the approximate PSR
are found by solving the optimization equations 3.9 and 3.10. In larger domains (Coffee,
Hallway, Hallway2 and Spoken Dialogue), this approach became untractable, so we set the
columns of U and F to the linearly independent vectors of Kr({T a,o}, e|S|) and Kr({T a,o}, R)
and used Algorithm 5 to find the remaining parameters. The effective compression times for
large problems are reported in Table 3.2, the experiments were performed using ILOG Cplex
10 solver on an AMD Athlon machine with a 1.80 GHZ processor and 1.5 GB memory.

In all these experiments, the compression of the POMDP was successful, because only a
few core tests were necessary to construct an approximate PSR model with a low prediction
error. For the 4×4 grid for example, we used only 6 core tests instead of 16 to make predictions
on future observations with an average error of 0.10 over the 100 steps. A random prediction
makes an average error of 0.55 in most of the problems. For Network problem, we can predict
the future observations of the system by using only 3 tests, while the prediction error is
nearly null (0.02). For the Coffee domain, the PSR model is able to predict the expected
reward with an almost null error, by using 6 core tests. This gain is even more pronounced in
larger domains, as like Hallways and Spoken Dialogue. For this latter domain, the prediction
error was almost null with a very small number of core tests. This is due to the fact that the
observations depend only on the initial belief state, which is a uniform distribution over states
(In this problem, the final state is reached after only 3 actions in general). A Kullback-Leibler
(KL) divergence would be a better measure of the error in this case, because the distribution
on observations is always almost uniform, and the probabilities of the observations are too
small (around 0.06 for each observation).
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Domain Original Reduced Compression Root Mean Squared Error
dimension dimension Ratio (RMSE)

Network 7 1 15% 0.1575
(RMSEobservation) 2 30% 0.1224

3 45% 0.0159
4 60% 0.0228
5 75% 0.0029
6 90% 0.0067

Shuttle 8 1 12.5% 0.3867
(RMSEobservation) 2 25% 0.3966

3 37.5% 0.3920
4 50% 0.3877
5 62.5% 0.2851
6 75% 0.1479

Grid 16 1 6.25% 0.4595
(RMSEobservation) 2 12.5% 0.3052

3 18.75% 0.1155
4 25% 0.1445
5 31.25% 0.1349
6 37.5% 0.1009

Coffee 32 1 3% 1.3307
(RMSEreward) 2 6% 1.3316

3 9% 0.3749
4 12% 0.1065
5 15% 0.1065
6 18% 0.0027

Hallway 60 5 8% 0.1234
(RMSEobservation) 10 17% 0.0572

15 25% 0.0585
20 33% 0.0590
25 42% 0.0590

Hallway2 92 5 6% 0.1272
(RMSEobservation) 10 12% 0.1361

15 17% 0.0947
20 22% 0.0392
25 27% 0.0369

Dialogue 433 2 < 1% 0.0279
(RMSEobservation) 3 < 1% 0.0255

5 ≈ 1% 0.0255
8 ≈ 2% 0.0000
10 ≈ 2% 0.0000

Table 3.1: Average error of the approximate PSR on predicting observations, as function of
the reduced dimension.
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Domain Original Reduced Compression Runtime in seconds
dimension dimension ratio

Hallway, observations 60 5 8% 20.59
10 17% 35.42
15 25% 60.87
20 33% 74.47
25 42% 94.93
30 50% 114.9

Hallway2, observations 92 5 6% 20.46
10 12% 41.92
15 17% 69.46
20 22% 107.28
25 27% 157.73
30 34% 184.23

Dialogue, observations 433 2 < 1% 350.93
3 < 1% 557.09
5 ≈ 1 % 759.20
8 ≈ 2 % 1166.04
10 ≈ 2 % 1459.56

Coffee, observations 32 1 3% 0.14
2 6 % 0.20

Coffee, reward 32 1 3% 0.22
2 6% 0.36
3 9% 0.48
4 12% 0.78
5 15% 0.95
6 18% 0.98

Coffee, total 32 1+2 9% 0.36
(observations and reward) 2+2 12% 0.56

3+2 15% 0.68
4+2 18% 0.98
5+2 21% 1.15
6+2 24% 1.18

Table 3.2: Runtime of the compression algorithm in seconds, as function of the reduced
dimension.
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We also notice that in general, the average error decreases as the number of core tests
increases, because with more variables, the parameters of the model can be better adjusted
in order to minimize the loss function. The error becomes always null when |Q| = |P | = |S|,
since in this case, Algorithm 5 will be equivalent to the algorithm of Littman et al. [2001],
which returns an exact PSR model.

3.9.2 Online planning

Decision-making is the other important purpose of using models of dynamical system. We
tested our approach on the problem of online planning (see Section 2.1). To do so, we imple-
mented RTBSS (Real-Time Belief Space Search) algorithm [Paquet et al., 2005], and adapted
it for dealing with PSRs. RTBSS is based on a forward search (Algorithm 4) that is per-
formed online each time the agent has to make a decision, i.e. after each observation. As
an online method, RTBSS is particularly appealing for large real-time systems where offline
methods are not applicable because of their computational complexity [Roy and He, 2009].
In our case, we set the search depth to 3, and used Blind Policy as lower bound heuristic
and Q-MDP as upper bound (see Section 3.4.1). The adaptation of RTBSS for dealing with
PSRs is almost straightforward, since we already provided a mechanism for updating reduced
belief states, and calculating the expected reward corresponding to such belief states. How-
ever, Blind Policy and Q-MDP heuristics are functions of states and it is not obvious how
to use these heuristics in PSRs, where the states are replaced by core tests. Nevertheless,
the values of heuristics can be treated in the same way we treated immediate rewards, and
preserved during the compression. Let V̄ and V

¯
be two |S|-dimensional vectors such that

V̄ (s) is an upper bound on the value of state s and V
¯
(s) is a lower bound on the value of

state s. The bounds V
¯

and V̄ are calculated offline by using the provided POMDP model.
Let v̄ and v

¯
be two |P |-dimensional vectors such that r̃T

t v̄ and r̃T
t v
¯

are respectively an upper
and a lower bounds on the value of the PSR reward belief state r̃t. The vectors v̄ and v

¯
are

found by adding solving the following linear programs at the end of Algorithm 5, where F is
the outcome matrix of the reward core tests (defined by Equation 3.8):

minimize εv
¯

s.t. ‖V
¯
− Fv

¯
‖∞ 6 εv

¯
minimize εv̄ s.t. ‖V̄ − F v̄‖∞ 6 εv̄

Table 3.3 illustrates the reward and runtime per time-step of RTBSS using both POMDP and
Approximate PSR models, as a function of the reduced dimension. These values are averaged
over 100 time-steps. For the Coffee domain, we can see that we need at most two observation
core tests and two reward core tests to get the same average reward as the exact POMDP
model, while the runtime per step is significantly reduced. The results for Hallways are also
very promising. In fact the runtime is always reduced and the average reward is close to the
reward of POMDP. Note that for Hallway2, we apparently need higher dimensions in order
to achieve the same results as with the exact POMDP.
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RTBSS with Compressed PSR RTBSS with POMDP
Domain |Q| |P | Runtime per step Average reward Runtime per step Average reward

Coffee 1 1 0.002 -1.99 0.35 -1.49
2 2 0.007 -1.49

Hallway 20 20 15.89 0.03 27.58 0.06
(60 states) 40 40 20.70 0.06

Hallway2 20 20 1.56 0.00 80.20 0.02
(92 states) 40 40 5.70 0.01

Table 3.3: Average reward and runtime in milliseconds of RTBSS using POMDP and Ap-
proximate PSR models, as function of the reduced dimension.

3.10 Conclusion

Current work on planning methods for POMDPs demonstrates that finding optimal policies
for POMDPs is untractable in practice. In this thesis, we investigated the possibility of
finding an approximate reduced PSR model from a given larger POMDP. We formulated
this problem in linear programming framework. We illustrated a theoretical bound for value
function error using the approximate PSR model. Using an approximate model seems to have
a definite advantage in PSRs as confirmed by our experimental results. Our results show that
the reduced model can predict the probabilities of observations and the rewards with a high
precision compared to the exact model. The impact of this method is more pronounced for
problems with special structure. However, there are more potential advantages in applying
reduced PSRs instead of POMDPs for planning. Preliminary results on using approximate
PSR in online planning show that we can always find a reduced dimension where planning
with approximate PSR takes less time than with the original POMDP, without an important
loss of performance. The immediate next step to this research is to perform more elaborated
experiments on using the approximate PSR in planning, with larger domains, and to compare
with other compression methods. The other extension is to study how to efficiently select
the most promising independent vectors of Krylov subspaces instead of simply taking the
first ones. Indeed, this problem, known as the discovery problem, remains one of the major
unsolved problems in PSRs [Makino and Takagi, 2008].



Chapter 4

Policy Space Compression in

Decentralized POMDPs with

Predictive Representations

The rise of applications requiring cooperation between different agents, like robotic teams,
distributed sensors and communication networks, has made coping with the presence of other
decision makers a key challenge for building autonomous agents. For this purpose, a general-
ization of POMDPs to multi-agent systems, called DEC-POMDPs (decentralized POMDPs),
was introduced by Bernstein et al. [2002], and since then, this framework has been receiving a
growing amount of attention [Rabinovich et al., 2003; Becker et al., 2004; Emery-Montemerlo
et al., 2004; Hansen et al., 2004; Szer et al., 2005; Szer and Charpillet, 2006; Seuken and Zil-
berstein, 2007a; Amato et al., 2007a; Dibangoye, 2010]. This research is basically motivated
by the fact that many real world problems need to be casted as decentralized POMDPs, while
finding an optimal solution for a decentralized POMDP is a NEXP-hard problem [Bernstein
et al., 2002], and even finding ε-optimal solutions is NEXP-hard [Rabinovich et al., 2003].
Finding good solutions to decentralized POMDPs is so difficult because there is no optimality
criterion for the policies of a single agent alone: whether a given policy is better or worse than
another depends on the behavior of the remaining agents. Moreover, no agent is aware of the
actual behavior of the remaining agents unless the agents can exchange their local information
through communication, which is not always possible. Instead, each agent keeps a belief state
on the policies of the other agents based on its local actions and observations received so far.
In this chapter, we address the problem of finding compact representations of belief states on
policies by using predictive representations of policies. To do so, we propose an adaptation
of PSRs for dealing with uncertainty on policies. We also present an empirical evaluation on
benchmark problems, illustrating the performance of this approach.
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4.1 Introduction

Partially Observable Markov Decision Processes (POMDPs) provide a general framework for
dealing with state uncertainty. However, when a system is controlled by more than one agent,
Markov property becomes no longer true, unless the state of the system includes information
about the policy (or behavior) of each agent involved in the process. Decentralized POMDPs
have emerged in recent years as a natural extension of POMDPs for planning under uncer-
tainty in multi-agent systems. In multi-agent systems, each agent faces different types of
uncertainties:

Uncertainty with respect to the state of the system: As in POMDPs, the state of the
system is partially observable, every agent receives a local observation at each time-step
and uses it to update its local belief state.

Uncertainty with respect to the observations of other agents: The local observations
received by different agents are not necessarily identical, each agent observes the state
of the system through its own sensors. Therefore, in order to choose an optimal policy,
each agent should take into account the probabilities of all the possible observations
that may have been received by the other agent. In practice, this problem can be
overcome by means of instantaneous cost-free and noise-free communication, in which
case the problem reduces to a POMDP [Pynadath and Tambe, 2002]. Decentralized
POMDPs deal with the more general case, where agents interact by means of actions
and observations, sending and receiving messages can be considered as special actions
and observations.

Uncertainty with respect to the actions of other agents: Even if an agent knows
precisely the local observations of other agents, it cannot predict their actions by using
only this information. In fact, the actions that will be executed by the other agents
depend on many factors. The first factor is the rationality of the agents. A rational
agent is one that acts optimally in order to maximize its payoff in the limit of its
computational capacity. In Decentralized POMDPs, all the agents are assumed to be
rational. The second factor is the payoff function minimized by each agent. Having
different payoff functions may lead to adversary situations where agents can choose
persuasive actions in order to mislead other agents. This type of problems constitutes
the topic of Game Theory. In decentralized POMDPs, the agents are assumed to be
cooperative and share the same payoff function. Finally, the actions of other agents may
be unknown simply because their planning algorithms are unknown. In decentralized
POMDPs, the same planning algorithm with similar parameters is executed by all the
agents.
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4.1.1 Example

Figure 4.1 represents a simple multi-agent system with two robots, Walle and Eve, navigating
in a 3×3 grid world, and choosing their actions from the set: Move right (→), Move left (←),
Move up (↑), Move down (↓), and receiving as observations Obstacle: The robot hit a wall, or
Nothing: No wall in sight.

If the goal of the two robots is to meet as soon as possible anywhere on the grid, then
each robot must know the policy of the other one in order to find the best policy leading to
a meeting state. Since the policy of each robot depends on its local history of actions and
observations, and none of them knows anything about the history of the other, each robot
should use its local history to infer a probability distribution on the histories of the other one,
and consequently, a distribution on the remaining policies of the other one. The planning
problem is solved using this distribution, as we will show in Section 4.2.
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Figure 4.1: Meeting under uncertainty.



Chapter 4. Policy Space Compression in Decentralized POMDPs 62

4.1.2 Definition of Decentralized POMDPs

Formally, a decentralized POMDP with n agents is a tuple 〈I,S, {Ai}, {Oi}, T, Z, R, γ, H〉,
where:

• I is a finite set of agents, indexed 1 . . . n .

• S is a finite set of states.

• Ai is a finite set of individual actions for an agent i. ~A = ⊗i∈IAi is the set of joint
actions, and ~a = 〈a1, . . . , an〉 denotes a joint action.

• T is a transition function. T (st,~at, st+1) returns the probability of transitioning to state
st+1 after the agents execute the joint action ~at in state st.

• Oi is a finite set of individual observations for an agent i. ~O = ⊗i∈IOi is the set of joint
observations, and ~o = 〈o1, . . . , on〉 denotes a joint observation.

• Z is an observation function, Z(~o|st,~a) is the probability that the agents observe ~o when
the current state is st and the joint action that led to this state was ~a.

• R is a reward function, where R(s,~a) denotes the reward (or cost) that all the agents
receive for executing joint action ~a in state s.

• H is the horizon of planning (the total number of time-steps).

• γ ∈ (0, 1] is a discount factor.

4.1.3 Policies in decentralized POMDPs

Planning algorithms for decentralized POMDPs aim to find the best joint policy for a given
horizon H, which is a collection of several local policies, one for each agent. A local policy for
agent i, denoted by πi, is a function mapping every history of local actions and observations
hi = ai

0o
i
0a

i
1o

i
1 . . . ai

to
i
t, for k < H, to an action in Ai:

πi :
H−1⋃
t=0

(Ai ×Oi)t → Ai

hi 7→ ai

Usually, local policies are represented by decision trees, each node of the decision tree is
labeled with an individual action ai, and each arc is labeled with an individual observation
oi. For the sake of simplifying notations, we consider in the remainder of this chapter that
we have only two agents, i and j, all the results can be easily extended to the general case.
A joint policy for agents i and j is denoted by π = 〈πi, πj〉. We also use Πi, Πj to indicate
the sets of local policies for agents i and j respectively, and Π for the set of joint policies. We
also use the conventional notation −i = j and −j = i.
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4.1.4 Multiagent belief states

Since the states are partially observable, agents should choose their actions according to their
belief about the current state of the system, as well as the actions (or policies) that the other
agents are going to execute. Ideally, every agent should know exactly the actions of the other
agents, but unfortunately, this cannot be achieved without the use of communication. In
fact, the joint policy is provided to all the agents, and the first joint action can easily be
predicted since it depends only on the initial belief state, which is the same for all the agents.
But then, the next actions depend on the local observations perceived by each agent, and
without communication, no agent knows what the other agents have received as observation,
and therefore, no agent knows which policies the other agents will follow. Instead, each agent
can calculate a probability distribution on the possible observations that might have been
received by the others. Since the joint policy maps each sequence of observations into an
action, the probability of executing a given action at a given time-step t is simply the sum of
the probabilities of all the sequences of observations that are mapped to this action, i.e.

Pr(ai
t+1 = ai|hj) =

∑
hi∈(Ai×Oi)t

s.t. πi(hi)=ai

Pr(hi|hj)

This distribution on the policies (or the remaining subtrees) of the other agents is called a
multiagent belief state. The belief state bi for agent i contains a probability distribution on the
states S, and another probability distribution on the current policies Πj of agent j. Formally,
a multi-agent belief state for agent i is an |S| × |Πj | matrix, where bi(s, πj) is the probability
that the system is in state s and the current policy of agent j is πj . In the example shown in
Figure 4.1, the current belief state of Walle is a probability distribution on the 9× 9 possible
locations of him and Eve, as well as a distribution on two possible policies of Eve.

4.1.5 Multiagent value functions

This notion of multiagent belief state is used for defining the value function of a policy, and
the concepts of dominant and dominated policies. The expected discounted reward of a joint
policy π, started from state s, is given by Bellman value function:

V π(s) = R(s,A(π)) + γ
∑
s′∈S

Pr(s′|s,A(π))
∑
~o∈ ~O

Pr(~o|s′, ~A(π))V P (π,~o)(s′) (4.1)

where A(π) is the first joint action of policy π (the action given by the root node), and P (π,~o)
is the sub-policy of π remaining after executing the first joint action A(π) and receiving joint
observation ~o. The value of an individual policy πi, according to a belief state bi, is defined
as:

V πi
(bi) =

∑
s∈S

∑
πj∈Πj

bi(s, πj)V 〈π
i,πj〉(s) (4.2)
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where bi(s, πj) is the probability that the system is in state s and the current policy of agent
j is πj , and 〈πi, πj〉 denotes the joint policy made up of πi and πj .

A policy πi is said to be weakly dominant if and only if there exists a belief state such that
the value of policy πi with that belief is higher than or equal to the value of any other policy:

∃bi ∈ ∆(S ×Πj),∀π′i ∈ Πi − {πi} : V πi
(bi) > V π′i(bi) (4.3)

If this inequality is strict, then πi is said to be strictly dominant. Similarly, a policy πi is said
to be weakly dominated (resp. strictly dominated) if it is not weakly dominant (resp. strongly
dominant).

4.2 Planning with decentralized POMDPs

In this section, we provide an overview of planning algorithms for decentralized POMDPs.
Most of these algorithms are not necessary for understanding the remaining of this chapter.
Our work builds on two of planning algorithms, Dynamic Programming and Point Based
Dynamic Programming, which are described in further details in the second and third sub-
sections.

4.2.1 Literature review

A brute force solution to decentralized POMDPs consists in performing an exhaustive search
in the space of all possible joint policies for a given horizon [Bernstein et al., 2002], but this
approach is almost useless in practice, even for the smallest domains. In fact, the search
should focus only on dominant policies. There are two main approaches for finding these
policies: top-down heuristic search and bottom-up dynamic programming. Multiagent A*
(MAA*) was the first algorithm to use a top-down heuristic [Szer and Charpillet, 2006]. It
is an adaptation of the popular A* algorithm where the nodes contain the joint policies, and
uses heuristic evaluation functions (based on the underlying MDP or POMDP) to prune some
parts of the search space.

Generalized MAA* (GMAA*) is an extension of MAA* proposed by Oliehoek et al. [2008]
where a multitude of heuristic functions are considered. More specifically, Oliehoek et al. [2008]
introduced a new optimistic heuristic based on approximating the decentralized POMDP by
a series of bayesian games. Point Based Incremental Pruning (PBIP) is a branch and bound
search heuristic using the value function of the underlying POMDP as an upper bound [Diban-
goye et al., 2009a]. The main difference between PBIP and MAA* is that PBIP improves the
joint-policy one fringe at a time, whereas MAA* improves the joint-policy one time-step at a
time. Although (G)MAA* and PBIP are optimal, an inherent disadvantage of all top-down
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search approaches is that the starting point (the initial belief state) should be known in ad-
vance, otherwise, a different search should be performed for every possible initialization of the
problem.

Along the same lines, Varakantham et al. [2007] used heuristic search where the nodes of
the search tree correspond to different agents instead of histories. A graph of interactions
between the agents is provided to the algorithm, and a near-optimal policy is found for
each agent by iteratively considering the policies of its neighbors, in an order defined by the
search tree. Despite the important scalability in the number of agents demonstrated by this
algorithm, only a small class of decentralized POMDPs can be decomposed in such a way. In
most cases, the degree of interaction between different agents is contextual, depending on the
state of the system.

The Dynamic Programming (DP) algorithm, proposed by Hansen et al. [2004], consists in
constructing the dominant policies from leaves to root by using iterated strategy elimination
techniques taken from Game Theory. The DP algorithm can solve problems that are unfeasi-
ble with exhaustive search, but it keeps all the dominant policies for every point in the belief
space, even those that will never be reached in practice. This problem has been efficiently
addressed by the Point Based Dynamic Programming (PBDP) algorithm, proposed by Szer
and Charpillet [2006]. PBDP makes use of top-down heuristic search to determine which
belief points will be reached during the execution time, and constructs dominant policies
from leaves to root with DP, by keeping only the policies that are dominant in the reach-
able belief states. Therefore, the runtime of this algorithm is significantly low compared to
the original DP algorithm. An approximate version of this algorithm consists in considering
only a small set of belief points that are reachable with high probability [Szer and Charpillet,
2006]. Memory Bounded Dynamic Programming (MBDP) is another approximation algo-
rithm, close to PBDP, that bounds the maximum number of policies kept in memory after
each iteration [Seuken and Zilberstein, 2007a,b]. However, both PBDP and MBDP work only
when the initial belief state is known.

All the algorithms described above are based on reducing the number of policies to be
evaluated or kept in memory. An interesting alternative is to preserve the original policy
space, and to use a more compact representation of those policies. Finite-State Machines
(FSM) are a well-known graphical model, used in POMDPs to represent infinite-horizon
policies [Hansen, 1998]. An extension of FSMs to decentralized POMDPs has originally been
proposed in [Bernstein et al., 2007], it makes use of a correlation device to synchronize the
actions of different agents, and finds the optimal joint controller, for a given number of states,
by iteratively improving local machines. However, this approach does not guarantee finding
the global optimal joint machines, and can get stuck in a local optimum. Amato et al. [2007b]
showed how to find an optimal joint machine without using a correlation device, but the
proposed approach involves solving quadratic programs where the number of variables is a
function of the number of states in the machine, which is computationally costly.
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Decision tree policies are constructed by combining multiple sequences of actions and
observations, and the same sequences can be replicated in different policies. The sequential
representation [Koller et al., 1994; Aras et al., 2007] takes advantage of this characteristic:
all the possible sequences of a given length are represented explicitly, and each policy is
represented by a binary weight vector that indicates which sequences are contained in this
policy. This method has been efficiently applied to decentralized POMDPs by Aras et al.
[2007] in order to reduce the memory storage requirement. The proposed algorithm considers
all the possible policies for a given horizon, and uses one Mixed Integer Linear Program
(MILP) to find the non-dominated policies, where each variable corresponds to a sequence.
However, there is no guarantee that the number of sequences will not exceed the number
of candidate policies considered in dynamic programming, this can happen when we have a
small number of dominant policies and a large planning horizon. Nevertheless, by noticing
that a sequence of actions and observations is nothing else than a test, and that a policy
can be seen as an internal state, one can take advantage of known properties of predictive
representations, and perform a dimensionality reduction in the space of sequences, as we will
show in Section 4.3.

4.2.2 Dynamic Programming

Dynamic Programming [Bellman, 1957] is by far the most used technique for solving mul-
tistage decision problems, where the non-dominated policies of time-step t are recursively
constructed from the non-dominated sub-policies of time-step t + 1. The main advantage of
dynamic programming, compared to top-down methods, comes from the fact that the sub-
policies of time-step t + 1 are overlapping, i.e. they can be reused for several belief states at
time-step t. This method has been widely used for finding finite-horizon policies since the
introduction of the value iteration algorithm for POMDPs by Smallwood and Sondik [1971].
An interesting extension of the value iteration algorithm to decentralized POMDPs, called
Dynamic Programming (DP) Operator for Decentralized POMDPs, was proposed by Hansen
et al. [2004]. We review here the principal steps of this algorithm.

The Dynamic Programming Operator (Algorithm 6) is used to find the dominant policies
of time-step t (horizon H−t), given the dominant policies of time-step t+1 (horizon H−(t+1)),
for t = 0, . . . ,H. We denote a time-step t policy for agent i by πi

t, and the set of time-step
t policies by Πi

t. The multiagent value function of a joint policy 〈πi
t, π

j
t 〉 can be represented

by an |S|-dimensional vector V 〈π
i
t,π

j
t 〉, we denote by V Πt the set of time-step t value vectors.

First, the sets Πi
t and Πj

t are generated by exhaustively extending the policies of the sets
Πi

t+1 and Πj
t+1, i.e. Πi

t = {πi
t : (A(πi

t) ∈ Ai) ∧ (P (πi
t, o

i) ∈ Πi
t+1, o

i ∈ Oi)} (and the same
thing for agent j), this operation is called full backup. The value vectors of the set V Πt are
calculated by using the value vectors of V Πt+1 in Equation 4.1. Notice that for t = H, the
sets Πi

H and Πj
H correspond to Ai and Aj respectively, and the value vectors of V ΠH are

initialized with the immediate rewards. The main loop of the algorithm consists in iteratively
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pruning the weakly dominated policies of each agent. These later policies are found by solving
Equation 4.3, using the following linear program [Hansen et al., 2004]:

minimize: ε (4.4)

subject to: ∑
s∈S

∑
πj∈Πj

t

bi
t(s, π

j) = 1

∀s ∈ S,∀πj ∈ Πj
t :

0 6 bi
t(s, π

j) 6 1

∀π′i ∈ Πi
t − {πi} :∑

s∈S

∑
πj∈Πj

t

bi(s, πj)[V 〈π
i,πj〉(s)− V 〈π

i,π′j〉(s)] + ε > 0

The pruning process stops when no more policies can be removed from Πi
t or Πj

t .

Input: Πi
t+1,Π

j
t+1 and V Πt+1 ;

Πi
t ← fullBackup(Πi

t+1);1

Πj
t ← fullBackup(Πj

t+1);2

Calculate the value vectors V Πt by using V Πt+1(Equation 4.1);3

repeat4

remove the policies of Πi
t that are dominated (Equation 4.4);5

remove the policies of Πj
t that are dominated (Equation 4.4);6

until no more policies in Πi
t or Πj

t can be removed ;7

Output: Πi
t,Π

j
t and V Πt ;

Algorithm 6: Dynamic Programming for Decentralized POMDPs [Hansen et al., 2004].

From Algorithm 6, we can see that the Dynamic Programming operator spends most of its
time on looking for weakly dominated policies by checking Inequality 4.3 for every policy πi

t.
This is achieved by solving the linear program given by Equation 4.4. The objective function
to be minimized is defined by ε, which is the greatest difference between the value of πi and
the value of any other policy π′i over the belief space. If ε > 0 then the policy πi is weakly
dominated and should be removed, and if ε < 0, then there is some region in ∆(S×Πj

t ) where
πi is dominant. The variables are ε and the probabilities b(., .) of the multi-agent belief state,
so there are |S||Πt

j |+ 1 variables. The computational complexity of solving a linear program
depends on the number of variables and constraints defined in the problem, so, it directly
depends on the number of policies and the way the beliefs on those policies are represented.
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4.2.3 Point Based Dynamic Programming

This latter issue, related to the computational complexity of solving linear programs, has been
efficiently addressed with Point Based Dynamic Programming (PBDP) algorithm proposed
by Szer and Charpillet [2006]. This algorithm (Algorithm 7) keeps only the policies that are
dominant in the reachable belief points, denoted by the set B(Π−k

t , hk
t ,ΠH−t), for k ∈ {i, j}.

A necessary assumption for finding these belief points is that the initial belief state is known.
The most important computational advantage of PBDP over exact DP comes from the fact
that the dominance test is checked only for a finite set of reachable belief points. Therefore,
the computational cost of this algorithm is significantly small compared to the original DP
algorithm. An approximation version of PBDP consists in considering only a small set of belief
points that are reachable with a high probability. Memory Bounded Dynamic Programming
(MBDP) [Seuken and Zilberstein, 2007a] is another improved version of PBDP, based on
bounding, by a constant, the maximum number of policies kept in memory after each iteration.

Input: Πi
t+1,Π

j
t+1 and V Πt+1 ;

Πi
t ← fullBackup(Πi

t+1);1

Πj
t ← fullBackup(Πj

t+1);2

Calculate the value vectors V Πt by using V Πt+1(Equation 4.1);3

Generate the set of all possible joint policies ΠH−t;4

repeat5

forall k ∈ {i, j} do6

foreach history hk
t do7

Generate the set of all possible belief states B(Π−k
t , hk

t ,ΠH−t) for agent k;8

Remove the policies of Πi
t that are weakly dominated;9

A policy πk
t is weakly dominated if:10

∀bk
t ∈ B(Π−k

t , hk
t ,ΠH−t),∃π′kt ∈ Πk

t − {πk
t } : V π′kt (bk

t ) > V πk
t (bk

t )
end11

end12

until no more policies in Πi
t or Πj

t can be removed ;13

Output: Πi
t,Π

j
t and V Πt ;

Algorithm 7: Exact Point Based Dynamic Programming for Decentralized
POMDPs [Szer and Charpillet, 2006].

Both PBDP and MBDP address the problem of the large (eventually infinite) number
of histories (belief states) in which policies are evaluated. However, the main problem with
decentralized POMDPs, compared to POMDPs, is the dimensionality of the policy space,
rather then the number of histories. In fact, an important factor lying behind the poor
scalability of planning algorithms for decentralized POMDPs is the computational cost of
calculating the value of a policy in a given belief state. This latter calculation is repeated for
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each policy and belief state, and any improvement at that level would lead to a significant
improvement of the global performance of the planning algorithm. Moreover, the memory
space needed to represent the value vectors at each time-step t corresponds to |S| × |Πt| real
units, where the number of policies |Πt| grows double exponentially with respect to the horizon
and the number of observations. Indeed, if we get |Πi

t+1| policies for agent i at step t + 1,
then |Ai||Πi

t||O
i| new policies will be created at step t by the full backup operation, and the

number of joint policies will be |Πt| = |Πi
t| × |Π

j
t |.

To solve this problem, we propose a new method for accelerating dynamic programming
algorithms by compressing the policy belief space. Our approach is based on the following
observation: given a set of policies, only a few sequences are necessary to represent all the
policies. To do so, we will first show how to use Predictive State Representations for modeling
multi-agent beliefs. In this model, policies are replaced by the sequences of actions and
observations that have linearly independent probabilities. These independent sequences can
be found quickly in polynomial time, and we can guarantee that the number of independent
sequences will never exceed the number of policies.

4.3 Predictive Policy Representations (PPRs)

A policy is, in general, a function that maps each history into a distribution on actions. From
this point of view, the stochastic process generating actions can be modeled as a discrete-
time dynamical system, and any model used for representing discrete-time dynamical systems
can be used for representing policies as well. In particular, Predictive State Representations
(PSR) can be used to represent policies by switching the roles of actions and observations.

