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Abstract

Robots are increasingly becoming key players in
human-robot teams. To become effective teammates,
robots must possess profound understanding of an envi-
ronment, be able to reason about the desired commands
and goals within a specific context, and be able to com-
municate with human teammates in a clear and natural
way. To address these challenges, we have developed an
intelligence architecture that combines cognitive com-
ponents to carry out high-level cognitive tasks, seman-
tic perception to label regions in the world, and a natural
language component to reason about the command and
its relationship to the objects in the world. This paper
describes recent developments using this architecture on
a fielded mobile robot platform operating in unknown
urban environments. We report a summary of extensive
outdoor experiments; the results suggest that a multidis-
ciplinary approach to robotics has the potential to create
competent human-robot teams.

1 Introduction
As robots become an integral part of human-robot teams,
they will require new modalities for control, as well as sens-
ing and reasoning capabilities that operate at the same level
of their human counterparts. To become useful teammates,
these robots will need to be able to understand natural lan-
guage, recognize semantically meaningful objects around
them, and perform high-level reasoning once given a task.
This level of understanding would enable human teammates
to easily cooperate with complex robots without requiring
specialized interfaces, protocols, or training.

For example, in Figure 1, a human operator might com-
mand the robot to “navigate quickly to the back of the build-
ing that is behind the car.” Completing this task success-
fully requires that the robot understand the components of
the command, locate a car and a building and reason about
their spatial relationships (without a map), hypothesize the
complete shape of the building (which it may only see the
front of) to identify an actual goal location that can be re-
ferred to as the back of the building, and finally plan a path
around the building to that goal. In a field application, the
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robot must also deal with an incomplete model of the world
and uncertainty due to perception and motion constraints.

While numerous previous studies have focused on some
components of the overall system (e.g., outdoor robot navi-
gation (Bonin-Font, Ortiz, and Oliver 2008), cognitive capa-
bilities for simulated environments (Anderson et al. 2004),
scene classification and object detection (Lai et al. 2012),
or language understanding for indoor robots (Tellex et al.
2011)), relatively little work exists to bring these capabili-
ties together in one fielded system.

Existing cognitive approaches to robotics generally fo-
cus only on the cognitive side and do not necessarily ad-
dress actual robotics challenges (Trafton et al. 2013), e.g.,
the perception task is commonly simplified or is assumed
to be complete and accurate. By contrast, our system ac-
knowledges the current limitations of robotic perception; to
cope with imperfect perception, we use a probabilistic world
model that combines information from multiple sources in-
cluding not only sensory perception but also general knowl-
edge (learned offline) and linguistic clues.

Navigate quickly to the back of the 
building that is behind the car. 

Fig. 1: The Husky platform executing symbolic navigation.

We have integrated multidisciplinary components into a
combined intelligence architecture that enables a robot to
perform high-level cognitive tasks specified in natural lan-
guages in an unknown environment, leveraging recent devel-
opments from the fields of cognitive architectures, semantic
perception, and natural language understanding. In contrast
to black box approaches, our approach uses assumptive rea-
soning where the robot’s rationale behind its decision mak-
ing can be explained intuitively to human teammates by the



use of predicted symbols and shapes with which people are
familiar. This architecture is platform-independent and flexi-
ble to implement various tactical behaviors, e.g., navigation,
search, or manipulation. In this paper, we focus on outdoor
navigation in urban environments, and report that our multi-
disciplinary approach enables the robot to carry out complex
tasks in various real-life scenarios without the need of a map
or priors of potential locations of objects and structures. We
highlight unique opportunities and challenges engendered
by integrating many different systems with complementary
strengths.

The rest of this paper is organized as follows: We first in-
troduce the high-level intelligence architecture in Section 2
and the language interface specifying tactical behaviors in
Section 3, followed by an illustrative example in Section 4.
Next, technical detail is described, focusing on perception
(Section 5), prediction (Section 6), and language under-
standing (Section 7). Finally, we report the results in Sec-
tion 8 and conclude the paper.

2 An Intelligence Architecture
We have devised a basic intelligence architecture that ad-
dresses the challenges discussed in Section 1 and have
crafted a set of tasks and subtasks that add capabilities
needed to achieve mission goals. The architecture is tightly
coupled to the world model as shown in Figure 2. By world
model, we mean a model for the world itself, the robot(s),
and the interaction between the robot and world (Dean
2013).

The architecture consists of a hierarchy of tasks in three
levels: mission, attention and interaction. Each task is a
computational node that encapsulates a particular function-
ality. The node interleaves perception, planning, and execu-
tion monitoring to transform the world model from one be-
lief state into another belief state. At each level, the world
model stores all of the data for matching the task’s pre- and
post-conditions. The world model also stores resource mod-
els for the robot, the current task/subtask execution trace (for
monitoring and inspection), and the history of this trace (for
offline learning).
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Fig. 2: An intelligence architecture for human-robot teams.

Mission Level: The tasks at the mission level implement
specific doctrines. The tasks determine how to sequence
atomic actions at the next level down (e.g., navigation, ma-
nipulation, and perception) in order to achieve the mission.
Mission-level tasks mimic human functionality in compli-
ance with doctrines. The basic actions are pre-determined,
but the challenge is to figure out when and how to apply
these doctrine templates to particular cases, or modify ac-
tions based on situational awareness and context. The world
model includes state data that represents contexts and situa-
tions as well as tasks and subtasks that are planned and being
executed.

Attention Level: The mission-level tasks call attention-
level tasks to navigate from place to place, grasp and ma-
nipulate objects, and perceive semantic objects and hazards.
Rather than encoding doctrines, the reasoning at this level
is primarily geometric. For example, a task reasons about
how to move a manipulator to avoid obstructions and get
into position to grasp an object. The world model includes
grids of hazard data (e.g., interpreted relative to a particular
robot model); semantic objects such as doors or buildings;
scrolling maps; and planned/executing tasks and their sub-
goals.

Interaction Level: The attention-level tasks call
interaction-level tasks to affect motion and interact with
the world via contact. Tasks at this level are essentially
controllers. They typically cycle at 10 Hz or faster. The
world model includes robot kinematics and dynamics and
metric data, such as geometric shape, appearance, and
material properties for objects in the world. The model
includes robot/world interactions, such a forceful contact,
tire-soil effects, etc. The uncertainty is typically confined to
a small number of parameters such that standard parameter
identification techniques can be used online (e.g., solving
for tire slip by comparing commanded trajectory to actual
trajectory from an IMU).

In this paper, we specifically focus on the development
of tactical behaviors that showcase how the task levels are
interleaved inside the architecture. In general, a tactical be-
havior operates with partial information about the world. By
leveraging both metric and semantic information, the intel-
ligence architecture enables the robot to manage uncertainty
in handling tactical behaviors in real-life environments.

3 Tactical Behavior Specification
This section describes the scope of tactical behaviors using a
semi-structured language, known here as Tactical Behavior
Specification (TBS)1. TBS grammar in Backus-Naur Form
(BNF) is shown in Figure 3.

Example 1 (An annotated TBS command)
Navigate covertly left of the building !
 <action>   <mode>    <action-constraint>!
!

to a traffic barrel behind the building. !
    <goal>              <goal-constraint>!

1The speech interface and the natural language unit that trans-
lates from free-form English to TBS is not covered in this paper.



<tbs> ::= <action><direct-obj>[<mode>][<action-constraints>]<goal>[<goal-constraints>]
<action> ::= navigate | search | observe | grasp
<direct-obj> ::= <named-obj>
<goal> ::= [ <relation> ] <landmark-object>
<goal-constraint> ::= <constraint-list>
<action-constraint> ::= <constraint-list>
<constraint-list> ::= <constraint-term> | <constraint-term> { <operator> <constraint-term> }
<constraint-term> ::= [not] <relation> <named-object> [<constraint-list>]
<mode> ::= "quickly" | "covertly" | "safely"
<relation> ::= "to" | "left" | "right" | "behind" | "front" | "around" | "near" | "away"
<landmark-object> ::= <named-object>
<operator> ::= and | or
<named-obj> ::= "Robot" | "Building" | "Wall" | "Door" | "Grass" | "Asphalt" | "Concrete" |

"Person" | "TrafficBarrel" | "Car" | "GasPump" | "FireHydrant"

Fig. 3: Tactical Behavior Specification (TBS) language in BNF.
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Fig. 4: Navigate left of the building to a traffic barrel that is behind the building. This paper is best viewed in color.