Wiewiora [2005] already showed that any function, mapping histories into a distribution
on actions, can be represented by a PSR, the dimensionality of this representation was used
for analyzing learning algorithms in partially observable environments [Wiewiora, 2007]. We
refer to this model, where policies are given by PSRs, as Predictive Policy Representations
(PPRs). Along this section, we show how to represent a policy of a given agent as a PPR,
and compare this representation to other models. We denote the actions of the agent by A,
and its observations by O. The upper script will be used to indicate the index of an action
or an observation, and the lower scripts to indicate time-steps.

We redefine the notion of a test q as an ordered sequence of (observation, action) couples,
i.e. q = o1a1 . . . okak. The prediction of a test q, is the probability that the agent will execute
the sequence of actions a1, . . . , ak if it perceives the sequence of observations o1, . . . , ok. The
probability of a test q starting after a history ht is defined by:

Pr(q|ht)
def
= Pr(qa|ht, q

o) = Pr(at+1 = a1, . . . , at+k = ak|ht, ot+1 = o1, . . . , ot+k = ok) (4.5)

where qa denotes the sequence of actions in q and qo denotes the sequence of observations.
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The history ht ends with an action and not an observation as in PSRs, because tests in PPRs
start with an observation. In fact, a time-step t is the moment after executing at and before
perceiving ot. We also consider that all the histories start with a fictive observation o∗ which
has probability 1 (the default observation).

A test in PPRs can be seen as a question regarding what the agent will do when it perceives
a specified sequence of observations.

PPR is different from state-based representations, where the actions are directly related
to physical states (or belief states), and from Finite-State Machines [Hansen, 1998], where
internal states are defined, and the actions are chosen according to these states.

We define the policy matrix D as an infinite dimensional matrix, where the columns cor-
respond to all possible tests and the rows to all possible histories. An entry D(ht, q) is given
by Pr(q|ht), the probability that the actions indicated in the test q will be executed by the
agent, such that the current history of the system is ht and the future observations will be
the observations indicated in q. As in PSRs (Section 2.4), the tests corresponding to linearly
independent rows in the policy matrix D are called core tests.

We will show that for a large class of policies, a finite set of core tests always exists. We
denote the set of core tests by Q = {q1, q2, . . . , qk}. The vector of core tests probabilities,
Pr(Q|h) = [P (q1|h), . . . , P (qn|h)]T , forms a sufficient statistic for the system after any history
h, and can be used as a belief about the internal state of the agent. As for PSRs, we will focus
on a special class of PPRs where the projection function, mapping beliefs into predictions, is
linear. If we denote this projection function by a vector mq, then for any test q :

Pr(q|h) = Pr(Q|h)T mq (4.6)

After perceiving an observation o and executing an action a, the probability of a core test q

is updated by using Bayes’ Rule:

Pr(q|hoa) =
Pr(oaq|h)
Pr(oa|h)

=
Pr(Q|h)T moaq

Pr(Q|h)T moa
(4.7)

A linear PPR model is then a tuple 〈A,O, Q, {moa}, {moaqi}〉, where A and O are action
and observation sets, Q is a finite set of core tests {q1, q2, . . . , qk}, moa are weight vectors for
one-step tests, defined for observation o ∈ O and action a ∈ A, and moaqi are weight vectors
for one-step extensions of core tests, defined for each observation o ∈ O, action a ∈ A and
core test qi ∈ Q.

The theorem below (Theorem 1) makes a comparison between PPR and Stochastic Finite-
State Machines (FSMs) [Hansen, 1998]. FSMs are a popular model used for representing
infinite-horizon policies. FSMs are to POMDPs exactly what PPRs are to PSRs. Many policy
representations can be seen as a special case of FSMs, such as decision trees or environment
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state based policies (as in MDPs). The main result of this theorem is that PPRs offer a
representation that uses at most the same number of parameters used in the equivalent FSM.
However, there no general conditions under which PPRs are more compact than FSMs, though
we will give an example where this is the case. The number of parameters considered here is
the number of core policy tests for the PPR, and the number of states for the FSM.

Finite-State Machines are a graphical model that can represent stochastic policies without
memorizing all the histories [Meuleau et al., 1999]. An FSM is defined by: a finite set of
internal states (I-states) G; a set of action-selection functions µo,a, where µo,a(g, θ) is the
probability that the agent will execute action a if its I-state is g, its last observation was o,
and the parameters of the policy are θ; a set of transition functions ωo, where ωo(g, g′, θ) is the
probability that the agent will select the I-state g if the current I-state is g and the perceived
observation is o.

a2a1

a4 a3

o1

o2 o1 o2o1 o2

o1

o2

Figure 4.2: A determinis-
tic FSM that can be repre-
sented with only two tests.

Figure 4.2 shows a simple example of deterministic Finite-
State Machines, which are a special class of stochastic machines.
Every I-state is labeled by the action to be executed in that
state. This machine contains four different I-states, but can
be represented with only two core policy tests: q1 = o1a1 and
q2 = o2a2. The answers to these two tests are sufficient to
determine the state of the machine. For example, if we have
Pr(o1a1|ht) = 1 and Pr(o2a2|ht) = 0, then we conclude that
Pr(o2a4|ht) = 1, P r(o2a4o2a2|ht) = 1, and so on (Implicitly, we
are in the I-state of action a2). In fact one can verify that:

Pr(o2a4|ht) = Pr(q1|ht)(1− Pr(q2|ht))

+(1− Pr(q1|ht))(1− Pr(q2|ht))

= 1− Pr(q2|ht)

Similar nonlinear rules can be derived for every sequence.

Theorem 1. Every stochastic Finite-State Machine can be
transformed to an equivalent linear PPR with a number of core tests no more than the number
of the internal states of the Machine.

Proof. This proof borrows an idea introduced in [Singh et al., 2004]. Let D be the policy
matrix corresponding to a given FSM. Since D(ht, q) = Pr(q|ht) =

∑
g∈G Pr(g|ht)Pr(q|g),

then we can decompose the matrix D into D = FU , where F is a ∞× |G| matrix, defined
by F (ht, g) = Pr(g|ht), and U is a |G| × ∞ matrix, defined by U(g, q) = Pr(q|g). F and
U can be constructed by using the transition and action-selection functions of the machine.
Since rank(F ) 6 |G| and rank(U) 6 |G| (the rank of a matrix is upper bounded by both the
number of its rows and the number of its columns), then rank(D) = rank(FU) 6 |G|. The
number of core tests needed in the linear PPR model is at most equal to |G|, since the core
tests correspond to linearly independent vectors in the matrix D.
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In the remaining of this chapter, we will see how one can use PPRs to represent policies
in decentralized POMDPs. However, adapting PPRs to dynamic programming algorithms
requires a complicated construction of the value vectors. For this reason, we will first consider
only a simplified version of linear PPRs, where each test, denoted by aoπ, is a pair of action
a and observation o followed by a full decision tree policy π, instead of one sequence of
actions and observations. We also treat all the tests as core tests, consequently, every test
aoπ is explicitly represented, and we completely ignore the linear dependencies between tests.
In fact, we found from our experiments that this simple semi-sequential representation of
policies is sufficient for accelerating planning algorithms, even without performing a further
dimensionally reduction.

4.4 Point Based Dynamic Programming with PPRs

PPRs can be used with PBDP as well as with MBDP (see Section 4.2.3) since the main
difference between these two algorithms is in the number of policies considered and not the
method used to represent these policies.

4.4.1 Reduced multiagent belief states

We propose to use Predictive Policy Representations in order to reduce the dimensionality of
belief points in the PBDP algorithm, presented in Section 4.2.3. To do so, we need to redefine
the belief state and the value vectors with PPRs. A belief state b̃t(s, aoπ) for agent i is the
probability that the system is in state s, and agent j will execute the action a, and if the
observation of j will be o, then the next policy of j will be π (π is a decision tree).

b̃t(s, aoπ) = Pr(st = s|ht)Pr(at = a, πt+1 = π|ht, ot = a) (4.8)

The only difference between this definition and the usual definition of multi-agent belief
states is that each tree π is factored at the first level and separated into several tests aoπ′,
a = A(π) is the first action (root) of the policy π, π′ = P (π, o) is the subtree of π under action
a and observation o. So, for each policy π for agent j, there are |Oj ||Πj

t+1| corresponding tests.
Generally, every test appears in several policies, and the number of tests is significantly smaller
than the number of policies. This is particularly true right after the exhaustive backup, and
before pruning the dominated policies, since |Πj

t | = |Aj ||Πj
t+1||O

j | new policies are generated,
while we need only |Aj ||Oj ||Πj

t+1| tests to represent all these policies. Consequently, the size
of a belief state defined on tests can be exponentially smaller than the size of a belief state
defined on policies.
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A belief on states and policies can always be written as a function of a belief on states
and tests:

bt(s, π)
def
= Pr(s, π|ht)

= Pr(s|ht)Pr(π|ht) (the two probabilities are independent given the history ht)

= Pr(s|ht)Pr(A(π)|ht)
∏

o∈Oj

Pr(P (π, o)|ht, A(π), o)

( A(π) is the first action of π and P (π, o) is the remaining of π after A(π) and o)

= Pr(s|ht)Pr(A(π)|ht)
∏

o∈Oj

Pr(A(π)oP (π, o)|ht)
Pr(A(π)|ht)

(Bayes’ Rule)

= Pr(s|ht)
∏

o∈Oj Pr(A(π)oP (π, o)|ht)
[
∑

π′∈Πj
t+1

Pr(A(π)o0π′|ht)]|O
j |−1

=
[ ∑

a∈Aj

∑
π′∈Πj

t+1

b̃t(s, ao0π′)
]

︸ ︷︷ ︸
Pr(s|ht)

[ ∏
o∈Oj

∑
s′∈S b̃t(s′, A(π)oP (π, o))

[
∑

s′∈S
∑

π′∈Πj
t+1

b̃t(s′, A(π)o0π′)]|Oj |−1

]
︸ ︷︷ ︸

Pr(π|ht)

(From Equation 4.8)

where o0 is any observation in the set Oj , since the actions are selected independently of the
upcoming observations. In fact, one can easily verify that:

∀a ∈ Aj ,∀o, o′ ∈ Oj :
∑

π∈Πj
t+1

Pr(at = a, πt+1 = π|ot = o) =
∑

π∈Πj
t+1

Pr(at = a, πt+1 = π|ot = o′)

= Pr(at = a)

In order that a randomly generated belief on S and Πj
t will be an accurate belief, we only

need to guarantee that: {
∀s ∈ S,∀π ∈ Πj

t : bt(s, π) > 0∑
s∈S

∑
π∈Πj

t
bt(s, π) = 1

However, to guarantee that a randomly generated belief on S and Aj ×Oj ×Πj
t+1 (the tests

used to represent the policies of the set Πj
t ) will be an accurate belief (i.e. defines a distribution

on states and policies), one should verify:
∀s ∈ S, a ∈ Aj , o ∈ Oj ,∀π ∈ Πj

t+1 : b̃t(s, aoπ) > 0
∀o ∈ Oj :

∑
s∈S

∑
a∈Aj

∑
π∈Πj

t+1
b̃t(s, aoπ) = 1

∀a ∈ Aj ,∀o, o′ ∈ Oj :
∑

s∈S
∑

π∈Πj
t+1

b̃t(s, aoπ) =
∑

s∈S
∑

π∈Πj
t+1

b̃t(s, ao′π)
(4.9)

In fact, the sum
∑

s∈S
∑

π∈Πj
t+1

b̃t(s, aoπ) is the probability that agent j will execute action
a at time-step t, and it must be the same for any next observation o. Contrary to decision
trees, which are always mutually exclusive, the tests starting with the same action and followed
by different observations are not mutually exclusive.
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4.4.2 Reduced value vectors

In order to use the new policy representation in a dynamic programming algorithm, we need
to define the value of any policy as a function of the reduced belief states. To do so, we first
define the value of a joint test 〈aioiπi

t+1, a
jojπj

t+1〉 starting from state s as:

V 〈a
ioiπi,ajojπj〉(s) =

∑
s′∈S

Pr(s′|s, 〈ai, aj〉)Pr(〈oi, oj〉|s′, 〈ai, aj〉)R(s, 〈ai, aj〉)

+γ
∑
s′∈S

Pr(s′|s, 〈ai, aj〉)Pr(〈oi, oj〉|s′, 〈ai, aj〉)V 〈πi,πj〉(s′)

The value of an individual policy πi, according to a belief state b̃i
t, is given by:

V πi
(b̃i

t) =
∑
s∈S

∑
aj∈Aj

∑
oi∈Oi

oj∈Oj

∑
π′j∈Πj

t+1

b̃i
t(s, a

jojπ′
i)V 〈A(πi)oiP (πi,oi),ajojπ′j〉(s)

We can now verify that the value of any policy according to a belief on states and policies
is equal to its value according to the corresponding belief on states and tests. Indeed:

V πi
(b̃i

t) =
∑
s∈S

∑
aj∈Aj

∑
oi∈Oi

oj∈Oj

∑
π′j∈Πj

t+1

b̃i
t(s, a

jojπ′
j)V 〈A(πi)oiP (πi,oi),ajojπ′j〉(s)

=
∑
s∈S

Pr(s)
∑

aj∈Aj

∑
oi∈Oi

oj∈Oj

∑
π′j∈Πj

t+1

Pr(ajojπ′
j)V 〈A(πi)oiP (πi,oi),ajojπ′j〉(s)

=
∑
s∈S

Pr(s)
∑

aj∈Aj

∑
oi∈Oi

oj∈Oj

∑
π′j∈Πj

t+1

Pr(ajojπ′
j)

[∑
s′∈S

[
Pr(s′|s, 〈ai, aj〉)Pr(〈oi, oj〉|s′, 〈ai, aj〉)

R(s, 〈ai, aj〉)
]
+ γ

∑
s′∈S

Pr(s′|s, 〈ai, aj〉)Pr(〈oi, oj〉|s′, 〈ai, aj〉)V 〈πi,πj〉(s′)
]

=
∑
s∈S

Pr(s)
∑

aj∈Aj

Pr(aj)R(s, 〈ai, aj〉)

+γ
∑
s∈S

Pr(s)
∑

aj∈Aj

∑
oi∈Oi

oj∈Oj

∑
π′j∈Πj

t+1

Pr(ajojπ′
j)

∑
s′∈S

[Pr(s′|s, 〈ai, aj〉)Pr(〈oi, oj〉|s′, 〈ai, aj〉)

V 〈π
i,πj〉(s′)]

=
∑
s∈S

∑
πj∈Πj

t

bi
t(s, π

j)V 〈π
i,πj〉(s) = V πi

(bi
t)

Therefore, instead of using the high dimensional beliefs bi
t for evaluating a policy π,

one can use the equivalent reduced belief b̃i
t and obtain exactly the same result. Note

that the cost of calculating V πi
(bi

t) is O(|S||Πj
t |) while the cost of calculating V πi

(b̃i
t) is

O(|S||Aj ||Oi||Oj ||Πj
t+1|), which is significantly smaller given that |Πj

t | = |Aj ||Oj ||Π
j
t+1|.
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4.4.3 Empirical Results

For our first experiments, we implemented the PBDP algorithm using a randomly generated
set of accurate belief points for the dominance test (Inequality 4.3), without considering if
these points are reachable or not. In fact, for the small problems used in the decentralized
POMDPs literature, we found that there is no significant improvement when we consider only
the reachable belief points. Instead of spending a large proportion of the runtime looking for
reachable belief states, we consider a set of random belief states, generated at the beginning
of the algorithm, and every optimal policy will be likely dominant in at least one of these
points. However, this heuristic does not guarantee that all the optimal policies will be found.

We implemented the PBDP algorithm with both full decision trees and our modified
version of Predictive Policy Representations, and we compared the performance of theses two
approaches on three standard problems taken from DEC-POMDPs literature: Multiagent
Tiger (MA-Tiger), Multiagent Broadcasting Channel (MABC), and The Meeting problem
(with a 2×2 grid) [Seuken and Zilberstein, 2007a]. The code of the implementation is written
in C++, and the experiments were performed on a 1.73 GHz Pentium M processor, with a
RAM of 512 Mo. In our implementation, we relaxed the constraints 4.9 on the belief states in
PPRs except for the constraint that all the probabilities are between 0 and 1, so some belief
states may be inaccurate (useless), but they can be quickly generated. We used 100 random
belief points for MA-Tiger, 25 random belief points for MABC, and 30 random belief points
for The Meeting problem. The same number of belief points was used for both PBDP with
decision trees and PBDP with PPRs.

Figures 4.3 show the runtime of the PBDP for different horizons. As expected, the runtime
of PBDP is significantly reduced when we use a predictive representation of the policies. In
the multiagent tiger (Figure 4.3 (a)) and the meeting (Figure 4.3 (c)) problems, PBDP runs
out of time and was stopped at horizons 5 and 4 respectively. This is explained by the fact that
the belief points defined on tests have a smaller dimensionality than the belief points defined
on decision trees. Consequently, the value of a given policy can be calculated with fewer
operations, and the dominance verification (Inequality 4.3) is performed in a shorter time.
We also noticed that most of this computational gain is made right after the full backup,
where the belief points in the decision trees approach contain a number of policies that is
exponential with respect to the number of observations.

Table 4.1 shows that the values of the policies returned by PBDP are almost the same for
the two types of representations. These values were estimated using Bellman Equation 4.1.
The values with the PPR approach are slightly suboptimal because the belief points were
underconstrained, and since we used a limited set of belief points, some optimal policies were
weakly dominated in all these points, and therefore wrongfully eliminated.



Chapter 4. Policy Space Compression in Decentralized POMDPs 76

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 0  1  2  3  4  5  6  7  8

R
un

tim
e 

(m
s)

Horizon

PBDP with Decision Trees
PBDP with Predictive Representations

(a) Multiagent Tiger problem
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(b) Multiagent Broadcasting Channel problem
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(c) The meeting problem

Figure 4.3: The effective runtime of the PBDP algorithm as a function of the horizon, with
different problems.
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Meeting problem H=2 H=3 H=4 H=5 H=6 H=7 H=8
PBDP with Decision Trees 0 0.81 1.90 n.a. n.a. n.a. n.a.

PPRs 0.81 1.79 2.78 3.78 4.78 5.78 6.78

MA-Tiger problem H=2 H=3 H=4 H=5 H=6 H=7 H=8
PBDP with Decision Trees -4 5.19 4.80 n.a. n.a. n.a. n.a.

PPRs -4 5.19 4.39 4.21 2.27 0.41 -1.5

MABC problem H=2 H=3 H=4 H=5 H=6 H=7 H=8
PBDP with Decision Trees 2 2.90 3.89 4.79 5.69 6.59 7.49

PBDP with PPRs 2 2.99 3.80 4.79 5.60 6.50 7.49

Table 4.1: The values of the optimal policies returned by PBDP using decision trees and
PPRs to represent policies, as function of the planning horizon H.

4.5 Exact Dynamic Programming with PPRs

4.5.1 Motivation

The exact dynamic programming operator (Algorithm 6) spends most of its runtime search-
ing for weakly dominated policies by checking Inequality 4.3 for every policy πi. The usual
approach for performing this test is to use the linear program of Table 4.4. The computa-
tional complexity of solving this linear program is, on average, polynomial on the size of the
multiagent belief states, which is |S| × |Πi

t|. The number of policies |Πi
t| is exponential with

respect to the number of observations and double exponential with respect to the planning
horizon. However, the main problem of Dynamic Programming is the size of the memory
space required to represent the value vectors for the joint policy. The memory space required
to represent these vectors at time-step t is |Πi

t||Π
j
t ||S| floats. Indeed, this algorithm runs out

of memory several iterations before running out of time.

To alleviate these problems, we need to use a more compact technique for representing
the belief of agent i on the policies of agent j, instead of the naive probability distribution on
all the policies Πj

t . To do so, we can exploit the structure of the the set Πj
t , and find a set of

features Q = {q1, q2, . . . , qk} that constitute a sufficient information, so that each point in the
space of beliefs on policies will correspond to a point in the space of beliefs on these features,
and vice versa. We should also guarantee that |Q| is significantly smaller that |Πj

t | for most
of the time.

A policy, specified by a decision tree, is a finite collection of tests. A test qi for agent i at
time-step t is an ordered list of H− t individual actions and H− t−1 individual observations:
qi = ai

t, o
i
t, . . . , o

i
H−1, a

i
H . A joint test ~q is a couple 〈qi, qj〉 where qi is an individual test for

agent i and qj is an individual test for agent j, a joint test can also be seen as one ordered
list of joint actions and observations.
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The set of policies Πi
t can be completely replaced, without any loss of information, by

an outcome matrix U i
t , where each row corresponds to a policy πi ∈ Πi

t and each column
corresponds to a test qi. An entry U i

t (π
i, qi) is defined as the probability that agent i will

execute the actions of the test qi if the observations of qi occur, when the current policy of
agent i is πi. Since the policies are deterministic, we have U i

t (π
i, qi) = 1 if the test qi appears

in the policy πi, otherwise U i
t (π

i, qi) = 0 . Figure 4.4 shows a set Πi
t containing 4 individual

policies for agent i: qa, qb, qc and qd. There are 8 different tests in these policies, the matrix
U i has then 4 rows and 8 columns.

If bj(s, .) is a multiagent belief state, i.e. a probability distribution on the policies of Πi
t

for some state s ∈ S, then the product bj(s, .)U i
t is a vector containing the probability of

every test of Πi
t. To reduce the dimensionality of bj(s, .) from |Πi

t| to N , we should find a
compression function f defined by:

f : ∆Πi
t → [0, 1]N

bj(s, .) 7→ b̃j(s, .)

We refer to b̃j(s, .) as the reduced multiagent belief state, it corresponds to the belief about
the tests, whereas bj(s, .) is the belief about the policies. In order that f be an accurate
compression function, we should be able to make predictions about any test qi by using only
the belief b̃j(s, .).

In the next section, we show how to find the compression function f in the case of linear
predictive representations.

4.5.2 Linear reduction of policy space dimensionality

The outcome matrix U i
t , representing the policies of agent i at time-step t, can be factorized

as follows:

U i
t = F i

t Ũ
i
t

In this case, the compression function is simply the matrix F i
t . The reduced belief state b̃j

t

can be generated from bj
t by:

b̃j
t (s, .) = [bj

t (s, .)]
T F j

t (4.10)
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Figure 4.4: Linear reduction of the policy space dimension.

The probability of a test qi is given by:

Pr(qi|ht) =
∑
s∈S

[bi
t(s, .)]

T U i
t (., q

i)

=
∑
s∈S

[bi
t(s, .)]

T F i
t Ũ

i
t (., q

i)

=
∑
s∈S

[b̃j
t (s, .)]

T Ũ i
t (., q

i)

=
∑
s∈S

[b̃j
t (s, .)]

T mqi (4.11)

where mqi
def
= Ũ i

t (., q
i) is a weight vector associated to the test qi (we have one weight vector

per test). This means that given a reduced belief state, the probability of any test is a linear
combination of the probabilities contained in this reduced belief state. The matrix F i

t is a
basis for the matrix U i

t , it corresponds to a set of linearly independent columns of U i
t . The set

Qi
t of tests corresponding to the columns of F i

t are the core tests of the equivalent predictive
representation. In Figure 4.4, the set Qi

t contains the three core tests q1, q2 and q3. Note
that |Qi

t| 6 |Πi
t|, because the linear rank of a matrix cannot be higher than the number of

rows in this matrix, and F i
t has exactly |Πi

t| rows (the same argument used in the proof of
Theorem 1).
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4.5.3 Finding the core tests

The main problem now is how to find the set Qi
t of core tests and their corresponding matrix

F i
t without having to factorize the entire matrix U i

t at each step of the dynamic programming
algorithm. The theorem below states that if Qi

t is the set of core tests for the policies at
time-step t, then the core tests of Qi

t−1 for the time-step t − 1 will be among the one step
extensions of the core tests Qi

t (Remember that in dynamic programming, the policies that
will be executed at time-step t− 1 are constructed from the policies that will be executed at
time-step t). This means that for a given time-step t, only the core tests need to be extended
in order to find the core tests for the previous time-step t− 1.

Theorem 2. Let Πi
t be a set of policies for time-step t, Qi

t the set of core tests corresponding
to Πi

t, and Πi
t−1 the set of policies for time-step t−1 created from Πi

t by an exhaustive backup,
then Πi

t−1 can be represented by a set of core tests Qi
t−1 satisfying Qi

t−1 ⊆ Ai ×Oi ×Qi
t.

Proof. This theorem claims that one can always find a set of core tests for the policies Πi
t−1

by simply extending a set of core tests for the policies Πi
t. In other words, ∀qi ∈ Qi

t,∀ai ∈
Ai,∀oi ∈ Oi, the column U i

t−1(., a
ioiq̃i) is a linear combination of the columns of F i

t−1, which
is the sub-matrix of U i

t−1 corresponding to the tests aioiqi : ai ∈ Ai, oi ∈ Oi, qi ∈ Qi
t−1. Let

πi be a policy from the set Πi
t−1, qi a test for time-step t, ai an action from Ai and o an

observations from Oi, then we can be in one of the following two situations:

Case 1: The policy tree πi starts with an action different from ai, i.e. A(πi) 6= ai, then the
test aioiqi does not appear in the policy πi, so: U i

t (π
i, aioiqi) = 0.

Case 2: The policy tree πi starts with the action ai, then the test aioiqi appears in the
policy πi if and only if qi appears in P (πi, oi), the sub-policy (tree) of πi under the first
action ai and the observation oi. We have then U i

t−1(π
i, aioiqi) = U i

t (P (πi, oi), qi), and
in particular:

∀q′t ∈ Qi
t : F i

t−1(π
i, aioiq′i) = F i

t (P (πi, oi), q′i) (4.12)

Therefore:

U i
t−1(π

i, aioiqi) = U i
t (P (πi, oi), qi)

= F i
t (P (πi, oi), .)mqi (since F i

t is a basis of U i
t )

= F i
t−1(π

i, .)maioiqi (from Equation 4.12)

where the weight vector maioiqi is defined as follows:{
maioiqi(aioiq′i) = mqi(q′i),∀q′i ∈ Qi

t−1

maioiqi(a′io′iq′i) = 0, ∀q′i ∈ Qi
t−1,∀a′i ∈ Ai − {ai},∀o′i ∈ Oi − {oi}.

(4.13)
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Cases 1 and 2 can be regrouped together, we have then:

U i
t−1(π

i, aioiqi) = F i
t−1(π

i, .)maioiqi

Notice that the vector maioiqi does not depend on the policy πi ∈ Πi
t−1. Then, the policies

Πi
t−1 can be represented by the tests {aioiqi : ai ∈ Ai, oi ∈ Oi, qi ∈ Qi

t−1} = Ai×Oi×Qi
t.

The corresponding matrix F i
t−1 may contain some linearly dependent columns, along with

the basis columns. Thus, we perform a Gauss-Jordan elimination on F i
t−1 (or any other

decomposition technique) to extract a minimal set of core tests in polynomial time.