Example 1 shows an annotated example of a TBS com-
mand for the navigate tactical behavior; we use this example
throughout the paper.

The TBS language supports a rich set of constraints that
can leverage spatial relationships among objects in an envi-
ronment. Whereas goal-constraints are used to spec-
ify a goal using its relative location with respect to land-
marks, mode and action-constraints are used to
specify how the robot should approach a goal, e.g., keep to
the left (as opposed to the right) of the building when navi-
gating to the back of the building. In particular, a mode can
impose subtle behavioral preferences, such as “covertly,”
that are generally difficult for humans to elicit in a clear
formula. A spatial constraint is defined in terms of a spa-
tial relation and a landmark object used as a reference.
In the action-constraint in Example 1, for instance, “left
of” and “the building” are referred to as relation and
landmark-object, respectively. The symbols and their
relationships referenced in the TBS are translated into ac-
tual objects and costmaps in the robot’s world model via the
language grounding process described in Section 7.

Using and and or operators, both conjunctive and dis-
junctive constraints can be expressed, e.g., “left of the car
and near the building.”

The types of actions supported include “navigate,”
“search” and “observe.” In this paper, we specifically focus
on the navigate tactical behavior.

4 Example: Navigate Tactical Behavior

Figure 4 illustrates an end-to-end process for executing the
TBS command in Example 1 and how various components
interact within the architecture. Steps 1 and 2 show the
robot’s camera view and the LADAR scan inputs when the
command is received, respectively. Step 3 shows that the
front walls of a building are detected and new objects of
type wall are created in the world model. This change in
the world model triggers a context reasoner in the mission
level, which predicts a composite object of type building
from the set of detected walls as shown in 4 . Example 1
includes two landmark-objects, building and traffic
barrel, but the robot’s current world model contains only
a set of walls and a building. This inconsistency causes
low grounding confidence, which, in turn, enables geomet-
ric spatial reasoning in the attention level, i.e., based on the
context in the command, a traffic barrel must be behind the
building; an object is thus hypothesized behind the building
as shown in 5 . Now, the world model includes a building
and a traffic barrel, both predicted. After symbol grounding
is done with sufficiently high confidence, the robot computes
a navigation costmap that best satisfies the action constraint
to stay to the “left of the building,” and plans a path accord-
ingly in step 6 . Step 7 shows the predicted building being
confirmed by the sensed data. Hitherto, the robot’s goal is
based on a hypothesized object behind the building. When



the robot is near the rear corner of the building shown in
8 , it detects a real traffic barrel via sensors and re-plans to

complete the command.

5 Semantic Perception
Semantic objects are constructed incrementally using data
from two types of sensors: a 2D camera and a 3D scanning
LADAR sensor. The camera is used for scene classification
and identification of the named objects, with the output of
the classifier mapped to the LADAR point cloud. The labels
include: wall, grass, asphalt, concrete, traffic barrel, car2, gas
pump, and fire hydrant.

In the next subsections, we describe the 2D camera-based
semantic classification algorithm, followed by the 3D object
classification.

5.1 2D Scene Classification
As opposed to employing a specific object detector for each
type of object, we currently use a high-performance camera-
based scene classifier (Munoz 2013) which has been demon-
strated to perform well on outdoor scenes (Lennon et al.
2013). In addition to identifying large landmarks such as
building façades, trees, pavement, and vehicles, we have also
used it to identify regions of the image where traffic barrels,
gas pumps and other smaller objects are present as shown
in Figure 5.

This scene classifier labels superpixels using SIFT (Lowe
2004), LBP (Ojala, Pietikainen, and Maenpaa 2002), and
texton features (Shotton et al. 2009) in a coarse-to-fine seg-
mentation hierarchy, with segmentation of the smallest re-
gions based on (Felzenszwalb and Huttenlocher 2004), and
with larger regions constructed by combining neighboring
regions with similar pixel statistics. A decision-forest clas-
sifier generates a predicted distribution of labels for each re-
gion in a coarse scale that is then passed to classifiers in the
next level, which further refine the result using information
at a more local scale. Ultimately, we use the most probable
label for each of the finest superpixel regions to label the im-
age. This strategy is effective for scenes, but dedicated ob-
ject detectors as in (Zhu et al. 2014) can perform better for
specific objects. We intend to supplement our system with
these detectors especially for smaller objects in the future.