4.5.4 Reduced value vectors

In order to use the predictive representations for planning, we need to redefine the value
function (Equation 4.2), given that the belief state is now on tests instead of policies. The
expected value of a joint test ~q = ~a0~o0~a1~o1 . . .~aH in a state s is given by:

V ~q(s) = Pr(~qo|s, ~qa)R~q(s) (4.14)

where Pr(~qo|s, ~qa)
def
= Pr(~o1~o2 . . . ~oH−1|s0 = s,~a0~a1 . . .~aH−1) is the probability that the ob-

servations of test ~q will occur if we start executing the actions of test ~q at state s,
and R~q(s)

def
= Es0,...,sH [

∑H
t=0 γtR(st, at)|s0 = s, ~q] is the reward expected from the actions of

~q such that the observations of ~q will occur. This latter term is given by:

R~q(s) = Es0,...,sH [
H∑

t=0

γtR(st, at)|s0 = s, ~q]

=
H∑

t=0

γt
∑
s′∈S

Pr(st = s′|s0 = s,~a0~o0~a1~o1 . . .~aH)R(s′,~at)

=
∑H

t=0 γt
∑

s′∈S Pr(st = s′, ~o0 . . . ~oH−1|s0 = s,~a0 . . .~aH−1)R(s′,~at)
Pr(~qo|s, ~qa)

(Bayes’ rule)

=
∑H

t=0 γt
∑

s′∈S αt(s, s′, ~q)βt(s′, ~q)R(s′,~at)
Pr(~qo|s, ~qa)

(Markov property) (4.15)

where: 

αt(s, s′, ~q)
def
= Pr(~o0~o1 . . . ~ot−1, st = s′|s0 = s,~a0~a1 . . .~aH−1)

α0(s, s, ~q)
def
= 1

α0(s, s′, ~q)
def
= 0,∀s′ ∈ S − {s}

βt(s′, ~q)
def
= Pr(~ot . . . ~oH−1|st = s′,~at~at+1 . . .~aH−1)

βH(s′, ~q)
def
= 1

(4.16)

We applied Bayes’ rule, and then decomposed Pr(st = s′, ~o0 . . . ~oH−1|s0 = s,~a0 . . .~aH) into
αt(s, s′, ~q) and βt(s′, ~q), taking advantage of the Markov property.
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From Equations 4.14 and 4.15, the expected value of a joint test ~q is given by:

V ~q(s) = Pr(~qo|s, ~qa)
∑H

t=0 γt
∑

s′∈S αt(s, s′, ~q)βt(s′, ~q)R(s′,~at)
Pr(~qo|s, ~qa)

=
H∑

t=0

γt
∑
s′∈S

αt(s, s′, ~q)βt(s′, ~q)R(s′,~at) (4.17)

Let ~q′ be the remaining part of ~q after the first action and observation, i.e. ~q = ~a0~o0~q
′. Notice

that:

αt(s, s′, ~q)
def
= Pr(~o0~o1 . . . ~ot−1, st = s′|s0 = s,~a0~a1 . . .~aH−1)

=
∑
s′′∈S

Pr(s′′|s0 = s,~a0)Pr(~o0|s′′,~a0)αt−1(s′′, s′, ~q′) (4.18)

and:

βt(s′, ~q)
def
= Pr(~ot . . . ~oH−1|st = s′,~at~at+1 . . .~aH−1)

= βt−1(s′, ~q′) for t > 0 (4.19)

The value V ~q(s) is recursively calculated as follows:

V ~q(s) =
H∑

t=0

γt
∑
s′∈S

αt(s, s′, ~q)βt(s′, ~q)R(s′,~at)

=
∑
s′∈S

α0(s, s′, ~q)β0(s′, ~q)R(s′,~at) +
H∑

t=1

γt
∑
s′∈S

αt(s, s′, ~q)βt(s′, ~q)R(s′,~at)

= β0(s, ~q)R(s,~at) +
H∑

t=1

γt
∑
s′∈S

αt(s, s′, ~q)βt(s′, ~q)R(s′,~at) (From Equations 4.16)

= β0(s, ~q)R(s,~at) +
H∑

t=1

γt
∑
s′∈S

∑
s′′∈S

Pr(s′′|s0 = s,~a0)Pr(~o0|s′′,~a0)αt−1(s′′, s′, ~q′)βt(s′, ~q)R(s′,~at)

(From Equation 4.18)

= β0(s, ~q)R(s,~at) +
∑
s′′∈S

Pr(s′′|s0 = s,~a0)Pr(~o0|s′′,~a0)
H∑

t=1

γt
∑
s′∈S

αt−1(s′′, s′, ~q′)βt(s′, ~q)R(s′,~at)

= β0(s, ~q)R(s,~at) +
∑
s′′∈S

Pr(s′′|s0 = s,~a0)Pr(~o0|s′′,~a0)
H∑

t=1

γt
∑
s′∈S

αt−1(s′′, s′, ~q′)βt−1(s′, ~q′)R(s′,~at)

(From Equation 4.19)

= β0(s, ~q)R(s,~at) + γ
∑
s′′∈S

Pr(s′′|s0 = s,~a0)Pr(~o0|s′′,~a0)
H−1∑
t=0

γt
∑
s′∈S

αt(s′′, s′, ~q′)βt(s′, ~q′)R(s′,~at)

= β0(s, ~q)R(s,~at) + γ
∑
s′′∈S

Pr(s′′|s0 = s,~a0)Pr(~o0|s′′,~a0)V ~q′(s′′) (From Equation 4.17)

Therefore:

V ~q(s) = β0(s, ~q)R(s,~at) + γ
∑
s′′∈S

Pr(s′′|s0 = s,~a0)Pr(~o0|s′′,~a0)V ~q′(s′′) (4.20)
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The value function of an individual policy πj for agent j given a belief b̃j
t on the states of the

system and the tests of agent i is:

V πj
(b̃j

t ) =
∑
s∈S

∑
qi∈{Ai×Oi}H−t

∑
qj∈{Aj×Oj}H−t

Pr(s, 〈qi, qj〉|b̃j
t , π

j)V 〈q
i,qj〉(s) (4.21)

The value V 〈q
i,qj〉(s) is defined in Equation 4.14. Since b̃j

t is a sufficient statistics for the state
and tests of agent i, and πj indicates exactly which tests agent j will execute, we have:

Pr(s, 〈qi, qj〉|b̃j
t , π

j) = Pr(s|b̃j
t )Pr(qi|b̃j

t )Pr(qj |πj)

= Pr(s|b̃j
t )

∑
q′i∈Qi

t

Pr(q′i|b̃j
t )mqi(q′i)

∑
q′j∈Qj

t

Pr(q′j |πj)mqj (q′j)

= Pr(s|b̃j
t )

∑
q′i∈Qi

t

Pr(q′i|b̃j
t )mqi(q′i)

∑
q′j∈Qj

t

F j
t (πj ,q′j)=1

mqj (q′j)

=
∑

q′i∈Qi
t

∑
q′j∈Qj

t

F j
t (πj ,q′j)=1

b̃j
t (s, q

′i)mqi(q′i)mqj (q′j) (4.22)

By substituting Equation 4.22 in Equation 4.21, we find:

V πj
(b̃j

t ) =
∑
s∈S

∑
qi∈{Ai×Oi}H−t

∑
qj∈{Aj×Oj}H−t

∑
q′i∈Qi

t

∑
q′j∈Qj

t

F j
t (πj ,q′j)=1

b̃j
t (s, q

′i)mqi(q′i)mqj (q′j)V 〈q
i,qj〉(s)

=
∑
s∈S

∑
q′i∈Qi

t

∑
q′j∈Qj

t

F j
t (πj ,q′j)=1

b̃j
t (s, q

′i)
∑

qi∈{Ai×Oi}H−t

∑
qj∈{Aj×Oj}H−t

mqi(q′i)mqj (q′j)V 〈q
i,qj〉(s)

︸ ︷︷ ︸
Ṽ 〈q′i,q′j〉(s)

=
∑
s∈S

∑
q′i∈Qi

t

∑
q′j∈Qj

t

F j
t (πj ,q′j)=1

b̃j
t (s, q

′i)Ṽ 〈q
′i,q′j〉(s) (4.23)

where:

Ṽ 〈q
′i,q′j〉(s)

def
=

∑
qi∈{Ai×Oi}H−t

∑
qj∈{Aj×Oj}H−t

mqi(q′i)mqj (q′j)V 〈q
i,qj〉(s) (4.24)

We substituted the probability of each test qi with a linear combination of the probabilities
b̃j
t (s, q

′i) of the core tests q′i, and the probability of each test qj with a linear combination of
the probabilities F j

t (πj , q′j) ∈ {0, 1} of the core tests q′j . The reduced vector Ṽ 〈q
′i,q′j〉 is the

contribution of 〈q′i, q′j〉 to the value of a joint policy, by including a proportion of the values
of all the tests that depend on 〈q′i, q′j〉. If one wants to calculate the value of a policy πj for
a given multi-agent belief state b̃j

t , all one needs are the vectors Ṽ 〈q
′i,q′j〉 and the matrix F j

t

(Equation 4.23).
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At time step t < H, we know from Theorem 2 that the core tests are extensions of the
core test at time-step t + 1, i.e. they are of the form aioiqi and ajojqj , where qi ∈ Qi

t+1 and
qj ∈ Qj

t+1. We will now show how to calculate the value vectors Ṽ 〈a
ioiqi,ajojqj〉 given the value

vectors Ṽ 〈q
i,qj〉 of the previous horizon, where qi ∈ Qi

t+1 and qj ∈ Qj
t+1. At time-step t = H,

a policy corresponds to a single action. There are then Ai core test at t = H, i.e. Qi
H = Ai,

and Ṽ 〈a
i,aj〉(s) = R(s, 〈ai, aj〉). From Equation 4.24, we have:

Ṽ 〈a
ioiqi,ajojqj〉(s) =

∑
a′io′iq′i∈{Ai×Oi}H−t+1

a′jo′jq′j∈{Aj×Oj}H−t+1

ma′io′iq′i(a
ioiqi)ma′jo′jq′j (a

jojqj)V 〈a
′io′iq′i,a′jo′jq′j〉(s)

=
∑

a′io′iq′i∈{Ai×Oi}H−t+1

a′jo′jq′j∈{Aj×Oj}H−t+1

ma′io′iq′i(a
ioiqi)ma′jo′jq′j (a

jojqj)β0(s, 〈a′io′iq′i, a′jo′jq′j〉)R(s, 〈a′i, a′j〉)

+
∑

a′io′iq′i∈{Ai×Oi}H−t+1

a′jo′jq′j∈{Aj×Oj}H−t+1

ma′io′iq′i(a
ioiqi)ma′jo′jq′j (a

jojqj)γ
∑
s′∈S

[Pr(s′, 〈o′i, o′j〉|s, 〈a′i, a′j〉)

V 〈q
′i,q′j〉(s′)]

(From Equation 4.20)

=
∑

a′io′iq′i∈{Ai×Oi}H−t+1

a′jo′jq′j∈{Aj×Oj}H−t+1

ma′io′iq′i(a
ioiqi)ma′jo′jq′j (a

jojqj)β0(s, 〈a′io′iq′i, a′jo′jq′j〉)R(s, 〈ai, aj〉)

+
∑

q′i∈{Ai×Oi}H−t

q′j∈{Aj×Oj}H−t

mq′i(q
i)mq′j (q

j)γ
∑
s′∈S

Pr(s′, 〈o′i, o′j〉|s, 〈a′i, a′j〉)V 〈q′i,q′j〉(s′)

(From Equation 4.13)

= R(s, 〈ai, aj〉)
∑

a′io′iq′i∈{Ai×Oi}H−t+1

a′jo′jq′j∈{Aj×Oj}H−t+1

ma′io′iq′i(a
ioiqi)ma′jo′jq′j (a

jojqj)β0(s, 〈a′io′iq′i, a′jo′jq′j〉)

+γ
∑
s′∈S

Pr(s′, 〈o′i, o′j〉|s, 〈a′i, a′j〉)
∑

q′i∈{Ai×Oi}H−t

q′j∈{Aj×Oj}H−t

mq′i(q
i)mq′j (q

j)V 〈q
′i,q′j〉(s′)

︸ ︷︷ ︸
Ṽ 〈qi,qj〉(s′)

Therefore:

Ṽ 〈a
ioiqi,ajojqj〉(s) = R(s, 〈ai, aj〉)C〈aioiqi,ajojqj〉(s) + γ

∑
s′∈S

Pr(〈oi, oj〉, s′|s, 〈ai, aj〉)Ṽ 〈q
i,qj〉(s′)

(4.25)

where:

C〈a
ioiqi,ajojqj〉(s)

def
=

∑
a′io′iq′i∈{Ai×Oi}H−t+1

a′jo′jq′j∈{Aj×Oj}H−t+1

ma′io′iq′i(a
ioiqi)ma′jo′jq′j (a

jojqj)β0(s, 〈a′io′iq′i, a′jo′jq′j〉)

(4.26)
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The vectors C〈a
ioiqi,ajojqj〉 can be recursively calculated using the previous horizon vectors

C〈q
i,qj〉:

C〈a
ioiqi,ajojqj〉(s) =

∑
a′io′iq′i∈{Ai×Oi}H−t+1

a′jo′jq′j∈{Aj×Oj}H−t+1

ma′io′iq′i(a
ioiqi)ma′jo′jq′j (a

jojqj)β0(s, 〈a′io′iq′i, a′jo′jq′j〉)

=
∑

q′i∈{Ai×Oi}H−t

q′j∈{Aj×Oj}H−t

mq′i(q
i)mq′j (q

j)β0(s, 〈aioiqi, ajojq′j〉) (From Equation 4.13)

=
∑
s′∈S

Pr(s′, 〈oi, oj〉|s, 〈ai, aj〉)
∑

q′i∈{Ai×Oi}H−t

q′j∈{Aj×Oj}H−t

mq′i(q
i)mq′j (q

j)β0(s′, 〈q′i, q′j〉)

︸ ︷︷ ︸
C〈qi,qj〉(s′)

(From Equation 4.16)

=
∑
s′∈S

Pr(s′, 〈oi, oj〉|s, 〈ai, aj〉)C〈qi,qj〉(s′) (4.27)

In order to calculate the value of a policy πj given a reduced belief state, we need to know
the value vectors Ṽ 〈q

i,qj〉 (Equation 4.23). These latter vectors are recursively calculated by
using the contribution probability vectors C〈q

i,qj〉 (Equation 4.25). Finally, the contribution
probability vectors C〈q

i,qj〉 are also recursively calculated (Equation 4.27).

Now, we show how to update the reduced value vectors Ṽ and the probability contribution
vectors C after that a core test qi is removed from Qi

t. This can happen after removing a
policy from Πi

t, i.e. a row in the matrix U i
t (see Figure 4.4), which may lead to a linear

dependency between the columns of U i
t . Let mqi be the weights vector of a former core test

qi, i.e.

Pr(qi|ht) =
∑

q′i∈Qi
t−{qi}

mqi(q′i)Pr(q′i|ht) (4.28)

Let q′′i be any test to be executed at time-step t, we have

Pr(q′′i|ht) =
∑

q′i∈Qi
t

mq′′i(q
′i)Pr(q′i|ht)

=
∑

q′i∈Qi
t−{qi}

mq′′i(q
′i)Pr(q′i|ht) + mq′′i(q

i)Pr(qi|ht)

=
∑

q′i∈Qi
t−{qi}

mq′′i(q
′i)Pr(q′i|ht) + mq′′i(q

i)
∑

q′i∈Qi
t−{qi}

mqi(q′i)Pr(q′i|ht)

(From Equation 4.28)

=
∑

q′i∈Qi
t−{qi}

[mq′′i(q
′i) + mqi(q′i)mq′′i(q

i)]Pr(q′i|ht)

=
∑

q′i∈Qi
t−{qi}

m′q′′i(q
′i)Pr(q′i|ht)
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where the new weight vector m′
q′′i is defined as:

m′q′′i(q
′i) = mq′′i(q

′i) + mqi(q′i)mq′′i(q
i)

Notice that eliminating policies from Πi
t cannot increase the rank of the matrix U i

t (see
Figure 4.4). If a column in U i

t is linearly dependent on some other columns, then it remains
linearly dependent on the same columns, with the same weights, after removing any policy.

Instead of calculating the new weight vectors m′
q′′i and using them to calculate the new

value vectors Ṽ ′ and the probability contribution vectors C ′, we show how to directly calculate
Ṽ ′ and C ′. From definition 4.24, the new reduced value vector after removing a core test qi

is given by:

Ṽ ′
〈q′′i,q′′j〉

(s) =
∑

q′i∈{Ai×Oi}H−t

∑
q′j∈{Aj×Oj}H−t

m′q′i(q
′′i)mq′j (q

′′j)V 〈q
′i,q′j〉(s)

=
∑

q′i∈{Ai×Oi}H−t

∑
q′j∈{Aj×Oj}H−t

[mq′i(q
′′i) + mqi(q′′i)mq′i(q

i)]mq′j (q
′′j)V 〈q

′i,q′j〉(s)

= Ṽ 〈q
′′i,q′′j〉(s) + mqi(q′′i)

∑
q′i∈{Ai×Oi}H−t

∑
q′j∈{Aj×Oj}H−t

mq′i(q
i)mq′j (q

′′j)V 〈q
′i,q′j〉(s)

= Ṽ 〈q
′′i,q′′j〉(s) + mqi(q′′i)Ṽ 〈q

i,q′′j〉(s) (4.29)

Similarly, from Equation 4.26, the new contribution probability vector after removing a core
test qi is given by:

C ′〈q
′′i,q′′j〉(s) =

∑
q′i∈{Ai×Oi}H−t

q′j∈{Aj×Oj}H−t

m′q′i(q
′′i)mq′j (q

′′j)β0(s, 〈q′i, q′j〉)

=
∑

q′i∈{Ai×Oi}H−t

q′j∈{Aj×Oj}H−t

[mq′i(q
′′i) + mqi(q′′i)mq′i(q

i)]mq′j (q
′′j)β0(s, 〈q′i, q′j〉)

= C̃〈q
′′i,q′′j〉(s) + mqi(q′′i)

∑
q′i∈{Ai×Oi}H−t

∑
q′j∈{Aj×Oj}H−t

mq′i(q
i)mq′j (q

′′j)β0(s, 〈q′i, q′j〉)

= C̃〈q
′′i,q′′j〉(s) + mqi(q′′i)C̃〈q

i,q′′j〉(s) (4.30)

In summary, in order to calculate the value of a policy πj given a reduced belief b̃j
t using

Equation 4.23, we will need to calculate the reduced value vectors Ṽ 〈q
′i,q′j〉. These vectors

are backed up from those of the previous horizon using Equation 4.25 and the contribution
probability vectors C. Finally, the vector C is also backed up from the previous horizon using
Equation 4.27.

In the next section, we present a dynamic programming algorithm where the policies are
evaluated in the space of core tests beliefs, using the reduced value vectors introduced in this
section.
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4.5.5 Dynamic Programming Algorithm For Decentralized POMDPs with

Policy Space Compression

Algorithm 8 describes the principal steps of a dynamic programming algorithm where predic-
tive policy representations are used for compressing the policies. As in the original dynamic
programming algorithm for decentralized POMDPs (Algorithm 4.4), the sets of policies Πi

t

and Πj
t are explicitly represented by decision trees. However, the value vectors are replaced

by the reduced value vectors Ṽt, defined in Equation 4.24, and the probability contribution
vector Ct, defined in Equation 4.26, which have a smaller dimensionality. We also need to
keep in memory the sets of core tests Qi

t and Qj
t , as well as the matrices F i

t and F j
t . Since

these latter matrices are binary, they are implicitly represented by specifying for each core
test the list of policies where this test occurs.

At time-step t = H, we have Πi
H = Qi

H = Ai, Πj
H = Qj

H = Aj , and ∀ai ∈ Ai,∀aj ∈ Aj ,
∀s ∈ S : Ṽ 〈a

i,aj〉(s) = R(s, 〈ai, aj〉) and C〈a
i,aj〉(s) = βH(s, 〈ai, aj〉) = 1 by definition (Equa-

tion 4.16). The sets Πi
t and Πj

t contain all the possible policies that can be executed at time
step t < H such that the sub-policies to be executed at time-step t + 1 are contained in
the sets Πi

t+1 and Πj
t+1 respectively (step 1). The sets of core tests at time-step t < H are

constructed by extending the core tests contained in Qi
t+1 and Qj

t+1 by one observation and
one action (step 2, from Theorem 2).

The next steps (4 and 5) consist in calculating the new contribution probability vector Ct

by using the vectors Ct+1 (Equation 4.27), as well as the new reduced value vectors Ṽt using
the vectors Ct and Ṽt+1 (Equation 4.25). The value vectors Ṽt are used to determine which
policies of agents i and j are dominated and should be removed (steps 7 and 8). To determine
if a policy πi is dominated or not, the following linear program is solved:

minimize: ε (4.31)

subject to:

∀s ∈ S,∀qj ∈ Qj
t :

0 6 b̃i(s, qj) 6 1

∀π′it ∈ Πi
t − {πi

t} :∑
s∈S

∑
qi∈Qi

t,F
i
t [πi,qi]=1

qj∈Qj
t

b̃i(s, qj)Ṽ 〈q
i,qj〉(s)

︸ ︷︷ ︸
the value of policy πi in the belief b̃i

−
∑
s∈S

∑
qi∈Qi

t,F
i
t [π′i,qi]=1

qj∈Qj
t

b̃i(s, qj)Ṽ 〈q
i,qj〉(s)

︸ ︷︷ ︸
the value of policy π′i in the belief b̃i

+ε > 0

The variables of this linear program are: the margin ε, and the probabilities b̃i(., .) of the
reduced belief state, we have then |S||Qj

t |+1 variables. There are also |S||Qj
t | linear constraints

specifying that the probabilities of the belief states b̃i are between 0 and 1. The second set of
constraints specifies that the minimum margin between the value of any policy π′i 6= πi and
that of policy πi for each belief state b̃i. A policy πi is weakly dominated if and only if ε > 0
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Input: Qi
t+1,Q

j
t+1,Π

i
t+1,Π

j
t+1, Ṽt+1, and Ct+1 ;

Πi
t = fullBackup(Πi

t+1), Πj
t = fullBackup(Πj

t+1);1

Qi
t = Ai ×Oi ×Qi

t+1, Qi
t = Ai ×Oi ×Qi

t+1;2

The binary matrices F i
t and F j

t are implicitly represented by Πi
t, Πj

t ,Q
i
t and Qj

t ;3

Calculate the probability contribution vectors Ct by using Ct+1 (Equation 4.27);4

Calculate the reduced value vectors Ṽt by using Ṽt+1 (Equation 4.25);5

repeat6

Remove the policies of Πi
t that are dominated (Linear Program 4.32);7

Remove the policies of Πj
t that are dominated (Linear Program 4.32);8

until no more policies in Πi
t or Πj

t can be removed ;9

Use a matrix decomposition method (such as Gauss-Jordan elimination) to find linearly10

dependent columns in F i
t and F j

t , and remove the corresponding tests from Qi
t and Qj

t ;
foreach core test qi ∈ Qi

t do11

foreach core test qj ∈ Qj
t do12

foreach core test q′i removed from Qi
t do13

Ṽ 〈q
i,qj〉 ← Ṽ 〈q

i,qj〉 + mq′i(qi)Ṽ 〈q
′i,qj〉(s) (Equation 4.29) ;14

C〈q
i,qj〉 ← C〈q

i,qj〉 + mq′i(qi)C〈q
′i,qj〉(s) (Equation 4.30) ;15

end16

foreach core test q′j removed from Qj
t do17

Ṽ 〈q
i,qj〉 ← Ṽ 〈q

i,qj〉 + mq′j (qj)Ṽ 〈q
i,q′j〉(s) (Equation 4.29) ;18

C〈q
i,qj〉 ← C〈q

i,qj〉 + mq′j (qj)C〈q
i,q′j〉(s) (Equation 4.30) ;19

end20

end21

end22

Output: Qi
t,Q

j
t ,Π

i
t,Π

j
t , Ṽt, and Ct ;

Algorithm 8: Dynamic Programming for decentralized POMDPs with Policy Space
Compression.

(see the discussion of the linear program 4.4 in Section 4.2.2). Therefore, this linear program
contains a total of |S||Qj

t |+ |Π| − 1 constraints.

Notice that contrary to the original belief state bi(s, .) which is a probability distribution on
the policies of agent j multiplied by the probability of state s, the reduced belief space b̃i(s, .) is
not necessarily a probability distribution, because the tests are not mutually exclusive events.
In Figure 4.4 for example, if bi(s, π1) = 1 then b̃i(s, q1) = 1 and b̃i(s, q3) = 1. The relation
between different tests is more complex and more constraints should be considered to ensure
that any reduced belief considered in the linear program will really correspond to some belief
in the original space. For instance, if two tests contain the same sequence of observations,
then their corresponding probabilities should sum to less than 1. In fact, any belief bi(s, .) can
be transformed into a reduced belief b̃i(s, .) = [bi(s, .)]T F j (from Equation 4.10), but given
a vector b̃i(s, .) with all entries between 0 and 1, there is not necessarily a belief bi(s, .) in
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the original space such that b̃i(s, .) = [bi(s, .)]T F j . To solve this problem, we should add the
following constraint: ∑

s∈S

∑
qj∈{Aj×Oj}H

∑
q′j∈Qj

t

mqj (q′j)b̃i(s, qj) = 1 (4.32)

However, one needs to keep the weight vectors mqj of all the tests qj ∈ {Aj×Oj}H in order
to define this new constraint. Nevertheless, even without adding this constraint, if a policy
πi is not dominated then there is at least one belief state bi(., .) where V πi

(bi) > Vπ′i(bi),
∀π′i ∈ Πi − {πi}, and in the corresponding reduced belief b̃i(s, .) = [bi(s, .)]T F j , we will also
have V πi

(b̃i) > Vπ′i(b̃i),∀π′i ∈ Πi − {πi}. Therefore, the linear program 4.32 keeps at least
all the dominant policies, but can also keep some dominated policies, we will return to this
question in the next section.

After removing dominated policies, some core tests become linearly dependent (the columns
corresponding to these tests in matrices F i and F j become linearly dependant). These latter
tests are detected by using a matrix decomposition technique, such as Gauss-Jordan (step
10). Finally, the vectors Ṽ and C are updated by using Equations 4.29 and 4.30 (steps 11 to
12). The algorithm returns: the sets of core tests Qi

t and Qj
t , the sets of policies Πi

t and Πj
t ,

the reduced value vectors Ṽt, and the probability vector Ct. This output is used as an input
to in the next iteration, until t = 0.

4.5.6 Computational complexity

For the sake of simplifying the analysis, we assume that agents i and j have the same number
of actions and observations, and |Oi| > 1. The worst-case complexity of steps 1 to 5 is upper-
bounded by the complexity of the full backup operations, which is O(|Ai||Πj

t+1||Oi|), where

|Πj
t+1| = |Ai|

|Oi|
H−1

|Oi|−1 , thus, the complexity of this latter operation is O(|Ai|
|Oi|

H−1

|Oi|−1 ). However,
the longest operation in this algorithm, as well as in the original dynamic programming

algorithm 6, is the pruning of weakly dominated policies (steps 6 to 9) where up to |Ai|
|Oi|

H−1

|Oi|−1

calls of a linear program solver can be made (Equation 4.32). The worst-case computational
complexity of solving a linear program with n variable and m constraints, using Karmarkar’s
algorithm for example, is: O(n4.5m) [Powell, 1993]. Therefore, the complexity of the pruning
loop of our algorithm is

O( |Ai|
|Oi|

H−1

|Oi|−1︸ ︷︷ ︸
number of iterations

[|S| |Ai|H |Oi|H︸ ︷︷ ︸
number of tests

+1

︸ ︷︷ ︸
number of variables

]4.5 [(|Ai|
|Oi|

H−1

|Oi|−1 − 1)(|S|+ 1)]︸ ︷︷ ︸
number of constraints

)
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which can be reduced to O(|Ai|2|Oi|H−1
). This is substantially smaller than the complexity of

the original dynamic programming algorithm:

O( |Ai|
|Oi|

H−1

|Oi|−1︸ ︷︷ ︸
number of iterations

[|S| |Ai|
|Oi|

H−1

|Oi|−1︸ ︷︷ ︸
number of policies

+1

︸ ︷︷ ︸
number of variables

]4.5 [(|Ai|
|Oi|

H−1

|Oi|−1 − 1)(|S|+ 1) + 1]︸ ︷︷ ︸
number of constraints

)

which can be reduced to O(|Ai|6.5|Oi|H−1
).

This is basically due to the fact that the number of tests is a polynomial function of the
number of observations and an exponential function of the horizon, whereas the number of
policies is exponential in the number of observations and doubly exponential in the horizon.

Notice that our algorithm generates a small overhead due to the decomposition of matrices

F i
t and F j

t (step 11), which is achieved in O(|Ai|
|Oi|

H−1

|Oi|−1 |Ai|2H |Oi|2H) by using Gauss-Jordan
elimination, and due to the update of the reduced value vectors and the contribution proba-
bility vector, which is achieved in O(|Ai|3H |Oi|3H).

The major advantage of our technique is related to the efficient use of the memory space.
In both algorithms 6 and 4.4, most of the memory is allocated for saving (reduced) value

vectors. The size of value vectors is O(|S||Ai|
2
|Oi|

H−1

|Oi|−1 ), while the size of reduced value vectors
is only O(|S||Ai|2H |Oi|2H).

Finally, we should emphasize the fact that this is only a worst-case analysis. Given an
arbitrary decentralized POMDP problem, Algorithm 4.4 may keep more policies than Algo-
rithm 6 due to the fact that linear program 4.32 is underconstrained, which may lead to a
higher number of core tests and a longer runtime. However, this problem can be solved by
adding the constraint 4.32 (see the related discussion in Section 4.5.5) and introducing some
modifications to Algorithm 4.4, without a major impact on the computational complexity of
the algorithm. In the next section, we present an empirical comparison of Algorithms 4.4
and 6, and show that this latter issue is not encountered in practice.

4.5.7 Empirical Analysis

We implemented both of Algorithm 6 (DP) and Algorithm 8 (DP with Policy Compression)
using ILOG Cplex 10 solver on an AMD Athlon machine with a 1.80 GHz processor and 1.5
GB RAM. We used Gauss-Jordan elimination method to find the core tests. For the last step
of planning, we omit pruning the dominated policies since we will not use them to generate
further policies, thus, we only generate the value vectors of each joint policy and each joint
test. We compared the performances of these two algorithms on two benchmark problems
MA-Tiger and MABC Hansen et al. [2004]. Both of the two algorithms find the same optimal
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values. However, the memory space used to represent value vectors is significantly smaller
when we use the compression approach. In fact, the value vectors in the original DP algorithm
are defined on states and policies, whereas the reduced value vectors are defined on states and
core tests. Notice also that the compression ratio (policies number/core tests number) grows
exponentially w.r.t the planning horizon. Also, the runtime of DP is improved when the
compression algorithm is used. Indeed, the backup of reduced value vectors (equations 4 and
5) takes less time than the backup of original value vectors (equation 1). However, given that
the linear program of Table 2 is under-constrained, our algorithm can keep some additional
policies that are dominated. In MABC for example, our algorithm generates 3528×3528 joint
policies at the beginning of horizon 4, while only 1800×1458 joint policies are not dominated.
This problem can be solved by adding a larger system of constraints on the probabilities of
the tests, but the computational efficiency will be possibly affected. We can see that as in
most of the compression techniques, there is a tradeoff between the space performance and
the time performance.

DP DP with Policy Compression
Problem H runtime policies runtime policies core tests ratio

MA-Tiger 2 0.20 (27,27) 0.17 (27,27) (18,18) 1.5
3 2.29 (675,675) 1.79 (675,675) (90,90) 7.5
4 - - 534.90 (195075,195075) (540,540) 361.25

MABC 2 0.12 (8,8) 0.14 (8,8) (8,8) 1
3 0.46 (72,72) 0.36 (72,72) (24,24) 3
4 17.59 (1800,1458) 4.59 (3528,3528) (80,80) 44.1

Table 4.2: The runtime (in seconds) and the number of policies and tests of Dynamic Pro-
gramming (DP) algorithms, with and without compression. The compression ratio is the
number of policies divided by the number of core tests.

4.6 Conclusion

In many multiagent systems, the uncertainty of an agent is not only about the environment
states, but also about the policies of other agents. Decentralized POMDPs are an extension
of POMDPs that provides a rich mathematical framework for dealing with this type of uncer-
tainty. The dimensionality of the policy space is a crucial factor in the complexity of Dynamic
Programming algorithms for decentralized POMDPs. In this thesis, we proposed a new model
for representing the agent’s belief state based on predicting other agents future actions. The
advantage of this model, called Predictive Policy Representations (PPRs), is that the agents
use only a minimal and sufficient amount of information to represent their beliefs. We com-
pared the computational performance of a point based algorithm for decentralized POMDP
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using decisions trees to the performance of the same algorithm using a simplified version of
PPRs, and the preliminary results were promising.

Based on these results, we developed a second Dynamic Programming algorithm exploit-
ing the potential dependencies between different tests to reduce even more the dimensionality
of the belief points. This approach is based on projecting the policy beliefs from the high di-
mensional space of trees to the low dimensional space of tests, and using matrix factorization
methods to reduce the number of tests. Consequently, the memory space used in this algo-
rithm is significantly smaller, while the runtime is lower compared to the original Dynamic
Programming algorithm. This method can also be used in approximate Dynamic Program-
ming, mainly for domains with large observations spaces. However, the major drawback of
this new approach is the relaxation of necessary constraints on the belief states, leading to a
larger belief space containing invalid beliefs. As a consequence of that, the number of policies
retained in our algorithm is always higher than in the original algorithm.

A next step in developing this approach furthermore would be to investigate this issue of
constraining the reduced belief states, and to find a tradeoff between the number of constraints
used for defining the belief space and the number of policies retained by the algorithm. An-
other possible extension is to use a fast and lossy matrix factorization method in our algorithm,
and more particularly, a factorization method for binary matrices.



Chapter 5

Reinforcement Learning with

Predictive Representations

Reinforcement Learning (RL) refers to the problem of finding a policy for controlling a dy-
namical system when the parameters of this system are, completely or partly, unknown. This
problem becomes particulary challenging when the states of the system are partially observ-
able, because the policy can no longer be expressed as a function of the states of the system.
A promising approach for solving this problem consists in maintaining a parametric policy,
defined on belief states or histories, and using the experience of interacting with the system
in order to calculate the gradient of the policy. This gradient is then used for tuning the
parameters of the policy and gradually improving its performance. In this chapter, we con-
sider the problem of estimating the policy gradient in Partially Observable Markov Decision
Processes (POMDPs) with a Predictive Policy Representation (PPR), which was presented
in the previous chapter (Chapter 4). We compare PPR policies to Finite-State Machines
(FSMs), as a standard model for policy gradient methods in POMDPs, and we present a
general Actor-Critic algorithm for learning both FSMs and PPRs. The critic part computes
a value function that takes as variables the parameters of the policy. These latter parameters
are gradually updated to maximize the value function. We also show that the value function
is polynomial for both FSMs and PPR policies, with a potentially smaller degree in the case of
PPRs. Therefore, the value function of a PPR can have less local optima than the equivalent
FSM, and consequently, the gradient algorithm is more likely to converge to a global optimal
solution.

5.1 Introduction

Learning an optimal policy in a partially observable environment is still considered as one
of the most difficult challenges in Reinforcement Learning (RL). To achieve this, one must
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consider two main issues: (1) mapping histories of interaction with the environment into an
internal state representation, (2) finding the optimal decisions associated to each internal
state.

Partially Observable Markov Decision Processes (POMDPs, introduced in Section 2.3)
provide a rich mathematical framework for studying such problems. In POMDPs, the envi-
ronment is represented by a finite set of states, and the effects of the actions on the environment
are represented by probabilistic transition functions. After every executed action, the agent
perceives a numerical reward and a partial, possibly noisy, observation.

Instead of keeping track of ever growing histories, Finite-States Machines (FSMs) provide
an efficient graphical model for mapping histories into equivalence classes called internal-
states (I-states). Many policy gradient methods for POMDPs are based on this family of
policies [Meuleau et al., 1999; Baxter and Bartlett, 2000; Peshkin, 2001; Shelton, 2001; Yu,
2005; Yu and Bertsekas, 2008]. An FSM is a probabilistic automaton where the observations
are the inputs and the actions are the outputs, with stochastic transitions between the internal
states. The main drawback of FSMs is that the internal states do not directly affect the state
of the environment. In fact, only the sequence of executed actions determines the returned
outcome, and the same sequence of actions may be generated by different sequences of internal
states. Thus, considering the sequence of internal states within the learning data slows down
the convergence of RL algorithms [Aberdeen and Baxter, 2002].

In this chapter, we introduce a new policy gradient method for finite-horizon POMDPs
based on a Predictive Policy Representation (PPR). Aberdeen et al. [2007] have already
proposed to use PSRs for reinforcement learning in partially observable domains. However,
they used PSRs for learning the dynamics of the environment, and mapped the belief states
into a distribution over the actions through a linear approximation. In our approach, we
use PPRs to directly represent policies without learning a model of the environment. The
parameters of PPRs are updated according to the gradient of a value function. Our second
contribution is a comparison of PPR policies with FSMs. For this purpose, we use the same
basic method for learning both FSMs and PPRs, and show that the value function of a PPR
policy is potentially simpler than the value function of an FSM policy. This result is due to the
fact that the parameters of a PPR are based on only observable data. Finally, we empirically
demonstrate the effectiveness of PPR policies through several standard benchmarks.

5.2 Model-free Policies in POMDPs

The goal of a rational agent is to find an action that maximizes its expected long-term reward
after a given history (see Section 2.2.4). The function that selects an action a given a history
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ht is called policy. A parametric stochastic policy π is a function defined by:

π(a, ht, θ) = Pr(at+1 = a|ht, θ)

where θ is a vector of real-valued parameters θ = (θ1, θ2, . . . , θn). In this section, we review
different approaches for representing policies in POMDPs when the parameters of the POMDP
model, namely the transition and the observation functions, are unknown. This includes
History-based representations, Finite-State Machines and Neural Networks. We also introduce
the Predictive Policy Representations (PPRs) with core histories.

5.2.1 Memoryless policies

A memoryless (reactive) policy is function that maps each observation into an action, or
a distribution on actions, without considering any of the previous events (see the example
showed in Figure 5.1). An algorithm for learning such policies, using a branch and bound
heuristic, was proposed by Littman [1996]. Because of their simplicity, memoryless policies
have been widely used in policy gradient methods [Baird and Moore, 1999; Baird, 1993], we
will return to gradient methods in Section 5.3.1.

(a) A simple POMDP problem.

Nothing :

Obstacle :

↓

←

(b) A memoryless policy.

Figure 5.1: A memoryless policy for a simple POMDP problem. The robot can detect the
presence or absence of an obstacle after moving into it, the actions correspond to movements
to left, right, up, and down.

However, given that the observations are generally stochastic and aliasing (the same obser-
vation can be perceived in different states), memoryless policies tend to perform very poorly
in practice, except for special domains with simple structures. Singh et al. [1994] presented
a simple example of POMDPs where the best memoryless policy can be arbitrary poor com-
pared to the optimal solution. They also showed that the best stochastic memoryless policy
can be arbitrary better that the best memoryless deterministic policy. An interesting rank-
ing of four natural classes of memoryless policies was given by Bagnell et al. [2003]. The
classes considered in this ranking were: Stationary Deterministic policies (SD), Stationary
Stochastic policies (SS), Non-stationary Deterministic policies (ND), and Non-stationary Sto-
chastic policies (NS). A non-stationary memoryless policy is one that is a function of the



Chapter 5. Reinforcement Learning with Predictive Representations 96

time-step. Bagnell et al. [2003] showed that for any finite-state, finite-action POMDP:

optimal(SD) 6 optimal(SS) 6 optimal(ND) = optimal(NS)

where the operator optimal returns the value of the optimal policy in a class.

The potentially superior performance of non-stationary policies contrasted with station-
ary policies can be intuitively explained by the time-dependance property of non-stationary
policies is a form of memory that provides an additional information about the underlying
states. This latter result provides a strong justification for the use of non-stationary policies
when it comes to memoryless ones.

5.2.2 History-based policies

This class of models was already presented in Section 2.5.1, we briefly review this method here.
A history ht refers to the sequence of actions and observations a1o1 . . . atot that were executed
and received by the agent since the beginning of the interaction. A typical history-based policy
keeps in memory the full history ht, and uses it as the agent’s internal state.

This approach is very useful to overcome the problem of learning policies without using
the parameters of the POMDP model, since the histories are completely observable in the
training data.

In fact, a POMDP model 〈S,A,O, T, Z, R〉 can always be transformed into an MDP
〈S ′,A, T ′, R′〉, where S ′ = {A × O}∗ is an infinite set of states corresponding to histo-
ries, T ′ is a transition function between histories, defined as: T ′(h, a, hao) = Pr(o|h, a) and
T ′(h, a, ha′o) = 0 for a′ 6= a, and R′, defined as R′(h, a) =

∑
s∈S Pr(s|h)R(s, a), is a reward

function. In this context, one should simply learn the values of actions after each history, or
use a reinforcement learning algorithm for MDPs such as Q-Learning (Algorithm 3). This
latter approach was recently investigated in [Timmer, 2009].

One problem with history-based models is the large number of histories that one needs
to keep in memory: (|A||O|)t different histories for t steps of interacting [Mccallum, 1996],
where |A| and |O| are respectively the number of actions and observations. This problem
can be partly addressed by using compact representations of histories, such as decision trees
(Figure 3.1).

However, the principal drawback of history-based models lies in the high variance of value
function estimators. This is due, on the one hand, to the definition of the value function as
a function of histories and, on the other hand, to the low likelihood of observing the same
history several times. A interesting solution to this problem has been given in Utile Distinction
Memory (UDM) [McCallum, 1993] and Utile Suffix Memory (USM) [McCallum, 1995] models,
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where only the last sequence (suffix) of each history that is necessary to distinguish it from
other histories is kept in memory. Two histories are considered as equivalent if all the actions
have almost the same value at these histories.

π(Qt)

←

←

obstacle

↓

←

obstacle

↓

nothing

nothing

obstacle

↓
nothing

Q1

Q2 Q3

Q4

at

ot

at−1

ot−1

at−2

ot−2

at−3

Figure 5.2: A Utile Suffix Memory.

Figure 5.2 shows an example of a USM policy for
solving the POMDP problem described in Figure 5.1.
The classes of equivalent histories are denoted by Qi.
For instance, all the histories that end with the suffix
(← obstracle ← obstracle) are considered as equiv-
alent and regrouped in class Q4. A statistical test
(Kolmogorov-Smirnov for example) is used to verify if
there is a significant divergence between two histories,
in such case one considers longer suffixes for them,
until an acceptable low divergence is achieved.

The main problem of history-based models remains
the fact that the agent often should remember the full
history from the beginning in order to make accurate
predictions about the future behavior, and to choose
an optimal action. As an example of that, suppose that in the POMDP illustrated in Fig-
ure 5.1, the actions of the robot succeed with a probability 0.9, and the robot remains in the
same location with a probability 0.1. Since the robot observes an obstacle only after hitting
it, then the probability that the history hk(a,nothing)t−k, for a ∈ A, occurs is non-null for
any t > k and arbitrary history hk. Therefore, the memory of any history-based policy with
bounded length will correspond to (a,nothing)n after a certain number of time-steps. Conse-
quently, the history hk, which contains information about the location of the robot, will be
erased. This problem was a major factor that severely restrained the applicability of this type
of policies. A recent solution to this issue for was proposed by Holmes and Isbell [2006]. The
proposed model, known as Prediction Suffix Trees (PSTs), is a generalization of USM where
loops between different nodes of the suffix tree were used. This model was trained for predict-
ing the observations of a POMDP, and the empirical results on small domains showed that
they outperform other history-based models, such as Causal State Machines (Section 2.5.6).
However, this approach is limited to POMDPs with deterministic transition and observation
functions.

5.2.3 Finite-State Machines (FSMs)

Finite-State Machines are an efficient graphical model used for representing stochastic policies
without memorizing all the histories [Hansen, 1998] (see Section 4.3). An FSM is defined by:
a finite set of internal states G; a set of action-selection functions µo,a, where µo,a(g, θ) is the
probability that the agent will execute action a if its internal state is g, its last observation was
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o, and the parameters of the policy are θ; a set of transition functions ωo, where ωo(g, g′, θ) is
the probability that the agent will select the internal state g if the current internal state is g

and the perceived observation is o. An example of FSMs is presented in Figure 5.3. Implicitly,
an internal state of a decision-maker regroups all the histories (or the belief states) that have
the same optimal policy.

g0

a1 : 0.4

a0 : 0.6 g1

a1 : 0.7

a0 : 0.3

g2a1 : 0.8 a0 : 0.2

o1 : 0.2

o1 : 0.1

o1 : 0.2

o1 : 0.6 o1 : 0.1

o1 : 0.3

o0 : 0.3

o0 : 0.5

o0 : 0.3

o0 : 0.1 o0 : 0.4

o0 : 0.2

o1 : 0.6
o0 : 0.4

o1 : 0.8
o0 : 0.1

o1 : 0.1

o0 : 0.7

(a) A Finite-State Machine.

g0

a0

o1

g0

a1

o0

g2

(b) A history with

internal states.

Pr(g0) = 1, P r(g1) = 0, P r(g2) = 0

a0

o1

Pr(g0) = 0.6, P r(g1) = 0.2, P r(g2) = 0.2

a1

o0

Pr(g0) = 0.36, P r(g1) = 0.24, P r(g2) = 0.4

(c) A history with internal belief states.

Figure 5.3: (a) An example of a Finite-State Machine. (b) A history is a sequence of internal
states, actions and observations. (c) The internal states can be replaced by internal belief
states.

FSMs are particularly appealing for representing policies when the parameters of the
POMDP are unknown, since these latter parameters are not used in the definition of FSMs.
The problem of finding a finite-state machine for controlling a POMDP was initially studied
by Sondik [1978], where it has been showed that for a certain class of POMDPs, there always
exists a deterministic finite state controller equivalent to the optimal policy.

The research on finding FSMs for POMDPs was spawned by the work of Eric Hansen in
the late 90s [Hansen, 1998; Hansen and Zilberstein, 1998]. This latter work was focused on
finding an optimal FSM for a POMDP with known parameters. In the context of unknown
parameters, most of the proposed algorithms for learning FSMs are based on gradient opti-
mization methods [Meuleau et al., 1999; Baxter and Bartlett, 2000; Peshkin, 2001; Shelton,
2001; Yu, 2005; Yu and Bertsekas, 2008]. We return to these methods in Section 5.3.1.

Contrary to the states of a POMDP, the internal states of an FSM are completely observ-
able, thus, a history ht should be a sequence of actions, observations and sampled internal
states, as showed in the example of Figure 5.3. However, the cumulated reward of a given



Chapter 5. Reinforcement Learning with Predictive Representations 99

history depends only on the executed actions and the perceived observations. Moreover, the
same sequence of actions and observations can be used to update the parameters (µ and ω)
of all the internal states that may have generated that sequence.

To solve this problem, Shelton [2001], Aberdeen and Baxter [2002] proposed a Rao-
Blackwellized version of FSMs where internal-belief states are calculated at each step instead
of sampling a single internal state. Rao-Blackwellization technique is known to reduce the
variance of Monte-Carlo estimators, the interested reader can find a presentation of these
methods in [Casella and Robert, 1996]). The internal belief state is a vector bt(., θ), defined
as:

bt(g, θ) = Pr(gt = g|ht, θ),∀g ∈ G

The initial internal belief state b0 is given in the FSM vector of parameters θ. At each time-
step, the agent receives an observation o and executes an action a, the internal belief state is
updated by Bayes’ Rule as in POMDPs (Equation 2.2):

bt+1(g, θ) =
Pr(g, a|bt, o)
Pr(a|bt, o)

=

∑
g′∈G

bt(g′, θ)ωo(g′, g, θ)µo,a(g, θ)∑
g′∈G

∑
g′′∈G

bt(g′, θ)ωo(g′, g′′, θ)µo,a(g′′, θ)
(5.1)

The sequence of internal belief states is principally used for learning, as we will show in
Section 5.4.2, but it can also be used for sampling actions as Pr(a|bt) =

∑
g∈G bt(g, θ)µo,a(g, θ).

The likelihood of a sequence of actions and observations o1a1 . . . okak is the same, whether
one uses the internal belief state bt at each time-step for sampling an action, or samples first
an internal state gt according to ωo(gt−1, gt, θ), and then an action according to µo,a(gt, θ). In
fact, Pr(o1a1 . . . okak) can always be written as

Pr(o0a0 . . . okak) =
k∏

t=0

Pr(otat|o0a0 . . . ot−1at−1)

=
k∏

t=0

∑
g∈G

Pr(at|g)Pr(gt = g|o0a0 . . . ot−1at−1ot)Pr(ot|o0a0 . . . ot−1at−1)

=
k∏

t=0

∑
g∈G

Pr(at|g)bt(g, θ)Pr(ot|o0a0 . . . ot−1at−1)

Using internal belief in the learning trial provides an explicit modeling of the FSM dy-
namics, and allows a single trial experience to affect every policy that could have produced
the action sequence without considering the sequence of internal belief states that actually
occurred.
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5.2.4 Recurrent Neural Networks

Artificial neural networks have been successfully applied in reinforcement learning since the
early developments of this field. A famous example of that is the work of Tesauro [1994]
were a neural network was trained for evaluating strategies in the Backgammon game. Neural
networks can be used either as a function approximator for representing the value function,
or directly as a policy. A neural network is composed of: an input layer, one or many hidden
layers, and an output layer. Each layer is a collection of several neurons, which are activated
by a function that takes as inputs the values of the neurons of the previous layer. Therefore,
a neural network can be seen as a simple graphical representation of a complex function,
with parameters corresponding to the weights of the connections between different neurons.
Usually, a gradient descent is used for finding the optimal parameters of a network. In the
context of reinforcement learning in POMDPs, the input of a neural network at a time-step
t would be the history ht, or a part of it, and the output would correspond to an action to
execute. Therefore, the memory of a neural network policy corresponds to its input.

Figure 5.4 shows an example of a policy represented by a simple recurrent neural network.
The actions at correspond to the 4 movements: ←,→,↑, and ↓. The observations are indicated
by ot. There are two internal states of this network, g1 and g2, that take values in {0, 1}. The
input is a window of the history, and the output is an action to execute. The nodes of this
network can be interconnected using any activation function, such as a sigmoid for example.

ot

at

ot−1

at−1

g1

g2

←

→

↑

↓

Input layer Hidden layer Output layer

Figure 5.4: An example of a policy represented by a simple recurrent neural network.

An interesting variant of this model is recurrent neural networks, where the activation
function of a given neuron can take as input the value of any neuron in the network. Since
the values of the neurons at time-step t are fed back to the network at time-step t + 1, the
neurons of the hidden layer can be seen as an internal state (or belief state). Consequently,
recurrent networks are potentially useful for solving POMDPs.

Long Short-Term Memory (LSTM) is a well-known architecture of recurrent neural net-
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works used for reinforcement learning in POMDPs [Bakker, 2001]. In this architecture, part
of the network is trained to approximate a Q-value function, which is a function of an internal
state. The internal state is represented by a set of hidden neurons, in addition to special neu-
rons called memory cells, which are used to store previous values of hidden neurons. Access
to the memory cells is controlled through a special layer of neurons called gates. An extension
of this framework was proposed by Gomez and Schmidhuber [2005], where the topology of the
network as well as the weights of the neurons were learned using an evolutionary approach.
Finally, the same architecture was recently used for learning efficient policies in POMDPs
with continuous state spaces [Wierstra and Schmidhuber, 2007; Sehnke et al., 2010; Wierstra
et al., 2009].

Recurrent neural networks are a very practical approach for solving POMDPs, they can
deal with multidimensional and continuous actions and observations. However, despite their
impressive results, neural networks lack strong theoretical guarantees related to their ap-
plicability in reinforcement learning. In fact, it is not yet completely understood how neural
networks represent internal states, and what the limitation of such approach are. Also, it is
not possible to relate the performance of a policy learned by a neural network to the optimal
one.

5.2.5 Predictive Policy Representation (PPRs)

In Section 4.3, we showed that PSRs can be used to represent policies instead of the en-
vironment dynamics by switching the roles of actions and observations, and we called this
model Predictive Policy Representation (PPRs). In this section, we introduce PPRs with
core histories.

A test q is defined as an ordered sequence of (observation, action) couples, i.e.

q = o1a1 . . . okak

Given the vector θ of policy parameters (defined latter), the probability of q starting after ht

is redefined as:

Pr(qa|ht, q
o, θ)

def
= Pr(at+1 = a1, . . . , at+k = ak|ht, ot+1 = o1, . . . , ot+k = ok, θ) (5.2)

where qa denotes the actions of q and qo denotes its observations.

As for the environment dynamics (Section 2.4), the probability Pr(qa|ht, q
o, θ) of any test

q starting after a history ht is given by a linear combination of the probabilities of the same
test q starting after different core histories h ∈ H. The internal belief state bt corresponds to
the weights of these core histories in Pr(qa|ht, q

o, θ). In particular, the probability of executing
action a at time t after observing o is given by:

Pr(a|ht, o) =
∑
h∈H

bt(h, θ)Pr(a|h, o, θ) = bT
t moa (5.3)
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The core histories of a policy are independent from the core histories of the controlled
environment. We will use H only to indicate the policy core histories, since no model of the
environment is used in this approach.

After receiving an observation o and executing an action a, the internal belief state bt(., θ)
is updated by using the following rule:

bt+1(h, θ) =

∑
h′∈H

bt(h′, θ)bh′oa(h, θ)moa(h′, θ)∑
h′∈H

bt(h′, θ)moa(h′, θ)
(5.4)

This latter rule is directly derived from Bayes’ Rule. In fact, we can verify that the probability
of any sequence q after receiving an observation o and executing an action a can be calculated
using the updated belief bt+1:

Pr(qo|ht, a, o, qa) =
Pr(aqa|ht, o, q

o)
Pr(a|ht, o)

=

∑
h∈H

bt(h, θ)Pr(aqa|h, o, qo)∑
h∈H

bt(h, θ)Pr(a|h, o)

=

∑
h∈H

bt(h, θ)Pr(a|h, o)Pr(qa|h, o, a, qo)∑
h∈H

bt(h, θ)Pr(a|h, o)

=

∑
h∈H

bt(h, θ)moa(h)
∑

h′∈H
bhoa(h′, θ)mq(h′)∑

h∈H
bt(h, θ)moa(h)

=
∑
h∈H

bt+1(h, θ)mq(h)

A PPR policy is defined by: the set of core histories H, and the vectors moa and bhoa,
∀o ∈ O, a ∈ A, h ∈ H. The vector of parameters θ of a PPR corresponds to moa and bhoa.

An interesting property of belief states in PPRs is that the entries of a belief state can take
any real value, but they always sum to 1, i.e. ∀t ∈ {0, . . . ,H} :

∑
h∈H bt(h, θ) = 1. Indeed,

for any observation o, we have:∑
h∈H

bt(h, θ) =
∑
h∈H

bt(h, θ)
∑
a∈A

moa(h, θ)︸ ︷︷ ︸
1

(from Equation 5.3)

=
∑
a∈A

∑
h∈H

bt(h, θ)moa(h, θ)

=
∑
a∈A

Pr(a|ht, o, θ) = 1 (5.5)

The initial history h0 = ε is always a core history, thus b0(ε, θ) = 1 and ∀h ∈ H − {ε} :
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b0(h, θ) = 0. We will show in Section 5.4 how to both discover the set of core histories H, and
how to learn the parameters moa and bhoa.

Figure 5.5 shows an example of a predictive policy Representation with core histories.
This policy is represented by two core histories: the initial history ε, and the history h = o0 ↓.
The probability of executing a given action after a given core history and observation is
known (part of the model). For instance, Pr(← |h, o0) = 0.1. These probabilities can be
represented by a soft-max function. Therefore, a PPR proceeds as a stochastic decision
tree as long as the current history ht is a core history. When ht /∈ H, the probability of
executing an action a after ht and observation o is a linear combination of the probabilities
of executing the same action a after different core histories and same observation o. For
instance Pr(← |ht, o

0) = bt(ε)Pr(← |ε, o0) + bt(h)Pr(← |h, o0), where bt is the belief state
corresponding to ht.
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← ↓
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← ↓
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← ↓
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← ↓

0.2

Pr(← |ht, o
0)

bt(ε)

bt(h)

core history h history ht

core history ε

Figure 5.5: A Predictive Policy Representation with Core Histories.

5.3 Policy Gradient Methods

5.3.1 Overview

Given a parametric model of a policy, there are two major families of reinforcement learning
algorithms that can be used to find the optimal parameters of a policy. In the first family, a
value function is used to estimate the expected long-term reward of each action after every
possible history ht. The parameters of the policy are adjusted so that in each state, the
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actions with the highest estimated long-term reward will be executed more frequently. In the
second family, a locally optimal policy is gradually learned by searching in the space of its
parameters. The parameters are updated according to the immediate reward after executing
each action, or according to the cumulated reward at the end of one or many trials.

Policy Gradient methods are a type of policy search where a parametric policy is optimized
by performing a gradient ascent (or descent) on its estimated value function [Williams, 1992].
One advantage of these methods is that they can be generally described independently of the
model used for representing the policy. In fact, given a policy πk, with parameters θk ∈ Rd,
a policy gradient algorithm consists in first estimating the gradient ∇θV |θ=θk , where V is the
value function of the policy, defined as (assuming the initial belief state does not change):

V (θk) = Est,at

[ H∑
t=0

γtR(st, at)|θk, T, Z

]
(5.6)

where T and Z are respectively the transition and observation functions (see the definition of
a POMDP in Section 2.3).

Then, the parameters θk are updated as:

θk+1 = θk + ηk∇θV |θ=θk
(5.7)

where ηk ∈ R is a step-size. The same operation is repeated again with parameters θk+1, the
algorithms stops when ∇θV |θ=θk

= 0, in which case V (θk) is a local maximum.

As a result of their flexibility, policy gradient methods can be used with policy represen-
tations that are more adapted to the specific task that one wants to perform, incorporating
previous domain knowledge about the task. Also, policy gradient can be either model-free or
model-based, depending on the problem. As a consequence of that, most robotic applications
of reinforcement learning are based on this type of methods [Peters and Schaal, 2006].

In the remaining of this section, we briefly review some policy gradient techniques, based
on a survey of Peters and Schaal [2008]. These methods are regrouped into three categories:
Finite-difference methods, Likelihood ratio methods, and Natural policy gradient methods.

5.3.2 Finite-difference methods

The main problem in policy gradient methods is the estimation of the gradient ∇θV |θ=θk

when the parameters of the system, namely the transition function T and the observation
function Z (see Section 2.3), are unknown. Finite-difference methods were among the first
solutions proposed to solve this problem [Glynn, 1990], they emerged from the Monte Carlo
and Stochastic Simulation community (see [Glynn, 1987; L’Ecuyer, 1991] for an overview of
these methods).
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Given a policy with parameters θk = (θk
1 , θk

2 , . . . , θk
d), the gradient ∇θV |θ=θk is estimated

by first estimating the value V (θk) by sampling N trials, as follows:

V̂ (θk) =
1
N

N∑
i=1

H∑
t=0

γtri,t

where ri,t is the reward received at time-step t of trial i.
Then, a small variation ∆θk

i = (0, . . . , δθk
i , . . . , 0) is applied on each parameter θk

i , and the
value V (θk +∆θk

i ) of the policy with perturbed parameters θk +∆θk
i is estimated in a similar

way as for V (θk). Finally, the gradient ∇θV |θ=θk is estimated as:

∇̂θV |θ=θk = (
V̂ (θk + ∆θk

1)− V̂ (θk)
δθk

1

, . . . ,
V̂ (θk + ∆θk

i )− V̂ (θk)
δθk

i

, . . . ,
V̂ (θk + ∆θk

d)− V̂ (θk)
δθk

d

)

Notice from the approximation ∇̂θi
V |θ=θk = 1

δθk
i
[V̂ (θk +∆θk

i )− V̂ (θk)] that ∇̂θi
V |θ=θk is a

linear function of 1
δθi

d
with an estimated factor of V̂ (θk + ∆θk

i )− V̂ (θk). Therefore, this latter
factor can be more precisely approximated by applying several variations on each parameter
θk
i , and using a linear regression to find ∇̂θi

V |θ=θk .

Despite their appealing simplicity, finite-difference methods can hardly be used for a real-
world application due to their hazardous policy variations that can result in arbitrary costly
actions.

5.3.3 Likelihood ratio methods

Likelihood ratio methods, also known as REINFORCE algorithms [Williams, 1992], regroup
the majority of policy gradient methods, such as GAPS [Peshkin, 2001] and GPOMDP [Baxter
and Bartlett, 2000]. Let us denote by ht a history a1o1 . . . atot a time-step t, and by R(a|ht)
the expected reward of executing action a after the history ht, i.e.

R(a|ht) =
∑
s∈S

bt(s)R(s, a) (5.8)

The gradient ∇θV |θ=θk is estimated as:

∇θV (θ) = ∇θEst,at

[ H∑
t=0

γtR(st, at)|θ, T, Z

]
(from Equation 5.6)

= ∇θ

H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γtR(a|ht)Pr(hta|θ)

=
H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γtR(a|ht)∇θPr(hta|θ)
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∇θV (θ) =
H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γtR(a|ht)Pr(hta|θ)
∇θPr(hta|θ)
Pr(hta|θ)

=
H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γtR(a|ht)Pr(hta|θ)∇θ log Pr(hta|θ)

= ∇θEht,at+1

[H−1∑
t=0

γtR(at+1|ht)∇θ log Pr(htat+1|θ)|θ, T, Z

]
(5.9)

Therefore, the gradient ∇θV |θ=θk can be estimated by sampling several trajectories us-
ing the policy parameters θk, and then calculating the expected discounted value of the
product R(at+1|ht)∇θ log Pr(htat+1|θ)|θ=θk . Interestingly, the gradient of the log-likelihood
log Pr(htat+1|θ) can be exactly calculated since it does not involve any unknown parameters,
in fact:

∇θ log Pr(htat+1|θ) = ∇θ log
t∏

i=1

Pr(oi|a1o1 . . . ai)Pr(ai+1|a1o1 . . . ai−1oi, θ)

=
t∑

i=1

[
∇θ log Pr(oi|a1o1 . . . ai)︸ ︷︷ ︸

0

+∇θ log Pr(ai+1|a1o1 . . . ai−1oi, θ)
]

=
t∑

i=1

∇θ log Pr(ai+1|a1o1 . . . ai−1oi, θ)

This latter term, ∇θ log Pr(ai+1|a1o1 . . . ai−1oi, θ), depends on the model used for representing
the policy. For instance, if the policy is represented by an FSM (presented in Section 5.2.3),
then ∇θ log Pr(ai+1|a1o1 . . . ai−1oi, θ) is a function of µo,a and ωo only.

Moreover, Williams [1992] showed that the variance of the estimator of ∇θV (θ) (Equa-
tion 5.9) can be reduced by adding a baseline b ∈ R to the immediate rewards as:

∇θV (θ) = ∇θEht,at+1

[H−1∑
t=0

γt(R(at+1|ht)− b)∇θ log Pr(htat+1|θ)|θ, T, Z

]
In fact, this latter formula is derived from the fact that the different histories ht for a given t

are disjoint events:

∀t ∈ {0, . . . ,H − 1} :
∑

ht∈{A×O}t

∑
a∈A

Pr(hta|θ) = 1

⇒ ∀t ∈ {0, . . . ,H − 1} : ∇θ

∑
ht∈{A×O}t

∑
a∈A

Pr(hta|θ) = 0

⇒ ∇θ

H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γtPr(hta|θ) = 0
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Therefore:

∀b ∈ R : ∇θ

H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γtbPr(hta|θ) = 0

The baseline b can be chosen arbitrary, however, Peters and Schaal [2006] showed how to
derive a baseline that minimizes the variance of the gradient estimator.

Compared to finite-differences, likelihood ratio methods are appealing for two principal
reasons. First, the variance of the gradient estimator is lower, since the known parameters
of the policy are used in estimating the gradient. Second, the gradient is estimated without
applying any perturbation to the parameters of the policy. In fact, these latter parameters are
updated in greedy way (Equation 5.7), improving the quality of the policy after each update.

5.3.4 Natural policy gradient methods

A major inconvenient of the so called vanilla gradient method presented in the previous
subsections is that its performance largely depends on the choice of the step-size ηk used in
the updates θk+1 = θk + ηk∇θV |θ=θk . The step-size ηk is used for two reasons. The first one
is controlling the change in the policy in order to make it smooth and to avoid premature
convergence. The second one is rescaling the gradient ∇θV |θ=θk into the space of parameters
θ. In fact, the update rule used in the gradient methods is inconsistent since the left hand
side has units of θ, and the right hand side has units of 1/θ [Kakade, 2002].

Natural gradient methods, proposed by Amari [1998] and introduced to reinforcement
learning by Kakade [2002], solve these two problems by using a step-size related to the
space of the value function V (θ) instead of the parameters θ. In other terms, the distance
between V (θk+1) and V (θk) is kept constant after each updated of the policy parameters by
θk+1 = θk + ∇̃θV |θ=θk , where ∇̃θV is the natural gradient given by ∇̃θV = F−1

θ ∇θ, and Fθ is
the Fisher information matrix, defined as:

Fθ(i, j) = Eht,at+1

[H−1∑
t=0

γt ∂ log Pr(htat+1|θ)
∂θi

∂ log Pr(htat+1|θ)
∂θj

|θ, T, Z

]
Note that this latter matrix can be estimated from the sampled trajectories, since the function
returning Pr(htat+1|θ) is known. The complete derivation of the natural gradient can be found
in [Peters et al., 2005].