The scene classifier labels pixels, not the discrete objects
that the intelligence architecture requires. For this reason,
we use the 3D LADAR data to separate labeled pixels into
discrete objects with coordinates in the world, relative to the
robot, as well as to filter mislabeled border pixels and vali-
date results.

5.2 3D Object Classification
For general object detection, we currently do not use prede-
fined object models specifying geometric shapes. An excep-
tion to this are buildings that, due to their large size, can only
be detected incrementally by combining multiple frames of
data. We use RANSAC (Fischler and Bolles 1981) to look

2The label “car” is a generic term for vehicles. The type of vehi-
cles used in the experiments are small cars, trucks, and HMMWVs.

Car 

Fig. 5: Semantic labeling in the 2D images.

for planar surfaces from the input point cloud to detect a
wall; neighboring walls can be merged into one or connected
through corners to constitute a rudimentary structure for a
building that can be used in cognitive reasoning at the mis-
sion level.

traffic	  barrel	  

fire	  hydrant	  

car	  

unknown	  

Object 1 Object 2 

Fig. 6: The 3D classification: Both Object 1 (traffic barrel)
and Object 2 (fire hydrant) are classified correctly with high
confidence despite the fact that nearly a half of data points
are mislabeled.

Semantic objects of other general types are constructed as
follows. Given a set of semantically labeled points, we clus-
ter points only according to the Euclidean distance between
points. Note that the labels of input points are not used as
a criterion for clustering, i.e., a cluster is initially given a
uniform prior over the set of class labels. This is to reduce
potential false-positive detection due to misclassified border
pixels. This step can be efficiently done by exploiting the
octree data structure as in Point Cloud Library (PCL) (Rusu
2009).

Each resulting cluster is composed of a mixture of seman-
tic labels. Using the labels of the constituent points, we up-
date the cluster’s posterior using the naı̈ve Bayes approach.
Let C denote a set of classes, and L = {l1, ..., ln}, li ∈ C,
a set of labels from n points in a new cluster. For each class
c in C, the posterior probability of the cluster belonging to
class c given set L from a cluster can be written as:

p(c|l1, ..., ln) =
1

z
p(c)

n∏
i=1

p(li|c)

where z is a normalization factor. Here, the probability
p(l|c) of observing label l given class c represents how of-
ten the 2D classifier mistakes an object of class label c for
class label l; this probability distribution is experimentally
obtained from the classifier’s confusion matrix.

For example, as illustrated in Figure 6, traffic barrels fre-
quently include some car pixels whereas cars rarely have
traffic barrel pixels. In this case, if a new cluster contains
both traffic barrel and car pixels evenly, the traffic barrel la-
bel will result in a higher probability for the cluster.



6 Prediction
If an object is too far from the robot or if the object is oc-
cluded by another object, then the robot may not be able
to detect it. Due to various sensor range limitation, robots–
unless operating in a pre-explored environment–generally
do not have sufficient knowledge about the objects referred
to in a TBS command. In the following subsections, we de-
scribe two different methods for hypothesizing objects in an
environment.

6.1 Prediction Using Declarative Memory
Adaptive Control of Thought - Rational (ACT-R) is a cog-
nitive architecture created to model human performance on
psychological tasks (Anderson et al. 2004). ACT-R is mainly
used in the mission level where it manages a high-level plan,
monitors action status, and resolves conflicts or ambiguity.
Additionally, ACT-R provides intelligence to hypothesize
unseen parts of an environment. Navigation within a com-
plex, dynamic environment requires an autonomous agent
to possess a sense of context and an ability to project its
“thought” processes into the future. To enable such capabil-
ity for our robotic system, we constructed a cognitive model
in the ACT-R framework that attempts to predict what build-
ing the robot is looking at by matching it to patterns in its
declarative memory.

Encoded within ACT-R’s declarative memory are geomet-
rical patterns that represent buildings. These patterns may
be learned explicitly or implicitly from experience, but in
our particular case they were compiled by the experimenters.
The ACT-R model begins by fetching clusters of walls from
the world model; a cluster is simply any collection of walls
identified by the perceptual front-end as belonging to a sin-
gle physical structure. For example, two walls properly iden-
tified as meeting at a corner would both be members of the
same cluster. Once all the clusters have been retrieved, ACT-
R chooses the “most informative” cluster on the basis of
three factors: cluster size (i.e. number of walls), cluster con-
nectivity (i.e. number of corners), and the distance of the
cluster center of mass from the robot’s location. This heuris-
tic encodes the common-sense knowledge that more infor-
mation is better, and that the object located closer to the
robot is likely to be the one of most interest.

After selecting the most informative cluster, the model
attempts to match this cluster to a geometrical pattern in
declarative memory. Due to limited vertical angle of sight
for the LADAR (±10◦), unless approached from a distance,
the robot does not have a good view of the entire height of
a structure, which means that only the length information of
a wall is informative. If the model retrieves a pattern, it then
attempts to project that pattern back into the world model.
This is done by registering the points from the cognitive
model to the data points observed in the world via a vari-
ant of the iterative closest point (ICP) algorithm (Besl and
McKay 1992).

Once all the alignments have been tried, we select the one
that has the smallest mean squared distance from the data.
That prediction is now taken to be our current prediction,
and updates to it occur only when they improve on the error

of the original prediction. As the perceptual sensors gather
more information from the world, the quality of the predic-
tion should improve, thereby driving the error to a global
minimum.

6.2 Prediction Based on Linguistic Context
In this section, we describe an approach that exploits con-
textual clues from commands.

When a command is given, the symbol grounder (de-
scribed in Section 7.2) attempts to resolve uncertainty by
grounding object symbols referred to in the command with
actual object instances in the world model. The confidence
of the grounder is determined based on how well those se-
lected object instances satisfy spatial constraints specified
in the command. Therefore, a low confidence value implies
that the robot’s current world model is inconsistent with the
command. Such inconsistency can be addressed by relaxing
a command that may be overly constrained, or by modify-
ing the world model–e.g., by introducing new variables (or
objects) that satisfy the constraints. Here, we focus on the
latter. In Figure 7, for instance, the robot’s grounding con-
fidence may be low if no objects can be found behind the
building in the world model. Context-based object predic-
tion is triggered in such a case.

building 

robot 

traffic  
barrel 

1	  

building 

robot 2	  

Fig. 7: Given a command
“Navigate to a traffic
barrel behind the build-
ing,” a traffic barrel is
hypothesized behind the
building.

In the TBS, constraints are defined in the order of depen-
dence, e.g., a traffic barrel (that is behind a building (that
is near a car (that is in front of the robot))). Constraints are
propagated from the innermost variables–thus the most sig-
nificant landmark objects–that are constrained only by their
labels. In Figure 7, for instance, objects in the world model
are first evaluated for their candidacies for “building”. Next,
variables that are referenced with respect to a building are
evaluated, i.e., for each object, the probability is computed
for its being a traffic barrel and being located behind a build-
ing. During the evaluation process, if the set of objects sat-
isfying the constraint is empty, then a new object is hypoth-
esized such that the constraint is satisfied in that level.

In Figure 7, Step 1 shows that there are no objects that
are behind the building in the robot’s world model. The goal-
constraint, behind building, is evaluated to generate a set of
candidate locations to hypothesize a traffic barrel. In step
2 , a goal object, traffic barrel, is hypothesized in the can-

didate location that best satisfies the goal-constraint. The al-
gorithm for evaluating a spatial constraint cost is described
in Section 7.2.

7 Language Grounding
The TBS decomposition presented in Section 3 enables us to
leverage properties of spatial language, and enables to rea-
son over the individual TBS components independently. We



must understand how to travel such that our path obeys the
linguistic command (spatial navigation), and which objects
correspond to those specified by the user (symbol ground-
ing). We address these challenges here, using models trained
by imitation learning from expert demonstrations of correct
behavior.

Other approaches to these types of issues include learn-
ing to ground objects and actions in the world from a natu-
ral language command (Tellex et al. 2011), hand-coded lin-
guistic parsers (MacMahon, Stankiewicz, and Kuipers 2006)
or ones learned from robot controller examples (Matuszek
et al. 2012), and policy-based approaches for navigating in
completely unknown indoor environments (Duvallet, Kol-
lar, and Stentz 2013). Our focus is instead on understanding
language while being robust to uncertainty due to changes
in perceived and predicted objects (for example, misclassi-
fied or misplaced landmarks), and being efficient to allow
for quick re-planning to utilize new information.