The principal advantage of natural policy gradient methods is that they are independent of
the frame used for representing the policy parameters. For instance, the same policy gradient
algorithm can be used for parameters that are probabilities as for real-valued parameters.
Also, the path followed by the parameter updates is more direct, therefore, the natural gradient
method converges faster and avoids premature convergence [Peters and Schaal, 2008].
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5.4 A General Actor-Critic Approach

5.4.1 Overview

Actor-critic algorithms [Sutton et al., 2000; Peters and Schaal, 2006; Aberdeen et al., 2007]
combine the advantages of both value-function and policy search methods. The actor part
maintains a parametric policy that is gradually improved according to the evaluation provided
by the critic part. The critic learns a value function where the variables correspond to the
parameters of the policy.

In this section, we describe a general method where the critic part learns unbiased esti-
mates of immediate rewards which are used to calculate the gradient of the value function
with respect to the policy parameters. We show how history-action Q-values are eliminated
from the expression of the gradient and replaced by immediate rewards. Finally, we present a
likelihood ratio expression of the gradient for general parameterized policies. Since the main
objective of this work is to compare predictive policy representations to other types of policies,
namely FSMs, we will not consider natural gradients in the current study.

The actor is a stochastic policy with a vector of parameters θ. The critic is a function that
returns the gradient of the value function V (h0, θ), which is the total, expected, discounted
reward when executing a policy parameterized by θ after a starting void history h0 = ε.

V (h0, θ) =
∑
a∈A

Pr(a|h0, θ)Q(h0, a, θ)

where the history-action Q-values are given by:

Q(ht, a, θ) = R(a|ht) + γ
∑
o∈O

∑
a′∈A

Pr(oa′|hta, θ)Q(htao, a′, θ) (5.10)

5.4.2 Gradient Expression

The following derivation is an adaptation to POMDPs of the proof of the policy gradient
theorem for MDPs, proposed by Sutton et al. [2000]. We indicate by ha

t the actions of a
history ht and by ho

t its observations.

∂V (h0, θ)
∂θi

=
∂

∂θi

∑
a∈A

Pr(a|h0, θ)Q(h0, a, θ)

=
∑
a∈A

∂Pr(a|h0, θ)
∂θi

Q(h0, a, θ) + Pr(a|h0, θ)
∂Q(h0, a, θ)

∂θi
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By substituting Q(h0, a, θ) with Equation (5.10), we find:

∂V (h0, θ)
∂θi

=
∑
a∈A

∂Pr(a|h0, θ)
∂θi

Q(h0, a, θ) + Pr(a|h0, θ)
∂Q(h0, a, θ)

∂θi

=
∑
a∈A

∂Pr(a|h0, θ)
∂θi

Q(h0, a, θ) + Pr(a|h0, θ)γ
∂

∂θi

[∑
o∈O

∑
a′∈A

Pr(oa′|h0a, θ)Q(h0ao, a′, θ)
]

=
∑
a∈A

∂Pr(a|h0, θ)
∂θi

Q(h0, a, θ) + γ
∑
o∈O

Pr(ao|h0, θ)
∑
a′∈A

∂

∂θi

[
Pr(a′|h0ao, θ)Q(h0ao, a′, θ)

]
=

∑
a∈A

∂Pr(a|h0, θ)
∂θi

Q(h0, a, θ) + γ
∑
o∈O

Pr(ao|h0, θ)
∑
a′∈A

∂Pr(a′|h0ao, θ)
∂θi

Q(h0ao, a′, θ)

+γ
∑
o∈O

Pr(ao|h0, θ)
∑
a′∈A

Pr(a′|h0ao, θ)
∂Q(h0ao, a′, θ)

∂θi

=
∑
a∈A

Q(h0, a, θ)
∂Pr(a|h0, θ)

∂θi

+
∑
a∈A

∑
o∈O

∑
a′∈A

γPr(ao|h0, θ)Q(h0ao, a′, θ)
∂Pr(a′|h0ao, θ)

∂θi

+
∑
a∈A

∑
o∈O

∑
a′∈A

γPr(aoa′|h0, θ)
∂Q(h0ao, a′, θ)

∂θi

Repeating the substitution for H time-steps yields to:

∂V (h0, θ)
∂θi

=
H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γtPr(ht|θ)Q(ht, a, θ)
∂Pr(a|ht, θ)

∂θi
(5.11)

By applying Bayes’ Rule Pr(a|ht, θ) = Pr(ha
t a|ho

t ,θ)
Pr(ha

t |ho
t ,θ) , we find:

∂Pr(a|ht, θ)
∂θi

=
1

Pr(ha
t |ho

t , θ)
∂Pr(ha

t a|ho
t , θ)

∂θi
− ∂Pr(ha

t |ho
t , θ)

∂θi

Pr(ha
t a|ho

t , θ)
Pr(ha

t |ho
t , θ)2

=
1

Pr(ha
t |ho

t , θ)
∂Pr(ha

t a|ho
t , θ)

∂θi
− ∂Pr(ha

t |ho
t , θ)

∂θi

Pr(a|ht, θ)
Pr(ha

t |ho
t , θ)

(5.12)

By replacing this latter formula within Equation (5.11), and adequately rearranging the terms,
we find:

∂V (h0, θ)
∂θi

=
H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γt

[
Pr(ht|θ)Q(ht, a, θ)

1
Pr(ha

t |ho
t , θ)

∂Pr(ha
t a|ho

t , θ)
∂θi

−Pr(ht|θ)Q(ht, a, θ)
∂Pr(ha

t |ho
t , θ)

∂θi

Pr(a|ht, θ)
Pr(ha

t |ho
t , θ)

]
=

H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γt

[
∂Pr(ha

t a|ho
t , θ)

∂θi

Pr(hta|θ)
Pr(ha

t a|ho
t , θ)

Q(ht, a, θ)

−Pr(a|ht, θ)
∂Pr(ha

t |ho
t , θ)

∂θi

Pr(ht|θ)
Pr(ha

t |ho
t , θ)

Q(ht, a, θ)
]
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∂V (h0, θ)
∂θi

=
H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γt ∂Pr(ha
t a|ho

t , θ)
∂θi

Pr(hta|θ)
Pr(ha

t a|ho
t , θ)

[Q(ht, a, θ)− γ
∑
o∈O

∑
a′∈A

Pr(oa′|hta)Q(htao, a′, θ)︸ ︷︷ ︸
R(a|ht)

]

In this latter derivation, we rearranged the terms of time-step t with those of time-step t + 1.
Thus:

∂V (h0, θ)
∂θi

=
H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γt ∂Pr(ha
t a|ho

t , θ)
∂θi︸ ︷︷ ︸

policy

environment︷ ︸︸ ︷
Pr(ho

t |ha
t )R(a|ht) (5.13)

Note that the term Pr(ho
t |ha

t )R(a|ht) is independent of θ. It can be learned by a simple Monte
Carlo method with Importance Sampling, using a look-up table:

P̂ r(ho
t |ha

t ) = 1
Pr(ha

t |ho
t ,θ)

#ht

N

R̂(a|ht) = 1
N

∑N
i=1 ri,tδht,hi,t

δa,ai,t+1

where N is the number of trials, ai,t and ri,t are respectively the action and the reward
observed at time t in trial i, hi,t is the history at time t in trial i, and δ is the Kronecker delta.
A more efficient method for reusing samples is given in [Hachiya et al., 2009].

In the following two subsections, we will show how to calculate the other term, ∂Pr(ha
t a|ho

t ,θ)
∂θi

,
depending on the model of the policy.

5.4.3 Gradient Estimation for Finite-State Machines

If we use an FSM (Section 5.2.3) to represent the policy, then:

Pr(ha
t |ho

t , θ) = bT
0 (., θ)Mo1a1

θ . . .Motat
θ e (5.14)

where {
M

ojaj

θ (g, g′)
def
= ωoj (g, g′, θ)µoj ,aj (g′, θ)

eT = (1, 1, . . . , 1)

and bT
0 (., θ) is the transpose of the initial internal belief state, corresponding to the initial

probability distribution on the internal states.
Thus:

∂Pr(ha
t |ho

t , θ)
∂θi

=
t∑

j=1

∑
g∈G

∑
g′∈G

[αj−1(g, θ)βt
j+1(g

′, θ)
∂(ωoj (g, g′, θ)µoj ,aj (g′, θ))

∂θi
] +

∑
g∈G

βt
0(g, θ)

∂b0(g, θ)
∂θi
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where 
α0(g, θ) = b0(h, θ)
αi(g, θ) = bT

0 (., θ)Mo1a1
θ . . .Moiai

θ (., g)
βt

i(g, θ) = Moiai
θ (g, .)Moi+1ai+1

θ . . .Motat
θ e

βt
t+1(g, θ) = 1

This latter expression of the gradient corresponds to the same one proposed in [Shelton, 2001].

5.4.4 Gradient Estimation for Predictive Policy Representations

If we use a PPR to represent the policy, then:

Pr(ha
t |ho

t , θ) = bT
0 (., θ)Mo1a1

θ . . .Motat
θ e (5.15)

where {
M

ojaj

θ (h, h′)
def
= mojaj (h, θ)bhojaj

(h′, θ)
eT = (1, 1, . . . , 1)

Therefore:

∂Pr(ha
t |ho

t , θ)
∂θi

=
t∑

j=1

∑
h∈H

∑
h′∈H

[αj−1(h, θ)βt
j+1(h

′, θ)
∂(mojaj (h, θ)bhojaj

(h′, θ))
∂θi

]

where 
α0(h, θ) = b0(h, θ)
αi(h, θ) = bT

0 (., θ)Mo1a1
θ . . .Moiai

θ (., h)
βt

i(h, θ) = Moiai
θ (h, .)Moi+1ai+1

θ . . .Motat
θ e

βt
t+1(h, θ) = 1

5.4.5 Updating the Parameters of the Policy

The gradient calculated by the critic (Equation 5.13) is used to update the parameters θi:

θi ← θi + η
∂V (h0, θ)

∂θi
(5.16)

where η ∈ [0, 1] is the gradient step-size.

Policy gradient methods are proved to converge to a local optimum. The probability of
reaching a global optimum depends on the starting point, the step-size, and the complexity
(or the shape) of the value function. In the following section, we show that the value function
is polynomial, with a smaller degree when the policy is represented by a PPR.
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5.5 The Degree of The Value Function

The functions ωo and µo,a return distributions of probabilities, they are usually represented as
softmax functions. The analysis of the value function is more difficult with this representation,
since it involves exponentials and fractions. For the purpose of comparing to PPRs, and
without loss of generality, we consider each ωo(g, g′) and each µo,a(g) as a different parameter,

so ωo(g, g′, θ)
def
= θg,o,g′ and µo,a(g, θ)

def
= θo,g,a, we also consider b0(g, θ)

def
= θg.

For PPRs, the vectors bhoa are not stochastic, therefore each bhoa(h′) is a parameter θi, so

bhoa(h′, θ)
def
= θhoa,h′ . As for FSMs, we define moa(h, θ)

def
= θoa,h.

Notice now that the function returning Pr(ha
t |ho

t , θ) (Equations 5.14 and 5.15) is a mul-
tivariate polynomial of degree less than or equal to 2t. The variables of this polynomial
correspond to the parameters θhoiai,h′ , θojaj ,h for a PPR, and to θg,oj ,g′ , θoj ,g,aj , θg for an FSM.
Unless a specific structure of the FSM is provided a priori, the graph of the FSM is generally
completely connected, i.e. ∀a, o, g, g′ : ωo(g, g′, θ)µo,a(g′, θ) > 0. Thus, we have αj(g, θ) > 0
and βt

j(g
′, θ) > 0 for every internal state g and step i 6 t, the degree of the polynomial

Pr(ha
t |ho

t , θ) for the FSM is then equal to 2t:

Pr(ha
t |ho

t , θ) = bT
0 (., θ)︸ ︷︷ ︸

degree 0

Mo1a1
θ . . .Motat

θ︸ ︷︷ ︸
degree 2t

e︸︷︷︸
degree 0

To reduce the degree of the value function, [Aberdeen and Baxter, 2002] proposed reducing
the outdegree of the FSM graph while augmenting the number of internal states. However,
the convergence can be delayed in that case, given that more parameters should be learned.

The main advantage of PPRs comes from the fact that, contrary to internal states, the
core histories are contained within the sequence of actions and observations, and no transition
probabilities are used to calculate the probability of a core history sequence. Namely, when
a prefix sequence o1a1 . . . oiai of the history ht = o1a1 . . . oiai . . . otat corresponds to a core
history hi, then the term bT

0 (., θ)Mo1a1
θ . . .Moiai

θ in Equation (5.15), can be replaced by a
vector αi(., θ) where αi(hi, θ) = Pr(ha

i |ho
i , θ) and αi(h, θ) = 0 for h ∈ H − {hi} (αi is the

“unnormalized” belief at time i). The probability of the sequence of actions contained in the
core history hi is given by:

Pr(ha
i |ho

i , θ) = Pr(a1|h0, o1, θ) . . . P r(ai|hi−1, oi, θ)

From the construction of PPRs, as we will show in Section 5.7 (see also Figure 5.5), we know
that all the prefixes of a core history are also core histories, therefore:

Pr(ha
i |ho

i , θ) = θo1a1,h0θo2a2,h1 . . . θoiai,hi−1

This latter term, Pr(ha
i |ho

i , θ), is a polynomial of degree i. Hence, the degree of the
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polynomial Pr(ha
t |ho

t , θ) (Equation 5.15) is at most equal to 2t− i:

Pr(ha
t |ho

t , θ) = bT
0 (., θ)︸ ︷︷ ︸

degree 0

Mo1a1
θ . . .Moiai

θ︸ ︷︷ ︸
degree i

M
oi+1ai+1

θ . . .Motat
θ︸ ︷︷ ︸

degree 2(t−i)

e︸︷︷︸
degree 0

Consequently, the degree of the value function of a PPR is equal to 2t− i, where i is the
length of the shortest core history hi that is not a suffix of another core history. Therefore, the
degree of the value function polynomial is generally smaller when the policy is represented by
a PSR than when it is represented by an FSM. This gain is due to the simple fact that PPRs
proceed as decision trees as long as the encountered history is a core history, then they start
acting like Finite-State Machines for the remaining time-steps, as depicted in the example of
Figure 5.5.

An interesting advantage of optimizing a function with a smaller degree is that the number
of local optima can also be smaller, as we will see in the following toy example.

5.5.1 Example

Figure 5.6 shows a simple POMDP problem with 3 deterministic actions: ↓ (Down), ← (Left)
and → (Right), and two deterministic observations o1 (upper three states) and o2 (lower three
states). There are also two final states marked with positive rewards 1 and 1/2.

To control the robot, a parametric FSM with three internal states is used, g1 is the initial
internal state, g2 and g3 are final internal states. Although one should use a different para-
meter for each ωo(g, g′) and each µo,a(g), we will use only two parameters, since representing
graphically functions with more than 2 variables is unfeasible. The first parameter θ1 corre-
sponds to the probability of going from state g1 to state g3 after observing o2, while 1− θ1 is
the probability of going to g2. We assume that the robot already knows that it should first
move down, thus Pr(↓ |o1, g1) = 1. The only possible observation after having moved down is
o2. The second parameter θ2 corresponds to the probability of executing action ← in state g3

after having observed o2, and 1− θ2 is the probability of executing action ↓ in g3 after having
observed o2 too. The same parameter θ2 is used for the actions in state g2. The optimal FSM
is given by θ1 = θ2 = 0. The value function of this FSM for horizon 2 is given by:

V FSM (h0, θ) =
1
2
θ1θ2 + (1− θ1)(1− θ2)

it has one global maximum of value 1 and one local maximum of value 1
2 .

The equivalent PPR can be represented by one core history: ε, and three parameters:
θ1
′ = mo2←(ε) and θ2

′ = mo2→(ε) and θ3
′ = mo2↓(ε). The value function of this policy is

given by:

V PPR(h0, θ
′) =

1
2
θ1
′ + θ2

′
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it has only a global maximum within the simplex of valid parameters, i.e. θ′1 + θ′2 6 1.

This gain is due to the fact that the history h1 = o1 ↓ is equivalent to ε (all the histories are
equivalent to ε whenH = {ε}, in which case the policy is simply a reactive one), thus bh1(ε) = 1
(degree 0) and the probability of action← after h1 and o2, for instance, is Pr(← |h1, o2) = θ1

′

(degree 1). While for the FSM, we have bh1(g3) = θ1, bh1(g2) = 1−θ1 and Pr(← |h1, o2) = θ1θ2

(degree 2).

1
2 1O2

O1

(a)

g1

g2g3

Pr(g2|g1, o2) = 1− θ1Pr(g3|g1, o2) = θ1

Pr(↓ |o1) = 1

Pr(← |o2) = θ2

Pr(↓ |o2) = 1− θ2

Pr(→ |o2) = 1− θ2

Pr(↓ |o2) = θ2

Pr(g2|g2, o2) = 1Pr(g3|g3, o2) = 1

(b)

h0
def
= ε, H = {ε}, bo1↓(ε) = 1,mo2←(ε) = Pr(← |o2)

def
= θ1

′

mo2→(ε) = Pr(→ |o2)
def
= θ2

′,mo2↓(ε) = Pr(↓ |o2)
def
= θ3

′

(c)
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Figure 5.6: The value functions of an FSM is a polynomial of degree 2, while that of its equiva-
lent PPR is a polynomial of degree 1. (a) A toy POMDP problem. (b) A Finite-State Machine
(FSM) for controlling this POMDP. (c) An equivalent Predictive State Representation (PPR).
(d) The value function of the FSM. (e) The value function of the PPR.
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5.6 Constraining The PPR Belief States

The belief state of a PPR with core histories is not a vector of probabilities, it is rather subject
to a set of constraints that should be satisfied at any time-step t:{

C1
t : ∀o ∈ O,∀a ∈ A :

∑
h∈H bt(h, θ)moa(h, θ) > 0;

C2
t : ∀o ∈ O :

∑
a∈A

∑
h∈H bt(h, θ)moa(h, θ) = 1;

The number of reachable belief states bt is exponential with respect to the horizon H,
while only the vectors moa and bhoa appear in the parameters of the policy. Thus, we should
define a finite set of constraints on moa and bhoa to ensure that {C1

t , C2
t } will be satisfied after

an arbitrary number of bayesian updates. The existence of such constraints depends on the
convexity of the bayesian update function inside the convex hull of valid belief states, and
up to our knowledge, this problem is still open [Wolfe, 2010b]. Nevertheless, we will define a
set of weaker constraints on moa and bhoa that can keep the beliefs bt within the hull of valid
weights for short horizons:

C1
0 : ∀o ∈ O,∀a ∈ A,∀h ∈ H : moa(h, θ) > 0;

C2
0 : ∀o ∈ O,∀h ∈ H :

∑
a∈Amoa(h, θ) = 1;

C3
0 : ∀o ∈ O,∀a ∈ A,∀h ∈ H :

∑
h′∈H bhoa(h′, θ) = 1;

Constraints C1
0 and C2

0 can be satisfied by using a soft-max function for each core history h

and each observation o. Constraint C3
0 is justified by Equation 5.5. To satisfy it, we project

the gradient ∂V (h0,θ)
∂θhoa,h′

onto the hyperplane defined by C3
0 . The projected values are given by:

∂V (h0, θ)
∂θhoa,h′

← 1
2

[
∂V (h0, θ)
∂θhoa,h′

− 1
|H|

∑
h′′∈H

∂V (h0, θ)
∂θhoa,h′′

]
(5.17)

This latter projection is found by solving a system of linear equations, defining the closest
point in a plane to another point in the space.

5.7 Discovery of Core Histories

Initially, the set of core histories H contains only the empty history ε, the vectors moa are
initialized to uniform distributions over actions a for each observation o, and all the histories
are considered as equivalent to ε, i.e. θoa,ε

def
= boa(ε, θ) = 1 (because of the constraint C3

0 ). As
the parameters θ are updated, new core histories are iteratively discovered and added to H.
A history hoa (which is an extension of a core history h ∈ H) is considered as a core history if
there is at least a test q such that Pr(qa|hoa, qo) cannot be written as a linear combination of
the probabilities Pr(qa|h′, qo), h′ ∈ H. Since this criteria cannot be verified for every possible
test q, we will rather use a set of heuristic measures as an indicator of the predictability of
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the history hoa. The first one is based on the distance dhoa between the vector θhoa, which is
updated by using the gradient calculated in Equation (5.13), and the corrected vector θ′hoa,
which is updated by using the projected gradient of Equation (5.17) (i.e. dhoa is the correction
made on θhoa to make it satisfy the constraint C3

0 ):

d2
hoa =

∑
h′∈H

(θhoa,h′ − θ′hoa,h′)
2

The second measure is the entropy eho of the distribution on actions a conditioned on the
history h and the observation o:

eho = −
∑
a∈A

Pr(a|h, o) ln Pr(a|h, o)

Finally, a history hoa cannot be added to H if it has not been tested enough. Thus, our third
measure is P̂ r(hoa|ε) = #hoa

N , where N is the number of trials.
A history hoa is considered as a new core history if and only if:

(dhoa > εd) ∧ (eho > εe) ∧ (P̂ r(hoa|ε) > εp)

where εd,εe and εp are predefined thresholds.

The choice of these thresholds has a great impact on the number of core histories, smaller
thresholds lead to a higher number of core histories. This problem, which is close to the
problem of choosing the number of internal states in FSMs, has been empirically studied
in [Makino and Takagi, 2008].

The probabilities moa(h′, θ) of a new core history h′ are initialized to a uniform distribu-
tion, whereas all the extensions of h′ are considered as equivalent to h′, i.e. bh′o′a′(h′, θ) = 1
and bh′o′a′(h′′, θ) = 0 for h′′ ∈ H − {h′}.

5.8 Experiments

We tested the policy gradient approach described in Section 5.4 on small standard problems
taken from [Cassandra, 1998], using PPRs and FSMs as models of the policies. We used
softmax functions for representing: (i) the distributions on actions in both PPRs (with the
vectors moa) and FSMs (with the functions µoj ,aj ) and, (ii) the distributions on the next
internal states in FSMs (with the functions ωoj ). We used the same temperature τ for these
functions, τ is initialized to 0.1 for 4 × 4 maze problem, to 1 for Cheese maze and Shuttle
problems, and to 10 for Network problem. For all these problems, τ is decreasing by a constant
factor of 0.999 at every time-step.

The number of internal states |G| is the only hyper-parameter for FSMs, it is chosen by
a cross-validation for each problem. We found that the best value of |G| is 6 for 4× 4 maze,
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3 for Cheese maze and Shuttle problems, and 8 for Network problem. The parameters of
the transition functions ωoj , used by the softmax function, were randomly initialized to val-
ues between 0 and 1. The parameters of the action-selection functions µoj ,aj were initialized
to 0 (a uniform distribution). The functions µoj ,aj and ωoj cannot be all initialized to uni-
form distributions, this results in uniform beliefs and the initial parameters will be a local
optimum [Aberdeen and Baxter, 2002].

The hyper-parameters of PPR policies are the thresholds εp,εe, and εd (see Section 5.7).
εp is set to 0.1 for all the problems, while εd is set to 0.1 for 4 × 4 maze, to 6 for Network,
and to 0 for Cheese maze and Shuttle. εe is set to 0 for 4 × 4 maze and Network, and to
1.5 for Cheese maze and Shuttle. Notice that these thresholds are used to control the size of
H: using smaller thresholds leads to more core histories and vice versa. They are found by
a cross-validation, with slightly more trials than for |G| in FSMs, since they are continuous
parameters. Finally, we used the same constant step-size η for both PPRs and FSMs, η is set
to 1 for 4× 4 and Cheese mazes (problems with small rewards), and to 0.1 for Network and
Shuttle (problems with high rewards). This scaling problem came from the fact that we did
not use natural gradients.
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Figure 5.7: Empirical results on learning PPRs (referred as PSR policies) and FSMs using
the Policy Gradient approach in the 4x4 maze problem.
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Figures 5.7, 5.8, 5.9, and 5.10 show the average reward per step of FSMs and PPRs
(referred PSR policies), and the average number of discovered core histories per step for
PPRs. The results are averaged over 10 independent runs. For all these problems, the Policy
Gradient algorithm converged to locally optimal values for both models of policies. However,
we notice that the final value is slightly higher when we use a Predictive Policy Representation,
which was expected from the theoretical analysis of Section 5.5. The better performance of
PPRs is more pronounced in problems with a smaller number of histories (|A||O| = 8 in 4× 4
maze and Network, 15 in Shuttle, and 28 in Cheese maze). Indeed, discovering the accurate
set of core histories becomes more difficult when the branching factor |A||O| is higher. Finally,
we notice that the learning algorithm for PPRs converged rapidly in Network problem, this
is explained by the fact that all the core histories were discovered within the first 30 trials.
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Figure 5.8: Empirical results on learning PPRs (referred as PSR policies) and FSMs using
the Policy Gradient approach in the Network problem.
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Figure 5.9: Empirical results on learning PPRs (referred as PSR policies) and FSMs using
the Policy Gradient approach in the Cheese maze problem.

−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  500  1000  1500  2000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

A
ve

ra
ge

 R
ew

ar
d 

pe
r 

S
te

p

N
um

be
r 

of
 c

or
e 

hi
st

or
ie

s

Learning Step

PSR policy
FSC policy

Optimal Policy
# core histories

Figure 5.10: Empirical results on learning PPRs (referred as PSR policies) and FSMs using
the Policy Gradient approach in the Shuttle problem.
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5.9 Conclusion

We have shown that Predictive Policy Representations (PPRs) are alternative to Finite-State
Machines in policy gradient methods for POMDPs. Internal states of PPRs are based on
observable sequences of interacting with the environment, called core histories. Two main
advantages result from this property. The first one is related to problems with short horizons,
where the degree of the value function polynomial is reduced by the length of the shortest core
history that is not a prefix of another core history. The second advantage is the possibility of
discovering new core histories, based on the predictability of the extensions of previous core
histories. We used different heuristics, based on the entropy of the actions distribution and
the correction of the gradient, as an indicator of the predictability, but more sophisticated
techniques should be investigated [Makino and Takagi, 2008].

However, it is unclear how PPRs will perform in problems with infinite, or even just long,
horizon where the value function is defined only on the stationary belief state and the core
histories cannot be observed. In fact, the preliminary experiments that we performed on larger
scale problems showed that PPRs had the same difficulty as FSMs in reaching a satisfactory
solution, with an additional effort for cross-validating the continuous hyper-parameters.

This problem can be treated by using a mechanism for detecting reset points [James, 2005].
Particularly, one can combine core histories and core tests, and use the first ones to detect
the reset points for the second. The other issue related to infinite-horizons is the instability
of the belief states. We defined some constraints that can keep the belief within the hull of
valid parameters for short horizons, but finding a general efficient solution remains an open
problem [Wolfe, 2010b].



Chapter 6

Imitation Learning with Predictive

Representations

Learning by imitation has shown to be a powerful paradigm for automated learning in au-
tonomous robots. This paradigm is often preferred to reinforcement learning, presented in
Chapter 5, for several reasons. Amongst these reasons, the most important one is the small
number of the training data needed for learning how to perform a given task. Moreover,
the hazardous exploratory actions that are important in reinforcement learning are no longer
necessary when the agent learns under the supervision of an expert. Finally, many real-world
tasks, such as those related to humanoid robotics, are so complicated that their correspond-
ing reward functions cannot even be handcrafted. In this chapter, we tackle two problems
occurring in imitation learning. The first one is related to the partial observability of states,
while the second one is related to the scarcity of the expert’s demonstrations in large domains.
We present a general model of learning by imitation for stochastic and partially observable
systems. The model, which was already introduced in Chapter 4, is a Predictive Policy Repre-
sentation (PPR) whose goal is to represent the policies of an expert without any reference to
states. Then, we return to the problem of learning from an expert in a completely observable
stochastic environment where the demonstrations of the expert are scarce and cover only a
small part of a large state space. To solve this problem, we propose to use a transfer method,
known as soft homomorphism, in order to generalize the expert’s policy to unvisited regions of
the state space. Finally, we will show that this same problem can be solved by bootstrapping
the expert’s policy, and using predictive reward representations.

6.1 Introduction

Modern robots are designed to perform complicated planning and control tasks, such as ma-
nipulating objects, navigating in outdoor environments, and driving in urban settings. Unfor-
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tunately, manually programming these tasks is almost infeasible in practice due to the high
number of related states. Markov Decision Processes (MDPs) provide efficient mathematical
tools to handle such tasks with a little help from an expert. The expert’s help consists in sim-
ply specifying a reward function. Based on this reward function, the robot can either directly
find an optimal policy if the dynamics of the environment related to the task is known, or
learn that policy by trying different actions, and estimating the value of each action based on
the received rewards. The first approach is called planning and was presented in Chapters 2
and 3, the second one is called reinforcement learning and was presented in Chapters 2 and 5.

The assumption of knowing the dynamics of the environment cannot be easily verified
in practice. For instance, a typical task of a personnel assistive robot always involves an
interaction with a human user. Due to its high complexity, the human behavior can hardly
be modeled using a finite number of parameters. Reinforcement learning solves this problem,
but at the cost of executing random and hazardous actions for long periods before finding the
optimal ones. Moreover, in many practical problems, even specifying a reward function is not
easy. In fact, it is often easier to demonstrate examples of a desired behavior than to define
a reward function [Ng and Russell, 2000].

This latter approach, known as imitation learning (a.k.a. apprenticeship learning) [Atke-
son and Schaal, 1997; Billard, 2002], is a well-known technique that provides a fast and efficient
way of acquiring new skills without the need for extensive experimentations. It is also justi-
fied somewhat by the fact that much of biological learning is done by imitation. In assistive
robotics, where the human-machine interaction is omnipresent, imitative learning can be a
powerful learning paradigm. In the imitation process, a learner agent observes the actions of
a expert agent, and tries to find the relation between the actions and the different encoun-
tered situations. One can generally distinguish between direct and undirect apprenticeship
approaches [Ratliff et al., 2009]. In direct methods, the robot learns a function that maps
states features into actions by using a supervised learning technique [Atkeson and Schaal,
1997]. The best known example of a system built on this paradigm is ALVINN [Pomerleau,
1989], where a neural network was trained to learn a mapping between a road image and a
vehicle steering action. Despite the remarkable success of the ALVINN system and others,
direct methods suffer from a serious drawback: they can learn only reactive policies, where
the optimal action of a state depends only on its features, regardless of the future states of
the system.

To overcome this drawback, Ng and Russell [2000] introduced a new approach of undirect
apprenticeship learning known as Inverse Reinforcement Learning (IRL). The aim of IRL is to
recover a reward function under which the expert’s policy is optimal, rather than to directly
mimic the actions of the expert. The learned reward function is then used to find an optimal
policy. Contrary to direct methods, IRL takes into account the fact that the different states of
the system are related by transition and value functions. Consequently, the expert’s actions
can be predicted in states that are different from those appearing in the demonstration.
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Unfortunately, as already pointed out by [Abbeel and Ng, 2004], recovering a reward
function is an ill-posed problem. In fact, the expert’s policy can be optimal under an infinite
number of reward functions. Most of IRL algorithms that have been proposed were attempting
to solve this problem by adding a regularization cost. These algorithms rely on the assumption
that the reward function is a linear combination of states features, and the frequency of
encountering each feature can be accurately estimated from the demonstration. However,
feature frequencies might be poorly estimated when the number of demonstrations is small,
as we will show in our experiments in this chapter. Moreover, in the absence of a complete
expert’s policy, the frequencies of the features that belong to only unvisited states cannot
even be estimated.