7.1 Language-Driven Spatial Navigation
We treat grounding spatial language as learning a mapping
from terms (such as “left of”, “around”, or “covertly”) to a
cost function f which can be used to generate a matrix of
costs known as a costmap. A planner can then optimize to
produce the minimum cost path under the cost function f .
Figure 8 shows two sample costmaps along with their mini-
mum cost paths for two terms.

More specifically, given a spatial term in the TBS σ, the
robot solves the planning problem of finding the minimum
cost path ξ∗ under the cost function fσ:

ξ∗ = argmin
ξ∈Ξ

fσ (ξ) = argmin
ξ∈Ξ

wTσ φ (ξ) (1)

where the set of valid paths is Ξ, and we assume that the
cost function fσ takes the form of a linear sum of fea-
tures φ under weights wσ . The features describe the shape
of the path, the geometry of the landmark, and the relation-
ship between the two (Tellex et al. 2011). We use imitation
learning to learn the weights wσ from a set of demonstrated
paths {ξ̂i}N1 .

To learn the weights wσ , we minimize the difference be-
tween the cost of the expert’s demonstrated path ξ̂ and the
minimum cost path under the current cost function:

`
(
wσ, ξ̂

)
= wTσ φ(ξ̂)−min

ξ∈Ξ
wTσ φ (ξ) +

λ

2
‖wσ‖2 (2)

under our regularization parameter λ. This loss is opti-
mized using maximum margin planning (Ratliff, Bagnell,
and Zinkevich 2006; Ratliff, Silver, and Bagnell 2009).

7.2 Symbol Grounding Using Spatial Constraints
The symbol grounding module receives as inputs a TBS
command, a set of objectsO = {o1, o2 . . . , on} in the world
model, and the current position (x, y) of the robot at the time
when the command is given. Each object o in setO is associ-
ated with probability distribution po(l) over the class labels
L, l ∈ L, given by the perception module (Section 5). A
TBS command includes a set of symbols referred to as their

High 

low 

Constraint “left of” Mode “covertly” 

Fig. 8: Learned navigation cost functions and resulting paths
(drawn in black, starting at the pink plus symbol), through
several environments containing buildings (outlined in red).

labels. The symbols of particular interest in the path plan-
ning module are the landmark-objects in a goal and an ac-
tion constraint, denoted by ψg and ψa, respectively. Let Lψ
denote the label of symbol ψ in a TBS. In Example 1, for
instance, symbols ψg and ψa are labeled as “traffic barrel”
and “building.”

For each symbol in a TBS command, we associate an
object in the world model that best matches what the user
was referring to in a process known as symbol grounding.
Therefore, the result of the symbol grounding is a joint
probability distribution P (ψg, ψa) on each pair of objects
(og, oa) ∈ O ×O.

Given symbol ψ mentioned in a TBS command, for each
object o in O, we find out probability p(ψ = o|Lψ) that
object o is what the commander intended by symbol ψ given
its label. Here, probability po(Lψ) of object o having the
matching label with symbol ψ is used as a prior; this value
is available from semantic perception.

If spatial constraints exist for symbol ψ–e.g., traffic bar-
rel ψ “behind the building”–then the next step consists
of updating the probability distribution conditioned on the
spatial constraints using Bayes’ rule. Let rγ and ψγ de-
note relation-name and a symbol representing the
landmark-object of constraint γ. The posterior distri-
bution given constraint γ is computed as:

p(ψ = o|Lψ, γ) ∝
∑
o′∈O

po′(Lψγ ) exp
(
wTrγφ(x, y, o, o′)

)
,

where φ(x, y, o, o′) is a vector of spatial features that are
relative to the shape and positions of objects o and o′ as well
as the robot’s current position (x, y); and wTrγ , a vector of
weights for relation rγ that is learned by demonstration. The
features considered here are the distance between the two
objects, and features of the angle between the robot-o′ axis
and the o-o′ axis. The weights are obtained by maximizing
the likelihood of training examples using gradient descent,
with l1 regularization for obtaining sparse weights (Bishop
2006).

Finally, we calculate the costs of the optimal paths that go
from (x, y) to each candidate goal. The object distribution
is re-weighted by penalizing the answers that lead to costly
paths. The grounding module also returns a confidence value
that indicates how well the answer satisfies the constraints.