In the next two sections, we present a brief overview of direct and undirect approaches
to imitation learning. The remaining sections are dedicated to describe the solutions that
we propose for solving two important problems in imitation learning: learning in a partially
observable environment, and generalizing the learned policy to unseen states.

6.2 Direct Imitation Learning

Direct Imitation Learning, also known as mimicking or Behavioral cloning, is one of the
oldest paradigms studied in robotics and machine learning [Schaal, 1999], and before that,
in cognitive science and ethology (the scientific study of animal behavior) [Piaget, 1951].
Historically, this topic of study suffered from a prejudice that “imitating, or mimicking, is
not an expression of higher intelligence”. This attitude started to change in the 70’s with
a growing evidence reported by many scientists about the importance of imitation in both
human and animal learning. As an example of that, Meltzoff and Moore [1977] reported on
the ability of 21 day old infants to imitate both facial and manual gestures. Thus, the ability
to map a perceived facial gesture to their own’s gesture was showed to be innate. It was
also discovered that many animals were unable to learn by imitation [Meltzoff, 1995; Byrne,
1995], these finding contributed to today’s view of imitation as an important expression of
higher intelligence [Schaal, 1999; Whiten, 2002]. Recently, the discovery of mirror neuron
system, a network of human brain areas specialized in imitation, opened the way to a better
understanding of the neural foundations of the complex mechanisms of imitation [Decety
et al., 2002]. Inspired by this new evidence, imitation learning has become again a core topic
of research in robotics and machine learning [Billard, 2002; Calinon and Billard, 2005; Verma
and Rao, 2006; Hoey and Little, 2007], making use of sophisticated probabilistic models.

In this chapter, we focus on imitation learning for solving tasks that can be casted as a
Markov Decision Process (MDP). A detailed overview of direct imitation learning methods
for solving sequential decision-making problems is given by [Schaal et al., 2003].

Direct imitation learning is generally reduced to a supervised learning problem, where the
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expert’s policy is directly learned by mapping states to actions. To do so, states and actions
should be identifiable, which is a serious issue in imitation learning, since the expert’s internal
(mental) states are hidden from the learner, and the executed actions can be perceived only
through their effects. Thus, the primitive actions need to be defined in terms of variables that
can be perceived, for instance, the acceleration of the finger tip in the task of pole balancing
instead of the commands sent to the motor neurons. This problem, called task-level learning,
was discussed in details by Aboaf et al. [1989]. Task-level imitation requires prior knowledge
of how a task-level command (the desired action) can be converted into an actuator-level
command (the realization of the action).

The best known example of a system built on this paradigm is ALVINN [Pomerleau,
1989], where a neural network was trained to learn a mapping between a road image and a
vehicle steering action. Supervised learning was also used for the task of pole balancing with
a simulated pole [Nechyba and Xu, 1995]. For this purpose, a neural network has been trained
on the task of balancing a pole, the training data was provided by a human demonstrator. This
method was also adopted by several mobile robotic groups, were an agent learns to navigate
in an indoor environment by following a human and repeating her actions [Dautenhahn, 1995;
Nechyba and Xu, 1995].

Direct imitation learning can also be reduced to a problem of learning the parameters of
a dynamical system. The learner agent represents the expert’s policy with a probabilistic
model such as HMMs or (PO)MDPs. The dynamics of this model can be learned from the
demonstrated behavior. Atkeson and Schaal [1997] showed how a robot arm agent can use a
probabilistic model to represent the behavior of a human balancing a pole, and learn it after a
few trials. This approach allows the learner agent to overcome the problem of generalization
in supervised learning methods, but it may need a great number of training trajectories before
converging to accurate parameters if the environment is highly stochastic.

Despite the growing body of work that has been done over the past few years on imitation
learning, there has been less focus on applying these ideas to partially observable environ-
ments. Some of the proposed solutions [Verma and Rao, 2006; Hoey and Little, 2007] use
the POMDP model to represent the policy of the expert, and then learn the parameters of
this POMDP by using the Baum-Welch method [Koenig and Simmons, 1996], which needs
considerable learning data, and is subject to local minima unless a good initialization of the
parameters is provided. Initializing the parameters of a policy is not so easy because the
policy states correspond to mental states rather than to physical situations.

In this chapter, we propose a new method for learning the expert’s policy in a partially
observable environment. Our approach is based on using predictive representations [Littman
et al., 2001], which are generally easier to learn than the state-based representations in par-
tially observable domains [James, 2005]. This approach is presented in Section 6.4.1.
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6.3 Inverse Reinforcement Learning

6.3.1 Overview

The key idea behind inverse reinforcement learning is that the reward function is the most
succinct hypothesis for explaining a behavior. Consequently, an observed behavior can be
better generalized to other situations when the reward function is known. In this section,
we start by presenting a background on the theoretical tools used in IRL. Then, we present
the general IRL formulation, followed by two algorithms for imitation learning based on
IRL, namely Linear Programming Apprenticeship Learning (LPAL) [Syed et al., 2008], and
Maximum Margin Planning (MMP) [Ratliff et al., 2006].

6.3.2 Preliminaries

We denote by MDP\R a Markov Decision Process without a reward function, i.e. a tuple
(S,A, T, α, γ), where: S is a finite set of states, A is a finite set of actions, T is a transition
function, α is an initial state distribution defined as α(s) = Pr(s0 = s), and γ is a discount
factor (see Chapter 2). We assume that there exists a set of k feature vectors φi, and the
reward function R is given by a linear combination of these features with weights wi:

∀s ∈ S,∀a ∈ A : R(s, a) =
k∑

i=0

wiφi(s, a) (6.1)

The agent decides which action to execute according to a policy π, defined as:

π(s, a) = Pr(at = a|st = s)

The value V (π) of a policy π is the expected sum of rewards that the agent will receive if it
follows the policy π, i.e.

V (π) = E[
∞∑

t=0

γtR(st, at)|α, π, T ] (6.2)

An optimal policy π is one satisfying π = arg maxπ V (π).

The occupancy µπ of a policy π, also known as the discounted state-action visit distribution
or the state-action visit frequencies, is defined as:

µπ(s, a) = E[
∞∑

t=0

γtδst,sδat,a|α, π, T ]

where δ is the Kronecker delta: δst,s = 1 if st = s and δst,s = 0 if st 6= s.
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The following linear constraints, known as Bellman-flow constraints, are necessary and
sufficient to define the occupancy of a policy π:

µπ(s) = α(s) + γ
∑
s′∈S

∑
a∈A

µπ(s′, a)T (s′, a, s) (6.3)∑
a∈A

µπ(s, a) = µπ(s)

µπ(s, a) > 0

A policy π is well-defined by its occupancy µπ, we will interchangeably use π and µπ to denote
a policy. The set of feasible occupancy measures is denoted by G.

The frequency of a feature φi using a policy π is given by:

vi,π = E[
∞∑

t=0

∑
s∈S

∑
a∈A

γtδst,sδat,aφi(s, a)|α, π, T ]

=
∑
s∈S

∑
a∈A

E[
∞∑

t=0

γtδst,sδat,aφi(s, a)|α, π, T ]

= F (i, .)µπ (6.4)

where F is a k × |S||A| feature matrix, such that F (i, (s, a)) = φi(s, a).

Using the definitions given by Equations 6.2 and 6.4, the value of a policy π can be written
as a linear function of the feature frequencies:

V (π) =
k∑

i=0

wivi,π

= wT Fµπ (6.5)

Therefore, the value of a policy is completely determined by the expected frequencies of the
features φi.

6.3.3 Apprenticeship Learning via Inverse Reinforcement Learning

The aim of apprenticeship learning is to find a policy π that is at least as good as the expert’s
policy πE . The value functions of π and πE cannot be directly compared, since the true
reward function is unknown. As a solution to this problem, Ng and Russell [2000] proposed
to first learn a reward function, assuming that the expert is optimal, and then use it to
recover the expert’s generalized policy. This can be achieved by solving the following equation
∀π′ ∈ Π : V (πE) > V (π′) where the unknown variables are the rewards and Π denotes the
set of all the possible policies. By using the definition of Equation 6.5, this problem can be
reduced to the following system of linear equations, where the variables are w:

∀π′ ∈ Π : wT FµπE > wT Fµπ′ (6.6)
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However, the problem of learning a reward function given an optimal policy is ill-posed.
Indeed, a large class of reward functions, including all constant functions for instance, may
lead to the same optimal policy and solve Equation 6.6.

To overcome this problem, Abbeel and Ng [2004] did not consider recovering a reward
function, instead, their algorithm returns a policy π with a bounded loss in the value function,
i.e. ‖ V (π)− V (πE) ‖6 ε, where the value is measured with respect to the expert’s unknown
reward function. This property is derived from the fact that when the feature frequencies
of two policies match, their cumulative rewards match as well, assuming the reward is a
linear function of the features. However, this algorithm iteratively calls an MDP planner as
a subroutine, which considerably affects its computational efficiency. More importantly, this
algorithm cannot efficiently generalize the learned policy from one region of the state space to
another, or when the start and goal states change. This is due to the fact that the frequencies
of the features depend on the executed policy, as well as the transition probabilities, which
may vary from one region to another.

Ratliff et al. [2006] noted that the regret, corresponding to the difference in value func-
tion compared to the expert’s policy, is convex but nondifferentiable, and they successfully
applied the subgradient technique to learn policies minimizing the regret. This method will
be presented in Section 6.3.4. Along these lines, Syed and Schapire [2008] proposed to use ef-
ficient game-theoretic methods for minimizing the regret. In this method, the reward weights
correspond to the weights minimizing the loss in value function in the worst case. Based on
the same technique, Syed et al. [2008] derived a simpler algorithm for the case where all the
reward weights are positive. This algorithm, known as Linear Programming Apprenticeship
Learning (LPAL) will be presented in Section 6.3.5.

For their part, Neu and Szepesvári [2007] proposed to use a different loss function, based on
the difference between the expert’s policy and the learned policy rather than on the difference
between the corresponding value functions. They utilized a natural gradient method (see
Section 5.3.4 for a brief presentation of natural gradients) to learn policies that are close to
the expert’s one. The authors tested the proposed method on artificial domains and found it
to be more reliable and efficient than some other methods.

Bayesian approaches for selecting a reward function also have been investigated by Ra-
machandran and Amir [2007]. In this work, the authors assumed that the action-selection
policy is a softmax function, and used a Monte Carlo Markov Chain (MCMC) method to
sample posterior reward distributions. This approach requires that a prior distribution on the
reward functions is known, which is not always obvious if no domain knowledge is available.

Maximum entropy methods for generalizing the expert’s policy have been considered
by Ziebart et al. [2008]. The principle of maximum entropy is that the hypothesis that gen-
eralizes the best is the one that does not make any further assumptions beyond the observed
examples. Ziebart et al. [2008] used a parametric softmax distribution on all the possible
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optimal policies that match the expert’s policy. The parameters of this distribution are the
weights of the reward function, and the optimal weights are those that maximize the entropy
of this distribution.

Lopes et al. [2009] used an approach combining active learning and bayesian inverse rein-
forcement learning for recovering the reward function. Given the examples provided by the
expert and a prior distribution on the reward functions, a posterior distribution on the re-
wards is calculated just as in [Ramachandran and Amir, 2007]. However, the authors assumed
that the learner agent can inquire information about missing examples from the expert. To
minimize the number of these queries, the learner agent inquires information about only the
states and actions that may reduce the entropy of the distribution on the rewards. This ap-
proach is well-suited for problems where the learner agent is constantly interacting with the
expert, but not for the general context.

In the next two subsections (6.3.4 and 6.3.5), we provide a detailed description of two IRL
algorithms that will be used for comparison later in this chapter.

6.3.4 Maximum Margin Planning

Maximum Margin Planning (MMP), proposed by Ratliff et al. [2006], returns a vector of
reward weights w, such that the value of the expert’s policy wT FµπE is higher than the value
of an alternative policy wT Fµ by a margin that scales with the number of expert’s actions
that are different from the actions of the alternative policy. This criterion is directly specified
in the cost function minimized in the algorithm:

cq(w) =
(

max
µ∈G

(wT F + l)µ− wT FµπE

)q
+

λ

2
‖ w‖2 (6.7)

This latter equation corresponds to the cost used in MMP for one MDP domain, where
q ∈ {1, 2} defines the slack penalization, λ is a regularization parameter, and l is a deviation
cost vector, defined as: l(s, a) = 1 − πE(s, a). Intuitively, a policy maximizing the cost-
augmented reward vector (wT F + l) is completely different from the expert’s policy, since it
is given an additional reward l(s, a) for the actions that are different from those of the expert.
The algorithm directly minimizes the difference between the value divergence wT FµπE−wT Fµ

and the policy divergence lµ.

The cost function cq is convex, but nondifferentiable. Ratliff et al. [2006] showed that cq

can be minimized by using a generalization of gradient ascent called the subgradient method.
For a given reward w, a subgradient gq

w is given by:

gq
w = q

(
(wT F + l)µ+ − wT FµπE

)q−1
.F∆wµE + λw (6.8)

where µ+ = arg maxµ∈G(wT F + l)µ, ∆wµE = µ+ − µE .
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As for most of apprenticeship learning algorithms, MMP requires the knowledge of the
feature frequencies F (i, .)µπE = vi,πE . These frequencies can be analytically calculated (using
Bellman-flow constraints) only if a complete expert policy is provided. However, the expert
provides only a sequence of M demonstration trajectories tm = (sm

1 , am
1 , . . . , sm

H , am
H , ). The

estimated feature frequencies v̂i,πE , which are used in lieu of vi,πE in MMP, are given by:

v̂i,πE =
1
M

M∑
m=1

H∑
t=1

γtφi(sm
t , am

t ) (6.9)

There are nevertheless many problems related to this approximation. First, the estimated
frequencies v̂i,πE can be very different from the true ones when the demonstration trajectories
are few. Second, the frequencies v̂i,πE are estimated for a finite horizon H, whereas the
frequencies vi,π used in the objective function (Equation 6.7), are calculated for an infinite
horizon (Equation 6.4). In practice, these two values are too different and cannot be compared
as done in the cost function. The frequencies vi,πE are a function of both a policy and the
transition probabilities, the empirical estimation of vi,πE does not take advantage of the
fact that the transition probabilities are known. Finally, a frequency v̂i,πE cannot even be
estimated if φi takes non null values only in states that did not appear in the demonstration.
These issues of estimating the frequencies of the features are treated in Sections 6.5, 6.6
and 6.7.

6.3.5 Linear Programming Apprenticeship Learning

Linear Programming Apprenticeship Learning (LPAL), proposed by Syed et al. [2008], is a
fast IRL algorithm that is based on the following observation: if all the weights wi of the
reward features are positive, and for some policy π we have vE = mini=0,...,k−1[vi,π − vi,πE ]
then V (π) > V (πE) +

∑k−1
i=0 wiv

E , where k is the number of features.

LPAL consists in maximizing the margin vE , aiming to find policies that might outperform
the expert’s one by a margin of

∑k−1
i=0 wiv

E . The maximal value of vE is found by solving the
following linear program:

max
v,µπ

v (6.10)

subject to

∀i ∈ {0, . . . , k − 1} : v 6
∑
s∈S

∑
a∈A

µπ(s, a)φi(s, a)︸ ︷︷ ︸
vi,π

−vi,πE

µπ(s) = α(s) + γ
∑
s′∈S

∑
a∈A

µπ(s′, a)T (s′, a, s)∑
a∈A

µπ(s, a) = µπ(s)

µπ(s, a) > 0
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The last three inequalities in this linear program correspond to the Bellman-flow con-
straints (Equation 6.4) defining the feasible set of µπ. The learned policy π is given by:

π(s, a) =
µπ(s, a)∑

a′∈A µπ(s, a′)
(6.11)

As for Maximum Margin Planning (see the discussion in the previous section), LPAL
requires the knowledge of the feature frequencies vi,πE (in Equation 6.11). This issue is
treated in Sections 6.5, 6.6 and 6.7.

In the next section, we return to direct imitation learning approaches (behavioral cloning),
and we propose to use Predictive Policy Representations (PPRs) for the case where the envi-
ronment is partially observable.

6.4 Imitation Learning In Partially Observable Environments

6.4.1 Motivating problems

Intelligent wheelchairs are one instance of assistive robots where the human user is constantly
interacting with the machine [Pineau and Atrash, 2007]. They are generally designed to assist
individuals with mobility impairments who have difficulty with fine motor skills, and therefore
cannot easily or safely operate a standard motorized wheelchair. The intelligent controller is
designed to reduce their physical (and sometimes cognitive) load. Many of these individuals
however are not willing to relinquish full control to an intelligent controller, thus a shared
control solution is preferred.

As part of this shared control, the intelligent wheelchair should be able to detect the
anomalous behavior of the user and to switch into automatic control mode (or alert the user).
An example of anomalous (or undesirable) behavior may be as simple as the wheelchair hitting
a wall, which is a frequent occurrence for many wheelchair users. Detecting more complex
deviations from usual behavior is a very hard problem, since it depends on having a notion
of the normal behavior. This problem can be cast as a problem of learning a policy for the
human controller in a partially observable environment, as the sensors used by the wheelchair,
such as laser rangefinders, do not precisely determine the location of the wheelchair.

The second problem we are interested in addressing is the classical pathfinding problem.
In general, this problem can be solved efficiently if the environment dynamics are known in
advance (e.g. using A*-type methods, or the more complex POMDP framework). But these
approaches work best when the optimization criterion is simple (e.g. minimum distance).
Note however that the shortest path is not always the user’s preferred path, and in some
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cases the user may wish to choose between several short paths. This problem can also be cast
in the imitation learning framework, and solved with the methods outlined in this chapter.

To solve these problems, we propose to model the human’s policy with a Predictive Policy
Representation. The techniques used for learning predictive representations are reviewed in
the next section.

6.4.2 Learning Predictive Representations

Most of the PSR literature is devoted to the problem of learning a model from a sequence of
actions and observations. This problem can be divided into two parts: discovery of a set of
core tests, and learning the parameters corresponding to the core tests (the vectors mao and
maoq, see Section 2.4).

The first algorithm for learning PSRs [Singh et al., 2003] focused only on learning the
parameters, and assumed that the set of core tests was given. The authors defined an error
function corresponding to the squared difference between the probabilities of future tests
according to the PSR model and the actual probabilities of the same tests. A stochastic
gradient-descent was then used to update the parameters at each time-step and to gradually
converge to a local optimum. However, the authors argued that the gradient of the error
function is complex to compute because the derivative of the belief state requires taking into
account the entire history. Instead, they used a myopic gradient where it was assumed that
the derivative of the belief states is zero. This algorithm obtained mixed results on a set of
POMDP domains taken from [Cassandra, 1998], and a high prediction error was reported for
relatively large domains.

Analytical Discovery and Learning (ADL) [James and Singh, 2004] was the first algorithm
to consider the problem of discovering a set of core tests. To do so, the authors constructed
a large matrix D, known as the dynamics matrix [Singh et al., 2004], that captures all the
dynamics of the system. The rows of the dynamics matrix correspond to the histories and
the columns correspond to the future tests, and the entries of the matrix are the conditional
success probabilities of the tests after each possible history, i.e. D(h, q) = Pr(q|h). This
matrix can be estimated by sampling sequences of actions and observations and resetting
the system to an initial distribution at the end of each trial. At the end of this process,
the core tests will be the tests corresponding to linearly independent columns. The weight
vectors mao and maoq can then be found by simply solving a system of linear equations. The
empirical results showed that ADL was able to discover an accurate set of core tests, and to
find good model parameters of dynamical systems where the previous myopic algorithm had
difficulty. However, this algorithm is limited by the size of available memory since the size of
the dynamics matrix grows double exponentially with respect to the horizon of planning.
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Rosencrantz et al. [2004] proposed a learning algorithm close to ADL, where the dimen-
sionality of the model was reduced even more by performing a Singular Value Decomposition
(SVD) on the dynamics matrix. The resulting PSR model, called Transformed PSR (TPSR),
was used in a real world robot tracking task, and performed significantly better than a Hidden
Markov Model. An analysis of ADL-style algorithms is given in [Wiewiora, 2005].

Resetting the system into an initial state distribution is not always possible in practice.
To solve this problem, Wolfe [2009] proposed an algorithm for learning the parameters of
a PSR model from a single trajectory of actions and observations. Assuming that a set
of core tests is provided, the algorithm updates the parameters mao and maoq by gradually
adding the temporal difference (TD) between the prediction of the model before perceiving an
observation, and its prediction after. This algorithm outperformed all the previous learning
algorithms for PSRs, as well as Expectation Maximization (EM) algorithm, which is considered
as the standard method for learning POMDPs.

Another solution to the problem of learning PSRs in dynamical systems without reset
was given by McCracken and Bowling [2006]. As in [Singh et al., 2003], a gradient-descent
method was used to update the PSR parameters, while a dynamics matrix was learned and
used for discovering core tests, as done in ADL [James and Singh, 2004]. Moreover, a set of
constraints was used to restrict the entries of the dynamics matrix to be valid distributions.
The empirical results showed that this algorithm is competitive with the previous ones.

Finally, the problem of learning with non-blind (non-uniform) policies was considered
in [Bowling et al., 2006], where the learner agent selects the actions that improve the accuracy
of the PSR parameters. Bowling et al. [2006] principally provided Monte Carlo estimators of
the probabilities of tests, where the bias introduced by the exploration policy was removed.

6.4.3 Imitation Learning with Predictive Policy Representations

In partially observable environments, the learner agent perceives only the actions of the expert
and its own observations. Based on this data, it should be able to extract the expert’s policy
that is generating this control. Generally, a human’s behavior is non-stationary, i.e. it does
not depend only on the state of the system, but also on the time-step in which an action is
performed. However, in order to avoid additional complexity to the problem, we will make
the assumption that the expert’s policy is stationary.

In the case where the observation models of the expert and the agent match, imitation
learning can be reduced to a problem of learning the parameters of a PPR model, which is
basically equivalent to the problem of learning the parameters of a PSR. We will return to
the general case, where the expert and the agent have heterogenous observations, latter in
this section.
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6.4.3.1 Learning PPRs Versus FSMs

Contrary to Finite-State Machines (FSMs), PPRs can be learned by simply counting the
different tests appearing in a trajectory. This is due to the fact that the core tests of PPRs
can be observed during the learning process, whereas the hidden internal states in FSMs
cannot be observed. In fact, to estimate the probability that a core test q appears after a
history h, we should only repeat h several times and count the number of times q occurs after
h. But to estimate the probability of being in a hidden internal state g after a history h,
even if one repeats h several times, one should use the parameters of the FSM to estimate
Pr(g|h) since g can be observed only through the selected actions. However, FSM parameters
cannot be known during the process of learning them. Hence, FSM learning algorithms,
such as the Baum-Welch algorithm [Koenig and Simmons, 1996], start with randomly chosen
parameters, and then alternate between the phase of estimating the internal belief states bt

(distributions on the internal states) for each time-step t of the training sequence, and the
phase of optimizing the FSM parameters, until no further optimization can be achieved. The
final result heavily depends on the initial parameters, and can be trapped in a local optimum.

6.4.3.2 Analytical Discovery and Learning of Predictive Policy Representations

In pathfinding problems, the goal of the task is to reach a final state, so the system can always
be restarted once the goal was reached. If there is no final state, one can cut the trajectories at
distant time-steps, and consider that the system has been restarted at these points. Therefore,
we propose to use an efficient algorithm for learning PSRs in dynamical systems with reset,
and adapt it in order to learn PPRs. The proposed algorithm, presented in Algorithm 9, is a
simple adaptation of the Analytical Discovery and Learning (ADL) [James and Singh, 2004]
described in Section 6.4.2.

The learner agent collects several samples of trajectories ti = ai
1o

i
1 . . . ai

moi
m by observing

the expert’s behavior. The first step of the algorithm consists in constructing a matrix D,
defined as:

D(h, q) = P̂ r(q|h)

where h is a history and q is a test occurring in the expert’s trajectories.
The estimated success probability P̂ r(q|ε) of a test q = a1o1a2o2 . . . akok is calculated by using
the following estimator:

P̂ r(q|ε) =
k−1∏
t=0

P̂ r(at+1|a1o1a2o2 . . . atot) =
k−1∏
t=0

#a1o1a2o2 . . . atotat+1∑
a∈A#a1o1a2o2 . . . atota

where o0
def
= ε, and #q is the number of the expert’s trajectories that started with q.
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This latter estimator was proposed by Bowling et al. [2006] in order to eliminate the
bias introduced by the system dynamics. It was originally used to learn the parameters of a
dynamical system when the exploration policy is not blind, i.e. the executed actions depend
on the perceived observations. This issue is inherent to the problem of learning a policy from
a demonstration, because the observations depend on the executed actions, unless the system
is uncontrolled.

The following Bayes’ Rule is used to find other entries of the matrix D:

P̂ r(q|h) =
P̂ r(hq|ε)
P̂ r(h|ε)

Input: Samples of the expert’s trajectories ti = ai
1o

i
1a

i
2o

i
2 . . . ;

Output: A PPR model of the expert’s policy 〈A,O, Q, Pr(Q|ε), {moa}, {moaq}〉 ;
Construct the dynamics matrix D by estimating probabilities D(h, q) = P̂ r(q|h) for all1

the sequences q and h occurring in the trajectories ti;
Initialize the set of core tests Q with the void test ε, and set Pr(ε|ε) = 1;2

foreach q ∈ Q, a ∈ A, o ∈ O do3

if the column of the test oaq in D is linearly dependent upon the columns of the4

core tests q′ ∈ Q;
then5

Find the vector moaq by solving the system of linear equations:6

∀h : D(h, oaq) =
∑
qi∈Q

D(h, q)moaq(qi)

if q = ε then moa = moaq

else7

Add the test oaq to the set of core tests Q;8

∀a′ ∈ A, o′ ∈ O : mo′a′(oaq) = 0;9

Pr(oaq|ε) = D(ε, oaq);10

end11

end12

Algorithm 9: Analytical Discovery and Learning of Predictive Policy Representations.

Given the matrix D, the next step is to find the set of core tests. This set is initialized with
the void test ε (step 2). If q is a core test, then for every action a and every observation o,
we check if the column of extended test oaq depends linearly upon the columns of the already
discovered core tests, and calculate the approximate weight vector moaq in that case (steps
3-7). To this end, we perform a Gauss-Jordan elimination on the matrix D, the eigenvalues
will then correspond to diagonal elements, and the number of eigenvalues λi such that λi > ε

approximately corresponds to the rank of the matrix, the cutoff threshold ε is used to reduce
the number of discovered core tests as the entries of the matrix are approximate estimates
of the true probabilities. The algorithm stops when all the extensions of all the core tests of
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Q are linearly dependent upon the core tests of Q. In fact, one can prove that if a test is
linearly dependent upon other tests, then all its extensions will also be dependent upon the
same tests [Littman et al., 2001].

The main drawback of this algorithm is the computational cost of estimating the matrix
D, since we need to calculate the probability of each possible test after each possible history,
which corresponds to O(H|O|2H |A|2H) operations for trajectories of maximal length H. But
in practice, most of these tests are not experienced since they are generated by a particular
dynamics and an expert’s policy rather than uniformly.

6.4.3.3 Learning the full system

Alternately, one can also avoid the issue of biased samples discussed in the previous section,
and significantly simplify the problem of imitative learning by considering the whole system
(the expert’s policy and the dynamics of the environment) as one uncontrolled system, with
no actions. The couples (observation, action) will be the observations of a hidden Markov
model. The parameters of this system can be used to predict at any time-step the probability
of any couple (action, observation), and then the probability of any action by summing on the
different observations. However, the dimension of this system is the product of the dimensions
of the environment and the expert’s policy. In fact, the states of this joint system are the
couples (internal state of the expert, state of the environment), so the learner agent will need
more samples to learn an accurate model, because it will be learning more than what is really
needed. Thus, we do not pursue this approach.

6.4.3.4 Learning with heterogenous observations

In general, the observations can be different from the expert to the learner (the actions also
can be different, but we do not consider this case in this thesis). The other important issue
is that the observations of the expert are unknown to the learner, assuming that the learning
is completely passive. In fact, the learner observes only the expert’s actions and her own
observations. Nevertheless, we will show that even in this setting the agent will be able to
learn a policy with a finite number of states (or core tests for PPRs) if the expert’s is indeed
an FSM. For the sake of simplicity, we will adopt FSM notations instead of PPRs, but the
result can be generalized to this latter model, since any FSM can be transformed into a PPR
(Theorem 1).

Let M = 〈S,A,OE ,OL, T, ZE , ZL〉 be a POMDP model of the environment without a
reward function, where OE and ZE indicate the expert’s observation set and function, while
OL and ZL indicate the learner’s observation set and function. We assume that both the
expert and the learner agents have the same actions.
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Let us also assume that the expert’s policy is stationary and described by a Finite-State
Machine PE = 〈GE , µE , ωE〉 (see Section 4.3 for the definition of an FSM). We will show
that even from the learner agent’s view, the expert is following a stationary policy described
by another Finite-State Machine PL = 〈GL, µL, ωL〉. In fact, the system dynamics M and
the expert’s policy PE can be regrouped together in one hidden Markov model M× PE =
〈S × GE ×OE ,A×OL, T ′〉, where:

T ′(〈s, gE , oE〉, 〈a, oL〉, 〈s′, gE
′, oE

′〉) def
= Pr(〈s′, gE

′, oE
′〉, 〈a, oL〉|〈s, gE , oE〉)

= µoE ,a(gE)T (s, a, s′)ωoE (gE , gE
′)ZE(oE

′, s′, a)ZL(oL, s′, a)

From the joint modelM×PE , one can extract an FSM PL = 〈S × GE ×OE , µL, ωL〉, which
describes only the policy of the expert as seen by the learner agent, and makes abstraction
of the environment dynamics. The action selection function µL and the internal transition
function ωL are defined as:{

µoL,a
L (〈s, gE , oE〉) = µoE ,a

E (gE)

ωoL
L (〈s, gE , oE〉, 〈s′, gE

′, oE
′〉) =

P
a∈A µ

oE,a

E (gE)T ′(〈s,gE ,oE〉,〈a,oL〉,〈s′,gE
′,oE

′〉)
ZL(oL,s′,a)

This latter Finite-State Machine contains |S| × |GE | × |OE | states. Any learning algorithm
for FSM can be used to find the parameters of the policy described by PL, which represents
the expert’s policy from the learner’s point of view. The learned policy contains at most
|S| × |GE | × |OE | states (or core policy tests), the divergence between the learned policy and
the actual policy depends on the divergence between the two observation models ZE and ZL.

6.4.4 Empirical Analysis

6.4.4.1 Environment

A simulated environment has been used to test our Algorithm 9 on the two problems presented
in Section 6.4.1. The environment is a 20×20 grid (Figure 6.1), the state corresponds to the
location of the wheelchair in the grid (275 possible positions) and its orientation (8 possible
orientations). Therefore, there are 2200 different states. We consider only three actions: move
forward, turn left, and turn right. The turn action results in a rotation of π/4.

For the obstacle avoidance problem, we consider only three observations: no obstacle,
obstacle after one move, and obstacle ahead. These observations are the same for both the
user (expert) and the learner. For the pathfinding problem, we consider that the wheelchair
observes the presence or the absence of obstacles in the 8 adjacent positions, we have then
256 observations, whereas the user completely observes the state. The observations are alias-
ing, but they are deterministic, and the actions have stochastic effects: they succeed with
probability 0.9, and have no effect with probability 0.1.
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Figure 6.1: Simulated indoor environment of the robotic wheelchair.

6.4.4.2 The obstacle avoidance problem

The user’s behavior was simulated by means of the Finite-State Machine described in Fig-
ure 6.2. In a normal situation (internal state 1), the user moves forward with probability 0.8,
and turns left or right, with probability 0.2. When an obstacle is one step away (internal state
2), the user tries to avoid it by turning left or right with probability 0.9, but there is still a
small probability, 0.1, that the user moves forward, because it can be looking for something
on the obstacle (the obstacle is its goal). Last, if the obstacle is ahead (internal state 3),
the user will turn left or right with probability 1, and will never move in the direction of the
obstacle. In an abnormal behavior, we suppose that the user uniformly chooses its actions in
internal states 1 and 2, but she still avoids obstacles in state 3 by turning left or right with
probability 1. If we consider that the user can hit obstacles, the problem becomes no longer
interesting since abnormal behavior could be detected each time the user moves towards an
obstacle.

Note that both the environment and the user’s models were oversimplified, because the
principal goal of these experiments is only to compare the predictive representations to finite-
state machines. In order to effectively solve the problems described in Section 6.4.1, one
should consider more elaborated models, tacking into account the continuous nature of the
state, action and observations spaces, as well as many hidden variables considered by the user
in its decisions.
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State 3

State 2

Pr(turn left)=p3 Pr(move)=1-2p3 Pr(turn right)=p3

State 1

obstacle after
one move

obstacle after
one move

obstacle

obstacle

nothing

nothing

Pr(turn left)=p2 Pr(move)=1-2p2 Pr(turn right)=p2

Pr(move)=1-2p1

Pr(turn left)=p1

Pr(turn right)=p1

Figure 6.2: The finite-state machine used to simulate the wheelchair user’s behavior. In a
normal behavior, we have p1 = 1/10, p2 = 9/20, p3 = 1/2. In an abnormal behavior, we have
p1 = 1/3, p2 = 1/3, p3 = 1/2, the user tends to move closer to obstacles.

To learn the user’s normal behavior, we randomly generate the initial location of the
wheelchair in the grid, then we use the models of the environment and the user’s policy in
order to generate one action and one observation at each time-step, we repeat this process H

times. We also consider a reset point after every 3 time-steps. In fact, most of the decisions
related to avoiding obstacles are made at most 3 time-steps before reaching the obstacle.

Given that the rank of the dynamics matrix D (see Algorithm 9) is very sensitive to the
variations in the estimated probabilities, the number of discovered core tests can be very high
for the smallest values of H. So, in order to keep just a few core tests, the cutoff threshold ε

was set to 0.9. Algorithm 9 does not require any other hyper-parameters.

The same trajectory was used for learning the parameters of a Finite-State Machine with
the Baum-Welch algorithm [Koenig and Simmons, 1996], which is a variant of the expectation-
maximization method for learning POMDPs, and can be easily adapted for learning FSMs.
Given an initial model, this algorithm calculates beliefs on the hidden states at each time-
step of the trajectory, and uses this expectation as a basis for finding new parameters that
maximize the likelihood of the observed actions. This operation is repeated until a fixed
point, corresponding to a local maximum, is reached. In our experiments, the initial model is
a 3-states FSM with random transition and action-selection probabilities.

To test the accuracy of our learned policies, we simulated a trajectory of H = 100 time-
steps, and at each time-step t, we calculated for each action a the probability P̂ r(a|ht) that
the user will execute a according to the learned policy model, and compare it to Pr(a|ht), the
true probability given by the FSM of Figure 6.2. The Root Mean Square Deviation (RMSD)
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is given by:

RMSD =

√√√√ 1
H × |A|

H∑
t=1

∑
a∈A

[P̂ r(a|ht)− Pr(a|ht)]2

Figure 6.3 shows the different values of the RMSD, averaged over 20 trajectories of length
100, as a function of the number of time-steps in the training trajectory. As expected, an
accurate PPR model can be learned after only 40 episodes of 3 time-steps, with an average
error of 0.04. The error continues to decrease slowly as more training steps are used. The
FSM parameters are also quickly learned, but one should wait until the episode 100 to get
an error close to zero. Figure 6.4 shows the Kullback-Leibler (KL) divergence between the
learned policies and the true one. Notice the correlation between the KL divergence and the
RMSD deviation, this means that the PPR distributions on the user’s actions are also more
accurate than the FSM distributions.
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Figure 6.3: The average RMSD in predicting the user’s normal actions in the obstacle avoid-
ance problem, as a function of the training steps.

Finally, the learned policies were used to distinguish the normal behavior context from
the abnormal one. For this end, we defined a meta FSM containing these two states of
the user’s behavior. In every state, the actions are generated by the corresponding FSM
described in Figure 6.2. The belief state on the user’s behavior is updated with the Bayes’
Rule (Equation 5.1).
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Figure 6.4: The average KL-divergence between the predictions of the learned model and
those of the accurate model.

The initial belief state is set to (0.5, 0.5), and the belief state at a given time-step indicates
the most likely type of behavior that has been followed during the last few steps. We sampled
10 normal scenarios and 10 abnormal scenarios, and reported in Figure 6.5 the error rate
in classifying the scenarios as a function of the number of time-steps used for training the
PPR and the FSM models. Both PPR and FSM were able to properly classify the behavior.
We observed that for the smallest training samples, PPR misclassifies the anomalous behav-
iors because of a missing core policy test that does not occur in shorter trajectories and its
probability was automatically set to 0. Finally, Figure 6.6 shows how the deviations from a
normal behavior to an abnormal behavior can be quickly detected by using the learned PPR
policy. The user starts an anomalous behavior after step 75, and it is detected just a few
steps later. After step 125, the user returns to its normal policy, and the belief on the normal
state of the user increases gradually and becomes almost equal to 1 after step 160. Notice
that this deviation is not reflected by hitting obstacles, but just by changing the probabilities
of selecting actions (Figure 6.2).

6.4.4.3 The pathfinding problem

This problem is much more complex than the first one, because of the larger set of observations,
the length of the trajectory, and more importantly, the user’s observations do not match with
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Figure 6.5: The average error rate in recognizing the user’s anomalous behavior.
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Figure 6.6: Detecting an abnormal behavior sequence within a normal behavior sequence, by
using the learned PPR model. The anomalous behavior starts at step 75 and ends at step
125.
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the wheelchair’s observations. The user completely observes the state, whereas the wheelchair
can observe only the obstacles surrounding it. To make the problem more challenging, we
consider that the wheelchair perceives only its location and not its orientation, so it can never
realize if a turn action has succeeded or not because the observation will be the same in both
cases. The user’s policy is described by the trajectory shown in Figure 6.1. There are 5 reset
points in the global path, each one corresponds to a subgoal (a frequent destination of the
user such as doors, tables . . . etc.). Recall that the point is not to find the shortest paths, but
to learn the user’s preferred path. We repeatedly generate the trajectory from the start to
the arrival positions, and used it for learning the underlying user’s policy, even though the
user’s behavior can never be exactly reproduced in that case. The parameters of the learned
FSM are randomly initialized, whereas the number of its internal states corresponds to the
number of internal states in the optimal FSM, which is 20.

Figure 6.7 indicates the calculated RMSD, averaged over 20 trajectories. Notice that in
this problem too, the PPR was learned with fewer training data compared to the FSM, and it
converged quickly to a minimal error around 0.10. This latter error, indicated in Figure 6.7 by
the error of the exact FSM, corresponds to the divergence between the true policy of the user,
and this policy as seen by the learner, because of the difference between the two observation
models (see Section 6.4.3.4).

For the last path (E → F ), we considered that both of the user and the learner use
the same observation model. In this case, the observation corresponds to the presence or
absence of an obstacle ahead the wheelchair, and the direction of the wheelchair. We have
then 2 × 8 observations. Based on these partial observations, the user can follow different
paths for moving from E to F . Here again, we notice that the divergence of the PPR learning
algorithm decreases faster than the divergence of the FSM. Contrary to the previous paths,
the final error (0.05) in this path is almost null because both of the user and the wheelchair
have the same model of observation. The error of the PPR model fell down quickly after 15
repetitions because of a second core policy test (〈obstacle ahead, direction north〉, 〈turn left〉)
that was recognized as independent, with the cutoff ε set to 0.1, only after the 15th repetition.

6.4.5 Discussion

Most of the previous work on imitation learning was restrained to the context of completely
observable environments. In this section, we showed how to use Predictive Policy Represen-
tations (PPRs), the newly introduced method in Chapter 4, in order to represent the expert’s
policy in a partially observable environment. The advantage of PPRs, compared to Finite-
State Machines (FSMs) for example, is the fact that their parameters are a function of only
observable data (actions and observations). We tested this model on two problems related
to assistive robotics. The first one is to learn the behavior of an automated wheelchair’s
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Figure 6.7: The root mean squared deviation on predicting the user’s actions, as a function
of the number of training steps.
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user regarding obstacles avoidance, and to recognize deviations from this behavior in order
to alert the user, or to switch to an automated control. The second problem is to imitate
the user’s motion policy in an indoor environment. In both problems, PPR outperforms the
Baum-Welch algorithm for FSM, and the corresponding policies could be learned after a few
repetitions.

In the next section, we will consider the more robust framework for imitation learning,
namely Inverse Reinforcement Learning (IRL), and we will show how a special type of pre-
dictive representations, known as Homeomorphism of MDPs, can be used to solve a serious
drawback of imitation learning algorithms that are based on this framework.

6.5 Imitation Learning with Local Homomorphisms

6.5.1 Overview

Most of Inverse Reinforcement Learning (IRL) algorithms rely on the assumption that the
reward function is a linear combination of states features, and the frequency of encountering
each feature can be accurately estimated from the demonstration. This assumption is consid-
ered in most of recent apprenticeship methods, despite the fact that the feature frequencies
might be poorly estimated when the number of demonstrations is small, as we will show in
our next experiments (Section 6.5.4). Moreover, in the absence of a complete expert’s policy,
the frequencies of the features that belong to only unvisited states cannot even be estimated.

In this section, we propose to use a transfer learning technique, known as soft homomor-
phism [Sorg and Singh, 2009], in order to generalize the expert’s actions to unvisited regions of
the state space. The generalized policy can then be used to analytically calculate the expected
frequencies of the features. Contrary to previous direct methods, homomorphisms take into
account the long term dependencies between different states. We will show that combining
this transfer method with other apprenticeship algorithms provides a significant improvement
in the quality of the learned policies.

6.5.2 Transfer Learning Through Homomorphism of MDPs

Transfer learning refers to the problem of using a policy learned for performing some task
in order to perform a related, but different, task. The related task may be defined in a new
domain, or in the same domain but in a different region of the state space. This problem has
been widely studied in the context of reinforcement learning. An overview of the literature on
transfer learning is out of the scope of this thesis, the interested reader might find an extended
overview in [Taylor and Stone, 2009].
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We will focus on a transfer method known as MDP homomorphism [Ravindran, 2004]. A
homomorphism from an MDPM = (S,A, T, R, α, γ) to another MDPM′ = (S ′,A, T ′, R′, α, γ)
is a surjective function f , called the transfer function, defined as:

f : S → S ′

∀s ∈ S, s′ ∈ S ′,∀a ∈ A : T ′(f(s), a, s′) =
∑
s′′∈S

f(s′′)=s′

T (s, a, s′′)

In other terms, a homomorphism of an MDP can be seen as a transformation that preserves
its dynamics. Figure 6.8 shows an example of a homomorphism f from an MDP with 4 states
{s0, s1, s2, s3} to another one with 3 states {s′0, s′1, s′2}, where f(s0) = s′0, f(s1) = s′1, and
f(s2) = f(s3) = s′2. In order to make the example simpler, we considered only one action in
this example. Note that Pr(s′1|s′0) = Pr(s1|s0), Pr(s′2|s′1) = Pr(s2|s1) + Pr(s3|s1) (both s2

and s3 have as image s′2), and Pr(s′2|s′2) = Pr(s2|s2) + Pr(s3|s2)︸ ︷︷ ︸
0

= Pr(s3|s3) + Pr(s2|s3)︸ ︷︷ ︸
0

.

s′0 s′1 s′2
1 1

1

⇒s0 s1

s2

s3

1

0.5

0.5

1

1

Figure 6.8: Homomorphism of Markov Decision Processes.

Unfortunately, finding a homomorphism is an NP-complete combinatory search problem.
In this thesis, we will consider another variant of this approach known as Soft MDP homomor-
phism [Sorg and Singh, 2009]. The core idea of this latter method consists in finding a transfer
function f that maps each state of an MDP model M = (S,A, T, R, α, γ) to a probability
distribution on the states of another MDP modelM′ = (S ′,A, T ′, R′, α, γ). Additionally, the
mapping between the states of S and S ′ should preserve the transition probabilities:

f : S × S ′ → [0, 1]

∀s ∈ S, s′ ∈ S ′,∀a ∈ A :
∑
s′′∈S

T (s, a, s′′)f(s′′, s′) =
∑

s′′∈S′
f(s, s′′)T ′(s′′, a, s′) (6.12)

The reward function also should be preserved, but we will not consider this constraint since,
in the context of apprenticeship learning, the reward function is unknown.

Notice the similarity between this latter equation and the equation T aoF = FT̃ ao used for
compressing a POMDP in Section 3.6 (see also Figure 3.2). In fact, by defining the matrix T a

as T a(s, s′) = T (s, a, s′), the matrix T̃ a as T̃ a(s, s′) = T ′(s, a, s′), and the compression matrix
F as F (s, s′) = f(s, s′), one can see that Equation 6.12 reduces to the equation T aF = FT̃ a.
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However, the distribution on the states of the MDP M′ defined by the transfer function
f(s, .) cannot be used to track back the corresponding state s in the MDP M. An obvious
solution to this problem is to ensure that the matrix F is reversible. Instead, one can just add
the constraints Fms = es in order to ensure that the states s ∈ S can be tracked back after
the compression, where ms is an |S ′|-dimensional vector and es is an |S|-dimensional vector
defined as es(s) = 1 and ∀s′ ∈ S−{s} : es(s′) = 0. By adding these constraints, the vectors of
the distributions f(s, .) belong to a vectorial space that corresponds to the Krylov subspace
Kr({T a}, {es}), and the matrix F is given by the linearly independent vectors of that space.
Therefore, the columns of the matrix F will correspond to vectors of the form T a . . . T a,oes,
which is a predictive representation of the states in an MDP. A discussion of the link between
PSRs and homomorphisms is given in [Wolfe, 2010a].

Sorg and Singh [2009] showed that soft homomorphisms can be used to transfer the values
of the policies from an MDP model to another. In the next section, we will show how one can
use soft homomorphisms in order to transfer actions from a subset of a state space to another
subset of the same space.

6.5.3 Apprenticeship Learning with Local Homomorphisms

Given an MDP model without reward M = (S,A, T, α, γ) (see subsection 6.3.2 for a recall)
and a set of M trajectories provided by an expert, the state space S can be divided into
two subsets: SE , the set of states that appear in the provided trajectories, and S\SE . For
the states of SE , the expert’s policy πE can be directly inferred from the trajectories if it is
deterministic, or estimated by calculating the frequencies of actions if it is stochastic. We will
consider the general case and use π̂E to denote the estimated expert’s policy.

In order to generalize the policy π̂E to S\SE , we first create a restrained MDP without a
reward functionME = (SE ,A, TE , α, γ), where the transition function TE is defined as:

∀s, s′ ∈ SE ,∀a ∈ A :

{
TE(s, a, s′) = T (s, a, s′) if s′ 6= s

TE(s, a, s) = T (s, a, s) +
∑

s′′∈S\SE T (s, a, s′′)

This function ensures that all the transitions remain within the states of SE by assuming that
any transition that leads to a state outside of SE has no effect.

The next step consists in finding a lossy soft homomorphism betweenM andME , where
the loss function corresponds to the error in preserving the transition probabilities according
to Equation 6.12. The transfer function f of this homomorphism is found by solving the
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following linear program:

min
f

e (9)

subject to

∀s ∈ S, s′ ∈ SE ,∀a ∈ A :

|
∑
s′′∈S

T (s, a, s′′)f(s′′, s′)−
∑

s′′∈SE

f(s, s′′)TE(s′′, a, s′)| 6 e

f(s, s′) > 0∑
s′∈SE

f(s, s′) = 1

The transfer function f can be seen as a measure of similarity between two states. One
can use this measure in order to define the generalized policy π̂E as follows:

∀s ∈ S\SE ,∀a ∈ A : π̂E(s, a) =
∑

s′∈SE

f(s, s′)π̂E(s′, a)

Unfortunately, this method scales up poorly with respect to the number of states visited
by the expert and the number of states in the corresponding domain. This is due to the
fact that |SE | × |S| variables are used in this linear program. To improve the computational
efficiency of this approach, we redefine the function f as a measure of local similarity between
two states. We denote by sd the set of states that can be reached from state s within a
distance of d steps, and byMs,d(sd,A, T s,d, α, γ) the MDP\R model defined on these states.
The transition function T s,d is then defined as:

∀s, s′ ∈ sd,∀a ∈ A :

{
T s,d = T (s, a, s′) if s′ 6= s

T s,d = T (s, a, s) +
∑

s′′∈S\sd T (s, a, s′′)

Given a distance d and a threshold ε, two states s and s′ are considered as locally similar if
there exists a soft homeomorphism betweenMs,d andMs′,d with a transfer error not greater
than ε. This property is checked by solving the following linear program:

min
f

e (6.13)

subject to

∀si ∈ sd, sk ∈ s′d,∀a ∈ A :

|
∑

sj∈sd

T s,d(si, a, sj)f(sj , sk)−
∑

sj∈s′d

f(si, sj)T s′,d(sj , a, sk)| 6 e

f(si, sk) > 0∑
sk∈s′d

f(si, sk) = 1

The principal steps of our approach are summarized in Algorithm 10, with a high-level
view given in the diagram of Figure 6.9. For every state s ∈ S\SE , we create the list st
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of neighbor states that can be reached from s within t steps (steps 1-6). The distance t is
gradually increased until we find a state s′ ∈ st ∩ SE that is locally similar to s (step 7). If
st = st−1, i.e. all the states that can be reached from s are already contained in st−1, and no
one is locally similar to s (step 8), then we set π̂E(s, a) to a uniform distribution (step 9), and
a stopping boolean variable c is set to true (step 21). Otherwise, for each action a, π̂E(s, a)
is proportional to the weighted votes for a of the states that are locally similar to s (steps 16
and 23).

Input: An MDP model without reward (S,A, T, α, γ), a set of demonstration
trajectories, an error threshold ε, and a similarity distance d;

Let SE be the set of states contained in the demonstration trajectories;1

Use the demonstration trajectories to estimate the policy π̂E for the states of SE ;2

Let st be the set of states that can be reached from a state s within t steps, votes a3

vector containing the number of votes per action, and c the stopping condition;
foreach s ∈ S\SE do4

t← 0, s0 ← {s}, votes← (0, . . . , 0), c← false;5

repeat6

t← t + 1;7

if st = st−1 then8

c← true, votes← (1, . . . , 1);9

else10

foreach s′ ∈ st ∩ SE do11

Let e be the error returned by the linear program (10) on (Ms,d,Ms′,d) ;12

if e 6 ε then13

c← true;14

foreach a ∈ A do15

votes(a)← votes(a) + π̂E(s′, a)16

end17

end18

end19

end20

until c = true ;21

foreach a ∈ A do22

π̂E(s, a) = votes(a)P
a′∈A votes(a′) ;23

end24

end25

Output: A generalized policy π̂E ;
Algorithm 10: Apprenticeship Learning via Soft Local Homomorphisms.

The generalized policy π̂E can be either considered as the robot’s policy, or used to cal-
culate the feature frequencies V̂i(πE) for another algorithm, as LPAL.
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Is the expert’s action

in state S known?

Return the expert’s action

Is there a neighbor of

S with a known

expert action and

that is locally
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Perform a majority

vote on the states that

are locally similar to S

Return the policy

π(S, A) =
votes(A)P
A′ votes(A′)

Increase the

neighboring

distance

Yes

No

Yes
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Figure 6.9: Apprenticeship Learning via Soft Local Homomorphisms.

6.5.4 Experiments

To validate our approach, we performed experiments on two simulated navigation domains.
The first one is a gridword problem taken from [Abbeel and Ng, 2004]. While this is not
meant to be a challenging task, it allows us to compare our approach to other methods of
generalizing the expert’s policy when the number of demonstrations is small. The second
domain corresponds to a racetrack.

6.5.4.1 Gridworld

We consider multiple x × x girdworld domains, with x taking the following values: 16, 24,
32, and 48. The state of the robot corresponds to its location on the grid, therefore, the
dimension |S| of the state space takes the values 256, 576, 1024, and 2304. The robot has four
actions for moving in one of the four directions of the compass, but with a probability of 0.3
the action fails and results is a random move. The initial state corresponds to the position
(0, 0), and the discount factor γ is set to 0.99. The gridworld is divided into non-overlapping
regions, and the reward function varies depending on the region in which the robot is located.
For each region i, there is one feature φi, where φi(s) indicates whether state s is in region i.
The robot knows the features φi, but not the weights wi defining the reward function of the
expert. The weights wi are set to 0 with probability 0.9, and to a random value between 0
and 1 with probability 0.1.
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The expert’s policy πE corresponds to the optimal deterministic policy found by value
iteration. In all our experiments on gridworlds, we used only 10 demonstration trajectories,
which is a small number compared to other methods ( [Neu and Szepesvári, 2007] for example).
The length of the trajectories are 50 for the 16 × 16 and 24 × 24 grids, 100 for the 32 × 32
grid, and 200 for the 48× 48 grid.

The robot is trained by using the LPAL algorithm. However, as already mentioned,
this algorithm requires the knowledge of the frequencies vi,πE , which is not the case in our
experiments since the demonstration covers only a small number of states. Instead, we used the
following methods for learning a generalized policy π̂E , and provided the feature frequencies
of π̂E to LPAL. Except for Monte Carlo, the frequencies vi,π̂E are calculated by solving the
flow Equations 6.4.

Full policy: the complete expert’s policy πE is provided to LPAL.

Soft local homomorphism: The generalized policy π̂E is learned by Algorithm 10, the
threshold ε is set to 0 and the distance d is set to 1.

Maximum entropy: The generalized policy π̂E is set to a uniform distribution in the states
that did not appear in the demonstration.

Euclidian k-NN: The generalized policy π̂E is learned by the k-nearest neighbors algorithm
using the euclidian distance measured over the position of the robot. The distance k is
gradually increased until encountering at least one state that appears in the demonstra-
tion trajectories, as done in Algorithm 10.

Manhattan k-NN: k-NN with a Manhattan distance.

Nonlinear regression: The occupancy measure µπ̂ is considered as a linear function of
a polynomial kernel defined on the horizontal and vertical coordinates of the robot’s
position. In other terms, for each state s = (si, sj) we have:∑

a∈A
xµπ(s, a) = α0 + α1si + α2sj + α3s

2
i + α4s

2
j + α5sisj + ε(s), αi ∈ R

We use a linear program to minimize the sum of errors
∑

s |ε(s)| under Bellman flow
constraints (Equation 6.4), while the states that appear in the demonstration are con-
strained to have the same action as the expert. Finally, π̂E is extracted from µπ accord-
ing to Equation 6.11.

Monte Carlo: This is the method used in the literature, the frequencies ˆvi,πE are estimated
directly from the trajectories, according to Equation 6.9.

Table 6.1 shows the average reward per step of the robot’s policy, averaged over 1000
independent trials of the same length as the demonstration trajectories. Our first observation
is that LPAL algorithm learned policies are just as good as the expert’s policy when the feature
frequencies are calculated by using the expert’s full policy, but remarkably failed to do so when
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the frequencies are learned from the demonstration by using a Monte Carlo estimator. This
is due to the fact that we used a very small number of demonstrations compared to the size of
these problems. Second, LPAL returns better policies when the frequencies are analytically
calculated by using maximum entropy technique than when they are estimated by Monte
Carlo. This is because Monte Carlo estimates the frequencies for a finite horizon. Given that
the expert’s actions cannot be explained by only the vertical and horizontal coordinates, the
regression method also failed to outperform the maximum entropy method. We also remark
that Euclidian and Manhattan k-NN performed similarly due to the similarity between these
two distances in the context of flat grids. They both succeeded to learn policies with values
close to the optimal value. Finally, our approach performed just as k-NN in this experiment.
In fact, since there are no obstacles on the grid, most of the states are locally similar, even
for neighbors of a long distance.

6.5.4.2 Racetrack

We implemented a simplified car race simulator, the corresponding racetracks are showed in
Figure 6.10. The states correspond to the position of the car in the racetrack and its speed.
We considered two discretized speeds, low and high, in each direction of the vertical and
horizontal axis, in addition to the zero speed in each axis, leading to a total of 25 possible
combinations of speeds, 5900 states for racetrack (a), and 5100 states for racetrack (b). The
car controller can accelerate or decelerate in each axis, or do nothing. The controller cannot
however combine a horizontal and a vertical action, the number of actions then is five. When
the speed is low, acceleration\deceleration actions succeed with probability 0.9, and fail with
probability 0.1, leaving the speed unchanged. The success probability of the actions falls

Starting line
F inish line

(a)

Finish line

(b)

Figure 6.10: Racetrack configurations and a demonstration of the expert’s policy. In racetrack
(b), the car starts at a random position.
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down to 0.5 when the speed is high, making the vehicle harder to control. When the vehicle
tries to move off-road, it remains in the same position and its speed is reset to zero. The car
controller receives a reward of 5 for each step except for off-roads, where it receives 0, and for
reaching the finish line, where the reward is 200. A discount factor of 0.99 is used in order to
favor shorter trajectories.

In this experiment, we compared only the methods that performed well in the gridworld
domaine, which are LPAL with a full policy, LPAL with soft local homomorphisms, and
LPAL with k-NN using the Manhattan distance, since the euclidian distance does not take
into account the speed of the vehicle. We also compared k-NN and soft local homomorphisms
without LPAL.

Figures 6.11, 6.12, 6.13, 6.14, 6.15, and 6.16 show the average reward per step of the
robot’s policy, the average number of off-roads per step, and the average number of steps
before reaching the finish line, as a function of the number of trajectories in the demonstration.
For racetrack (a), the car always starts from the same initial position, and the length of each
demonstration trajectory is 20. For racetrack (b) however, the car starts at a random position,
and the length of each trajectory is 40. The results are averaged over 1000 independent trials
of length 30 for racetrack (a) and 50 for racetrack (b). Contrary to the gridworld experiments,
LPAL achieved good performances only when the features are calculated by using the complete
policy of the expert. For clarity, we removed the results of LPAL with k-NN and with soft
local homomorphisms, which were below the performances of the other methods.
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Figure 6.11: Average reward per step in racetrack (a).
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Figure 6.12: Average number of steps before reaching the finish line in racetrack (a).

As expected, we notice the significant improvement of our algorithm over k-NN in terms
of average reward, average number of off-roads per step, and average number of steps to the
finish line. This is due to the fact that, contrary to k-NN, homomorphisms do take into
account the dynamics of the system. For example, when the car faces an obstacle, the local
MDP defined around its current position is similar to all the local MDPs defined around the
positions of facing an obstacle, the deceleration actions can then be efficiently transferred, as
depicted in the example of Figure 6.17.

6.5.5 Discussion

The main question of apprenticeship learning is how to generalize the expert’s policy to states
that have not been encountered during the demonstration. Previous works have attempted to
solve this problem by considering the state as a vector of features of a smaller dimension, and
classifying the states accordingly. However, an expert’s policy is a much more complicated
function than it can be explained by only immediate features.

Inspired by the intuition that the states that are locally similar have the same optimal
action in general, we introduced a new technique for generalizing the expert’s policy based
on soft local homomorphisms. Unlike other methods, our approach considers the long term
dependencies between different states, rather than just immediate features. We also showed
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Figure 6.13: Average number of off-roads per step in racetrack (a).
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Figure 6.14: Average reward per step in racetrack (b).
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Figure 6.15: Average number of steps before reaching the finish line in racetrack (b).

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 n
um

be
r 

of
 h

itt
ed

 o
bs

ta
cl

es
 p

er
 s

te
p

Number of trajectories in the demonstration

Soft Local Homomorphism
Expert
k−NN

Figure 6.16: Average number of off-roads per step in racetrack (b).
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A trajectory of an expert

?

Similar graphs Dissimilar graphs

Figure 6.17: An example of two states that are locally similar by homomorphism.

that using homomorphisms leads to a significant improvement in the quality of the learned
policies.

However, our approach lacks a theoretical guarantee beyond the intuition. In fact, control
policies are local and reactive in most states, such as avoiding obstacles during a navigation
task, but there are always some critic states where the optimal actions cannot be explained
by only the local dynamics of the system. Distinguishing between these states is crucial for
providing a theoretical guarantee of our approach in a future work.

In the next section, we introduce another solution for the same problem of generalizing
the expert’s policy. Our solution is based on using the learned reward function in order to
generalize the expert’s policy, which will be used for learning an improved reward function.

6.6 Bootstrapping The Expert’s Examples

6.6.1 Overview

In this section, we consider the same problem of generalizing the expert’s demonstration that
was discussed in the previous section. However, we propose a different approach for solving
it, based on learning a reward function by using an IRL algorithm with the partial examples
provided by the expert. The learned rewards are used for finding an optimal policy, which is
then fed back to the IRL algorithm. This operation is repeated until a locally optimal solution
is found. Empirical results on gridworlds and car racing problems show that our approach is
able to learn good policies from a small number of demonstrations.
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6.6.2 Reward Loss in Maximum Margin Planning

In the remainder of this chapter, we will adopt Maximum Margin Planning (MMP) as frame-
work for IRL, and build our methods on this. This choice is motivated by the good empirical
results obtained by this algorithm compared to others, in addition to its simplicity.

To show the effect of the frequency error on the quality of learned policies, we provide
in this section an analysis of the distance between the vector of reward weights ŵ returned
by MMP with estimated frequencies v̂πE = Fµ̂πE , calculated from the examples by using
Equation 6.9, and the vector wE returned by MMP with accurate frequencies vπE = FµπE ,
calculated by using Equations 6.4 with the full policy πE . We will use the following notations:
∆vπ = v̂πE − vπE , ∆w = ŵ − wE , and Vl(w) = maxµ∈G(wT F + l)µ, and consider q = 1. The
following theorem shows how the reward error ∆w is related to the frequency error ∆vπ.

Theorem 3. Let ε ∈ R+, if ∀w ∈ Rk, such that ‖ w − ŵ ‖2= ε, the following condition is
verified:

‖ ∆vπ ‖2<
Vl(w)− Vl(ŵ) + (ŵ − w)T v̂πE + λ

2 (‖ w ‖2 − ‖ ŵ ‖2)
ε

then ‖ ∆w ‖26 ε.

Proof. The condition stated in the theorem above implies:

‖ ŵ − w ‖2‖ ∆vπ ‖2< Vl(w)− Vl(ŵ) + (ŵ − w)T v̂πE +
λ(‖ w ‖2 − ‖ ŵ ‖2)

2

⇒ (ŵ − w)T ∆vπ < Vl(w)− Vl(ŵ) + (ŵ − w)T v̂πE +
λ(‖ w ‖2 − ‖ ŵ ‖2)

2
(Hölder)

⇒ Vl(ŵ)−
(
ŵT vπE −

λ

2
‖ ŵ ‖2

)
< Vl(w)−

(
wT vπE −

λ

2
‖ w ‖2

)
In other terms, the point (ŵT vπE − λ

2 ‖ ŵ ‖2) is closer to the surface Vl than any other point
(wT vπE − λ

2 ‖ w ‖2), where w is a point on the sphere centered around ŵ with a radius of ε.
Since the function Vl is convex and (wET

vπE − λ
2 ‖ wE ‖2) is by definition the closest point

to the surface Vl, then wE should be inside the ball centered around ŵ with a radius of ε.
Therefore, ‖ wE − ŵ ‖26 ε and thus ‖ ∆w ‖26 ε. �

Consequently, the reward loss ‖ ∆w ‖2 approaches zero as the error of the estimated
feature frequencies ‖ ∆vπ ‖2 approaches zero. A simpler bound can be easily derived given
admissible heuristics of Vl.

Corollary: Let Vl and Vl be respectively a lower and an upper bound on Vl, then Theo-
rem 3 holds if Vl(w)− Vl(ŵ) is replaced by Vl(w)− Vl(ŵ).

Figure 6.18 illustrates the divergence from the optimal reward weight wE when approx-
imate frequencies are used. The error is not a continuous function of ∆vπ when the cost
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function is not regularized, because the vector returned by MMP is always a fringe point. In
general, the error is proportional to the subgradient of the function Vl − vπE at the fringe
point wE .

ŵ wE

vπE

v̂πE

Vl

Vl − vπE

Vl − v̂πE

V

Figure 6.18: Reward loss in MMP with approximate frequencies v̂πE .

6.6.3 Efficient Frequency Approximation

The feature frequency error ∆vπ can be significantly reduced by using the known transition
function for calculating v̂i,πE instead of the Monte Carlo estimator (Equation 6.9). However,
this cannot be done unless the complete expert’s policy πE is provided.

In Maximum Margin Planning, as in any iterative IRL algorithm, the reward weights
are learned incrementally. These algorithms start with initial weights, and then iteratively
improve them until a local optimal solution is reached. One can take advantage of this
property of iterative algorithms and use the intermediate reward weights for both generalizing
the provided examples, and for approximating the expert’s full policy. Assuming the expert
is optimal, the policy πE can be approximated by another one, which selects the same actions
as the expert whenever the expert’s action is known, and the optimal actions, according to
the current reward weight w, when the expert’s action is unknown, as shown in the example
of Figure 6.19.

We will refer to this approach, where the expert’s policy is calculated from the provided
examples and the current reward function, as Improved Maximum Margin Planning (I-MMP).
The cost function of I-MMP is given by:

cq(w) =
(

max
µ∈G

(wT F + l)µ− max
µ∈G

πE

wT Fµ
)q

+
λ

2
‖ w‖2 (6.14)



Chapter 6. Imitation Learning with Predictive Representations 160

s8 s9

s2s1 s3

s10

s15 s16 s17

πE

πE

s11
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s12 s13

s6s5 s7

s14

s19 s20 s21
πEπEπE

Figure 6.19: A modified Markov Decision Process. The states (in green) where the expert’s
action is known form a Markov chain, whereas the other states form a Markov Decision
Process.

where GπE is the set of occupancy vectors µπ, subject to the constraints:

µπ(s) = α(s) + γ
∑

s′∈SE

µπ(s′)
∑
a∈A

πE(s′, a)T a(s′, s) + γ
∑

s′∈S\SE

∑
a∈A

µπ(s′, a)T a(s′, s) (6.15)

∑
a∈A

µπ(s, a) = µπ(s)

µπ(s, a) > 0

where SE is the set of states where the expert’s policy is known.

Notice the difference between Equation 6.14 and the original one, Equation 6.7, which we
rewrite here:

cq(w) =
(

max
µ∈G

(wT F + l)µ− wT FµπE

)q
+

λ

2
‖ w‖2

The only difference is that, in the original cost function, µπE is empirically estimated from the
examples, whereas in the new cost function, µπE is replaced by the occupancy vector µ ∈ GπE

of the optimal policy according to the reward w, that selects the same actions as the expert’s
policy πE in the demonstrated states.

Unfortunately, the new cost function (Equation 6.14) is not necessarily convex. In fact, it
corresponds to a margin between two convex functions: the value of the generalized expert’s
policy maxµ∈G

πE
wT Fµ and the value of the best alternative policy maxµ∈G(wT F + l)µ. Yet,

a local optimal solution of this modified cost function can be found by using the same sub-
gradient as in Equation 6.8, and putting µE = arg maxµ∈G

πE
wT Fµ. In practice, as we will

show in the experimental analysis, the solution returned by the improved MMP outperforms
the solution of MMP where the expert’s frequency is calculated without taking into account
the known transition probabilities. This improvement is particularly pronounced in highly
stochastic environments.
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The empirical analysis of this approach will be presented in Section 6.7.3, along with the
analysis of the next approach that we propose for improving IRL algorithms, which is based
on predictive reward representations.

6.7 Predictive Reward Representations

6.7.1 Motivation

Figure 6.20 shows a car driving domain that can be represented as an MDP. The actions
correspond to turning left or right, accelerating or decelerating, or doing nothing. The states
corresponds to the direction of the car (west-east: ⇒ or east-west: ⇐), and its position on
one of the three lanes (north: 1, middle: 2, or south: 3) or on the grass. The state may also
include other information, such as the speed of the car and the positions of other cars.

φ(2,⇒)

φ(3,⇒)

φ(1,⇒)

φ(2,⇐)

φ(3,⇐)

φ(1,⇐)

φgrass

φgrass

Figure 6.20: A car driving simulation and the corresponding features.

Now assume that we want to train an agent to drive like an expert, and one of the expert’s
preferences is to drive on the right of the road. In this case, the reward is simply a linear
function of the binary features φ(lane,direction) corresponding to the driver’s local observations.
Figure 6.20 also shows the trajectory of an expert’s demonstration, where the right of the road
is the south lane. From that demonstration, the learner agent will associate a high weight to
the feature φ(3,⇒) and no weight to the others, whereas it should associate a high weight to the
feature φ(1,⇐) too. This failure to generalize the expert’s demonstration from one direction to
another is due to the fact that the feature φ(1,⇐) is sparse (too specific). Consequently, the
empirical frequency of feature φ(1,⇐), estimated from this demonstration, is null.

To solve this problem, the learner agent may use a simpler (more general) hypothesis to
explain the expert’s behavior. For instance, the latent feature φturn right,grass, which is the
probability of observing the grass after executing the action ”turn right”, is non null if and
only if one of the features φ(1,⇐) and φ(3,⇒) is true. The empirical frequency of this latent
variable, estimated from the same example, is non null. Therefore, the learner agent will
associate a high weight to this latent feature, and will be able to generalize the example to
the other direction. Therefore, the reward function will be presented by the predictions of the
values of the different features in the future. These latter features will be called extended (or
latent) features.
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6.7.2 Extended Features

As shown in the previous example, one way to reduce the frequency error is to consider latent
features φ̃i, which take non null values in more states than the base features φi. We use F̃ to
denote the k̃ by |S||A| latent feature matrix, where F̃ (i, (s, a)) = φ̃i(s, a) and k̃ is the number
of latent features. The reward vector must remain in the span of the latent features, i.e.
R = wT F̃ . Ideally, one should find a minimal set of latent features that satisfy this condition.
However, this cannot be done since the reward vector is unknown. Instead, if we can ensure
that all the basic features φi are in the span of the latent features, i.e. F = mT F̃ , then the
reward vector will necessarily be in the span of F̃ .

Furthermore, to reduce the sparsity of the matrix F̃ , we propose to use latent features that
are sufficient to predict the expected value of the basic features after an arbitrary sequence of
actions. We will refer to this type of features as extended features (or tests on features). The
problem of finding a minimal set of extended features can be solved by finding k̃ by |S| matrix
F̃ = [φ̃a1

i , . . . , φ̃an
i ]T , k̃ by k̃ matrices T̃ a, and weight vectors m, m̃ that satisfy the quadratic

constraints: fa
i = mT

a F̃ and T aF̃ T = F̃ T T̃ a,∀a ∈ A, where φa
i (s) = φi(s, a).

As with Predictive State Representations (Section 3.6), a fast solution to this problem is
given by using the Krylov method, where the vectors of the latent features correspond to the
images of the basic features φi under the product of transition matrices T a, a ∈ A. The set Q

of vectors φ̃a
i is iteratively constructed as follows: Q0 is initialized with the basic features φi

that are linearly independent, and for t > 0, Qt+1 = Qt ∪{T aφ̃|a ∈ A, φ̃ ∈ Qt}. At the end of
each iteration t, only independent vectors are kept in Qt. This process stops when Qt+1 = Qt,
notice that this condition is satisfied after at most |S| expansion steps.

This method can be improved by keeping at the end of each step only features with a high
information gain. Informally, the information gain of a feature φ̃i is inversely proportional to
the margin ŵmax

i − ŵmin
i , where ŵmax

i and ŵmin
i are respectively the maximum and minimum

values of ŵi, and ŵ is the vector that minimizes the cost function. This margin is loosely
related to the subgradient with respect to wi at the hinge point ŵ.

6.7.3 Experimental Results

To validate our approaches, we experimented on the two simulated navigation problems de-
scribed in Section 6.5.4. We report here the results of these experiments, where it is refereed
to MMP with Bootstrapping as Improved MMP or I-MMP, and to MMP with latent extended
features as L-MMP.
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6.7.3.1 Gridworld

Similarly to the experiments in Section 6.5.4, we used only 10 demonstration trajectories.
Table 6.2 shows the average reward per step of the agent’s policy, averaged over 103 indepen-
dent trials of the same length as the demonstration trajectories. Our first observation is that
Improved MMP algorithm (I-MMP) learned policies just as good as the expert’s policy, while
MMP remarkably failed to collect any reward. This is due to the fact that we used a very
small number of demonstrations compared to the size of these problems, and the frequencies
in MMP are learned from the demonstration by using a Monte Carlo estimator. This problem
is not specific to MMP, and any other algorithm using the same estimation method would
produce the same results. Second, I-MMP with latent features (L-MMP) performed almost
the same as I-MMP without latent features. This result is not surprising, given that most of
the features are null and the demonstration covered all the features with high values. Finally,
we remark that k-NN performed as an expert in this experiment. In fact, since there are no
obstacles on the grid, neighboring states often have similar optimal actions.

Size Features Expert k-NN MMP I-MMP L-MMP

16× 16 16 0.4672 0.4635 0.0000 0.4678 0.4424
16× 16 64 0.5281 0.5198 0.0000 0.5252 0.5275
16× 16 256 0.3988 0.4062 0.0537 0.3828 0.3879

24× 24 64 0.5210 0.6334 0.0000 0.5217 0.4929
24× 24 144 0.5916 0.5876 0.0122 0.5252 0.5270
24× 24 576 0.0849 0.2814 0.0974 0.0514 0.1380

Table 6.2: Gridworld average reward results.

6.7.3.2 Racetrack

We implemented a simplified car race simulator, the corresponding racetracks are showed
in Figures 6.10 and 6.21. The states correspond to the position of the car in the racetrack
and its speed. We considered two discretized speeds, low and high, in each direction of the
vertical and horizontal axis, in addition to the zero speed in each axis, leading to a total of
25 possible combinations of speeds, 5900 states for racetrack (a), 5100 states for racetrack
(b), and 104 states for racetrack (c). The controller can accelerate or decelerate in each axis,
or do nothing. The controller cannot however combine a horizontal and a vertical action,
the number of actions then is five. When the speed is low, acceleration\deceleration actions
succeed with probability 0.9, and fail with probability 0.1, leaving the speed unchanged. The
success probability falls down to 0.5 when the speed is high, making the vehicle harder to
control. When the vehicle tries to move off-road, it remains in the same position and its speed
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is reset to zero. In racetracks (a) and (b), the controller receives a reward of 5 for each step
except for off-roads, where it receives 0, and for reaching the finish line, where the reward is
200. In racetrack (c), the controller receives a reward of 0 for each step except for reaching the
finish line, where it receives 10, and for driving on the right side of the road, where it receives
1, and for driving on the grass, where it receives a penalty of −1. For the three racetrack, a
discount factor of 0.99 is used in order to favor shorter trajectories.

Figure 6.21: Racetrack (c). The trajectories of the expert cover only the upper half of the
road. In the lower half, the policy learned using extended features was able to keep the car
on the right side, contrary to the policy learned using basic features (dashed line).

For racetrack (a), the car always starts from the same initial position, and the length of
each demonstration trajectory is 20. For racetrack (b), the car starts at a random position,
and the length of each trajectory is 40. For racetrack (c), the car starts at the same initial
position during the demonstration, and at a different position, located at the lower half of the
road, during the testing. The length of each trajectory is 40. The results are averaged over
103 independent trials of length 30 for racetrack (a) and 50 for racetracks (b) and (c). The
basic features correspond to the finish line and driving off-road, in addition to the index of
the lane (from 1 to 6) and the grass for the racetrack (b).

Figures 6.22-6.30 show the average reward per step of the controller, the average number
of off-roads per step, and the average number of steps before reaching the finish line, as
a function of the number of trajectories in the demonstration. We first notice that k-NN
performed poorly, this is principally caused by the effect of driving off-road on both the
cumulated reward and the speed of the car. In this context, neighbor states do not necessarily
share the same optimal action. Contrary to the gridworld experiments, MMP achieved good
performances on racetrack (a). In fact, by fixing the initial state, the demonstration covers
most of the reachable states, and the feature frequencies are accurately estimated from the
demonstration. In racetrack (b) however, MMP was unable to learn a good policy because
all the states were reachable from the initial distribution.

As expected, we notice the significant improvement of L-MMP (I-MMP using latent fea-
tures) in racetrack (c) (Figure 6.31). In fact, without using latent features, I-MMP associates
a high reward for reaching the finish line, for avoiding off-roads and avoiding driving on the
grass, and driving on lane 1 (the upper lane). Since the feature associated to lane 1 is ab-
sent in the lower half of the road, the controller has no preference among the three possible
lanes, and rather chooses the shortest path, whereas with latent features, I-MMP associates
a high weight to the latent feature (action: Accelerate on the y axis, base feature: grass), this
extended feature is present in both the upper and lower roads (Figure 6.21).
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Figure 6.22: Average reward per step in racetrack (a).
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Figure 6.23: Average number of steps before reaching the finish line in racetrack (a).
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Figure 6.24: Average number of off-roads per step in racetrack (a).
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Figure 6.25: Average reward per step in racetrack (b).
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Figure 6.26: Average number of steps before reaching the finish line in racetrack (b).
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Figure 6.27: Average number of off-roads per step in racetrack (b).
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Figure 6.28: Average reward per step in racetrack (b).
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Figure 6.29: Average number of steps before reaching the finish line in racetrack (b).



Chapter 6. Imitation Learning with Predictive Representations 169

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2  4  6  8  10  12

A
ve

ra
ge

 n
um

be
r 

of
 h

itt
ed

 o
bs

ta
cl

es
 p

er
 s

te
p

Number of trajectories in the demonstration

Expert
Maximum Margin Planning

Improved Maximum Margin Planning
Maximum Margin Planning with Latent Features

Figure 6.30: Average number of off-roads per step in racetrack (b).
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Figure 6.31: Average frequency of driving right in racetrack (c).
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6.7.4 Discussion

In the previous section, we showed that the scarcity of the expert’s demonstrations can be
overcome by using the learned reward function for generating examples that cover the complete
state space. The empirical analysis conducted on simulated systems suggests that the learned
policies are indeed better when this approach is used. However, this approach requires solving
an optimization problem where the objective function is nonconvex with potentially many
local optima. In this section, we showed that the same problem can be solved by considering
latent features that are a sufficient statistic of the basic features. Latent features are more
likely to be encountered in larger regions of the state space, consequently, the frequency of
latent features may be estimated more accurately.

The main drawback of this approach is the selection of useful latent features. A possible
indicator of the utility of a latent feature is the subgradient of the cost function with respect
to this feature, but more elaborated techniques should be studied. As a future work, we
mainly target to compare this approach with the one proposed by Ratliff [2009], where the
basic features are boosted by using a classifier.

6.8 Conclusion

Learning by imitation is very useful in situations where the task of the agent can be demon-
strated by a human expert. This method significantly accelerates the learning process, com-
pared to the fully autonomous methods, such as reinforcement learning.

However, most of the previous work in this topic was focused on completely observable en-
vironments. In this chapter, we showed how to use Predictive Policy Representations (PPRs),
the method newly introduced in Chapter 4, in order to represent the expert’s policy in a par-
tially observable environment. The advantage of PPRs, compared to Finite-State Machines
(FSMs), is the fact that their parameters are a function of only observable variables. We
tested this model on two problems related to assistive robotics. In both problems, PPR
outperformed the Baum-Welch algorithm for FSM, and the corresponding policies could be
learned after a few repetitions.

However, there are at least three main drawbacks related to this method. The first one is
the large size of the memory used for representing the dynamics of the policy (the dynamics
matrix); this issue can be solved by using sparse matrix representations. The second drawback
is the sensitivity of the dynamics matrix’s rank to the errors in estimating the probabilities of
tests. This problem can be solved by using recent methods in estimating the rank of matrices
with noisy entries [Keshavan et al., 2009]. Finally, as for PSRs, the main problem of PPRs
is the stability of the belief states. In fact, since the parameters of the learned PPRs are
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underconstrained, the belief states of PPRs may become inaccurate after a large number of
bayesian updates (see the conclusion of Chapter 5).

In fully observable environments, this type of direct imitation suffers from a serious draw-
back: the expert’s demonstrated policy cannot be efficiently generalized to the remaining
states, unless sufficiently expressive features are used in the learning. Inverse Reinforcement
Learning (IRL) is a framework that solves this problem by restraining the space of hypothesis
to the space of reward functions. The aim of IRL is to recover a reward function under which
the expert’s policy is optimal, rather than to directly mimic the actions of the expert. The
learned reward function is then used to find an optimal policy.

Most IRL algorithms rely on the assumption that the reward function is a linear combi-
nation of states features, and the frequency of encountering each feature can be accurately
estimated from the demonstration. However, the frequencies of the features might be poorly
estimated when the number of demonstrations is small, as we showed in our experiments.

Inspired by the intuition that the states that are locally similar have the same optimal
action in general, we introduced a new technique for generalizing the expert’s policy based
on soft local homomorphisms. Unlike other methods, our approach considers the long term
dependencies between different states, rather than just immediate features. We also showed
that using homomorphisms leads to a significant improvement in the quality of the learned
policies. However, our approach lacks of a theoretical guarantee beyond the intuition. In
fact, control policies are local and reactive in most states, such as avoiding obstacles during
a navigation task, but there are always some critical states where the optimal actions cannot
be explained by only the local dynamics of the system. Distinguishing between these states
is crucial for providing a theoretical guarantee of our approach in future work.

We also showed that the problem of generalizing the expert’s policy can be solved by using
the learned reward function for generating examples that cover the complete state space. The
same problem can also be solved by augmenting the set of basic features with the predictions
of these features after a sequence of actions. These new features, called latent features, are
more likely to be encountered in larger regions of the state space than the basic features.
Consequently, the frequency of latent features may be estimated more accurately.

The main drawback of this latter approach is the selection of useful latent features. A
possible indicator of the utility of a latent feature is the subgradient of the cost function with
respect to this feature, but more elaborate techniques should be studied. In fact, this problem
is equivalent to the problem of discovering core tests (or core histories) in predictive state (or
policy) representations.



Chapter 7

Conclusion

This thesis considers the problem of sequential decision-making under uncertainty. We demon-
strated that by using predictive representations, directly defined by the observed data, the
planning complexity can be greatly reduced and the learning process significantly improved.

In this chapter, we conclude with a summary of the principal contributions of the work,
along with a discussion of its limitations and an overview of future directions and open prob-
lems.

7.1 Summary of the Contributions

Conceptually, this dissertation can be broken into three main parts. The first part, consist-
ing of Chapter 3, discusses the problem of reducing a Partially Observable Markov Decision
Process (POMDP) into a compact and approximate Predictive State Representation (PSR).
The second part, which corresponds to Chapters 4, 5 and the first part of Chapter 6, deals
with using Predictive Policy Representations (PPRs) in a variety of problems related to se-
quential decision-making under uncertainty. The third part, which corresponds to the last
part of Chapter 6, presents three techniques for improving the performance of Inverse Re-
inforcement Learning (IRL) algorithms. The first technique is based on homomorphism of
MDPs for generalizing the examples provided by an expert. The second technique consists in
bootstrapping the examples. The last one is a predictive reward representation. Below, we
briefly summarize the main results and contributions of this work, with an emphasis on the
connections between the parts.
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7.1.1 Compression of POMDPs using approximate PSRs

The high dimensionality of the belief space in POMDPs is one of the major causes that
severely restricts the applicability of this model in planning and prediction tasks. Predictive
State Representations (PSRs), have been proposed by Littman et al. [2001] with the hope
that they can contribute to solving this problem. However, the equivalent PSR of a POMDP
model has generally almost the same dimensionality as the original model [James et al., 2004;
Izadi, 2007]. Consequently, it is natural to look for approximation algorithms that generate a
subset of core tests more appropriate for prediction and planning purposes.

In this thesis, we showed that this problem can be casted as a linear optimization problem.
The proposed algorithm minimizes the potential prediction error caused by missing some core
tests. The intuition behind this method is that the parameters of a PSR model can be adjusted
in order to compensate the absence of some core tests. This algorithm was inspired by the work
of Poupart [2005] on compressing POMDPs, known as Value-Directed Compression (VDC).

The main difference between our algorithm and VDC, besides the use of the PSR frame-
work, is that in VDC, the reduced belief state is a vector containing two types of variables:
the probabilities of specific sequences of actions and observations, and the expected reward of
other sequences. At a given time-step, both the predicted reward and the probability of any
observation are linear functions of the same belief state. This can result in a high prediction
error if the rewards are not rescaled as probabilities. In our method, we used separate models
for predicting expected rewards and observations. In this context, we presented an empirical
evaluation on benchmark problems, illustrating the performance of this approach on predic-
tion and planning tasks. The empirical results show that this approach can indeed be used
for reducing the dimensionality of the state space while preserving an acceptable quality of
the predictions and the learned policies.

However, there are many limitations to this work. First, the method used for selecting
core tests is a simple heuristic favoring shorter core tests to longer ones. This heuristic is
based on the assumption that core tests with higher probabilities are more important, and
the fact that the probabilities of tests decrease as their length increases. This assumption
is not true in general, and a further theoretical analysis should be considered at this level.
Second, linear reduction of dimensionality is not as powerful as other techniques, such as
Exponential Principal Components Analysis. Finally and most importantly, the experiments
were performed on small-sized POMDP problems that are no longer challenging for today
solvers. This is particularly important for the planning experiments, since the main motivation
of this work is the intractability of planning with POMDPs.
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7.1.2 Predictive Policy Representations

Predictive Policy Representation (PPR) is the main contribution of this thesis. Most of
the previous work on planning and learning in partially observable environments focused on
reducing the dimensionality of the state space, and only a little interest was given to reducing
the dimensionality of the internal state space of an agent. The idea of using predictive
representations for representing policies has been originally suggested by Wiewiora [2005],
where this type of policies was called regular policies. In this thesis, we showed how to adapt
PSRs in order to represent policies, and derived a Bayes’ update rule for maintaining internal
belief states. We also demonstrated the efficiency of this method through different problems
related to sequential decision-making under uncertainty.

Amongst these problems, the first one was planning in decentralized POMDPs. This
problem is NEXP-hard and remains one of the most difficult challenges in sequential decision-
making [Bernstein et al., 2002]. Finding good solutions to decentralized POMDPs is so difficult
because there is no optimality criterion for the policies of a single agent alone: whether a
given policy is better or worse than another depends on the behavior of the remaining agents.
Moreover, no agent is aware of the actual behavior of the remaining agents unless the agents
can exchange their local information through communication, which is not always possible.
Instead, each agent keeps a belief state on the policies of the other agents based on its local
actions and observations received so far.

Previous work on this problem used decision trees for representing policies of the other
agents. However, the number of decision trees increases double-exponentially with respect to
the planning horizon. To solve this problem, we introduced a point-based planning algorithm
where the belief states correspond to the probabilities of specific sequences of actions and
observations instead of a distribution on all the possible decision trees. An empirical compar-
ison of the same algorithm using the two types of representations shows that predictive policy
representations significantly outperform decision tree representations.

We also introduced an exact planning algorithm for decentralized POMDPs based on pre-
dictive policy representations. Empirical evaluation showed that this algorithm outperforms
the equivalent exact planning approach using decision trees. This performance is due to the
fact that the size of belief states is significantly smaller when predictive representations are
used. However, although the final algorithm is fairly simple, the derivation of Bellman-like
update equations was too long and not straightforward. Another issue related to the use of
predictive representations is that the belief space is not a simple simplex as in POMDPs. In
fact, it is not yet clear which constraints are sufficient and necessary to define the space of
beliefs with predictive representations.

We used Predictive Policy Representations also for reinforcement learning in partially
observable environments. We showed that PPRs based on core histories share common char-
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acteristics with both history-based models, such as decision trees, and models with internal
beliefs, such as Finite-State Machines (FSMs). An empirical comparison of PPRs and FSMs
showed that PPRs generally achieve better performances than FSMs. Nevertheless, PPRs
suffer from the same difficult problem of selecting core tests (or core histories) discussed in
the previous section. In fact, we needed to repeat the experiments several times before finding
the best hyper-parameters that will be used for selecting the core histories. The other issue
of PPRs and PSRs is the instability of the belief state. Indeed, the belief state starts making
inaccurate predictions after a long number of bayesian updates.

Finally, we showed how PPRs can be used for modeling the policy of an expert agent,
and how this policy can be learned from demonstrations. We also compared PPRs to FSMs
on tasks related to learning the behavior of a robotic wheelchair user. The empirical results
showed that PPRs were more accurate than FSMs. However, the instability of the belief state
was a major drawback in this problem too.

7.1.3 Improving Inverse Reinforcement Learning Algorithms

We proposed three methods for learning from an expert in a completely observable stochastic
environment where the demonstrations of the expert are scarce and cover only a small part
of a large state space. To solve this problem, we first used a transfer method, known as soft
homomorphism, in order to generalize the expert’s policy to unvisited regions of the state
space. This method was inspired by the intuition that the states that are locally similar have
the same optimal action in general. Unlike other methods, this approach considers the long
term dependency between different states, rather than just immediate features. Empirical
results showed that using homomorphisms leads to a significant improvement in the quality
of the learned policies. However, our approach lacks of a theoretical guarantee beyond the
intuition. In fact, control policies are local and reactive in most states, such as avoiding
obstacles during a navigation task, but there are always some critic states where the optimal
actions cannot be explained by only the local dynamics of the system.

The second proposed method consists in using the provided examples of the expert’s policy
in order to define a modified Markov Decision Process, where the learner agent is constrained
to select the same actions as the expert in all the states that appear in the examples. Using an
initial reward function, an optimal policy in the modified MDP is found by using a planning
algorithm. This latter policy is then used as the expert’s policy and fed back to the learning
algorithm.

The final method that we proposed was a Predictive Reward Representation. Past work
on IRL considered the reward function as a linear combination of basic features, and the
expected frequencies of these features under the expert’s policy are empirically estimated
from the demonstration. However, the quality of the learned policies is highly sensitive to
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the frequency estimation error. This error is mainly due to the sparsity of the features over
the state space. To solve this problem, we introduced a new representation where the reward
function is a linear combination of the predictions of the basic features after a sequence
of actions. These extended features are in general more informative than the basic ones.
Preliminary results on a simulated car racing problem show that this approach is able to
learn good policies from a small number of demonstrations. The main drawback of this latter
approach is the selection of useful extended features. In fact, this problem is equivalent to the
problem of selecting core tests (or core histories) in predictive state (or policy) representations.

7.2 Future Research

This dissertation may be extended in many ways to solve more efficiently problems of sequen-
tial decision-making under uncertainty. Below, we briefly outline three of what we consider
to be the most important directions of future work.

Selection of core tests and core histories: Throughout this thesis, we noticed that
the major limitation of using predictive representations lies in the process of selecting
the core tests, or histories. This problem, known as the discovery problem, has been
tackled with different techniques in the past, but all of the proposed solutions were based
on defining simple criteria for deciding if a given test is a core one or not [Makino and
Takagi, 2008]. Similar heuristics were used in this thesis. For instance, in the problem of
reducing a POMDP to a compact PSR, we considered the length of a test as an indicator
of its importance. Alternatively, we can consider a large set of tests (larger than the state
space), and introduce binary variables, with values in {0, 1}, in the objective function
for selecting only important tests. One can also add an L1 regularization on the weights
of the extended core tests in order to reduce their number.

Constraining the belief states in PSRs and PPRs: From the experimental analysis
performed on PSRs and PPRs across this thesis, we noticed that the belief states of these
models are often unstable. This is because the belief state is a vector of predictions, and
errors in predictions accumulate over time. After a certain number of belief updates
using Bayes’ rule, the belief state diverges from the domain of valid probabilities, and
predicts probabilities higher than 1 or lower than 0. This is not a problem in models
defined by probability distributions, such as POMDPs. In POMDPs, if the initial belief
state is a valid probability distribution, then it suffices to ensure that the transition
and observation matrices are stochastic ones (i.e. they have positive entries and each
row sums to 1) in order to ensure that the belief state will be a valid distribution after
an arbitrary number of updates. This is not the case in PSRs. A first solution to this
problem was proposed by James [2005], where reset points were periodically used in order
to correct the predictions of the PSR model by resetting the belief state to a deterministic
state. Recently, a family of simple sufficient, though not necessary, constraints for
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defining valid parameters for PSR was given by Wolfe [2010b]. This problem should
be efficiently addressed before considering the deployment of PSR techniques on real
applications.

Robotic applications: After addressing the two issues above, most of the techniques
proposed in this thesis can be deployed on real applications. For instance, many prob-
lems in robotics can be directly casted as problems of sequential decision-making under
uncertainty. In fact, robotics traditionally have been a favorite field for applying artifi-
cial intelligence and machine learning techniques in general [Giguère and Dudek, 2009].
Given that this thesis was originally inspired by robotic applications, such as the smart
wheelchair project [Pineau and Atrash, 2007], a natural extension of this work would be
to deploy the proposed techniques on this type of applications.
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