8 Experimental Results
The complete end-to-end system has been integrated on
ClearpathTMHusky (Clearpath ) equipped with the Gen-
eral Dynamics XR 3D LADAR sensor and Adonis cam-
era (shown in Figure 1). The LADAR sensor is mounted
0.7 m above ground which creates approximately 4 m radius
dead zone around the robot. A Hokuyo UTM-30LX scan-
ning laser sensor is installed at 0.25 m for obstacle detection
in the dead zone.

For path planning, we used PMAP with Field D* (Stentz
1994; Ferguson and Stentz 2005; Gonzalez, Nagy, and
Stentz 2006). Field D* is a costmap-based algorithm that
can efficiently compute an optimal path. The PMAP planner
can combine multiple layers of costmaps, where each layer
represents a different aspect of the map cells such as naviga-
tion difficulty, path preferences, or safety. The overall costs
are computed using a weighted sum.

The examples and results reported in this paper are based
on outdoor experiments conducted in a 1 km2 military train-
ing facility located in central Pennsylvania, US, that includes
12 buildings in a simulated town. The dates of the experi-
ments spread between December 2013 to August 2014, cov-
ering varying conditions in terms of weather, sunlight, back-
ground, and terrain conditions. Table 3 lists the TBS com-
mands, for clarity, in a less structured English format that
can be fed to the system through a speech interface. Table 1
shows a summary of experimental results3

Table 1: Overall results.
Number of unique TBS commands 30
Total number of runs 46
Number of successful runs 35
Number of incomplete runs 11
Distance traveled per run (m) 21.0± 14.3
Number of runs traveled more than 30m 11

Here, an incomplete run is one where the robot started ex-
ecuting a valid initial plan but stopped prematurely due to
various issues such as network communication failure and
platform errors. In addition, actions were aborted by an op-
erator when the robot’s current plan appeared unsafe, e.g.,
driving over challenging terrain.

Achieving high precision in object detection is crucial
in carrying out tactical behaviors because a false positive
detection can lead the robot to an arbitrary direction, of-
ten resulting in a failure. Detecting large-sized objects such
as buildings is only limited by the sensor range (≈ 50 m),
whereas it is more challenging to detect small-sized objects.
In our experiments, the farthest building detected was 46 m
away from the robot, whereas fire hydrants could be detected
accurately only when they were within 10 m from the robot
on average. The maximum range of 25 m for non-building
type objects was empirically chosen to yield high precision,
at the cost of a lower recall rate; that is, detections that are
made outside this maximum range are disregarded to de-
crease the false positive error rate.

3Videos available at: http://www.nrec.ri.cmu.edu/projects/rcta/

Table 2: Object composition in the world model.
Number of detections 8.3± 3.4
Number of predictions 3.2± 3.3

Since the robot is myopic, being able to hypothesize the
unseen part of the world is an essential capability in sym-
bolic navigation. As shown in Table 2, on average, 40% of
the robot’s world model was composed of predicted objects;
more importantly, these predicted objects play key roles dur-
ing the early stage of execution when the level of uncertainty
is high. Predictions guide the robot to make plans with tenta-
tive goals; as the robot navigates, when a predicted object is
within the robot’s field of view, the prediction is either con-
firmed or invalidated based on sensed data. Subsequently,
the robot continuously re-plans until a goal is reached.

gravel grass 
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Detected  
         goal 

traffic barrel 

Fig. 9: Keep to the left of the building; navigate to a traffic
barrel that is behind the building.

Figure 9 shows another run of the same TBS command
used in Figure 4. Although it was for the same command,
Figure 9 exhibits a more challenging case because there
were several buildings of various shapes and sizes clustered
closely. The first row shows that the robot’s initial plan was
created based on a hypothesized traffic barrel predicted be-
hind the building that the robot was facing. The prediction
was invalidated when it came into the robot’s field of view.
Here, if the real goal had not been detected, then another pre-
diction could be made outside the robot’s field of view. As
shown in the second row, the robot had successfully detected
a real goal object and completed the action.

Figure 10 illustrates one of the longest runs. Here, the
robot’s world model included a false detection of car (white
circle on the right). Despite this error, the robot was able to
ground the correct car as a landmark because the real car bet-
ter satisfied the spatial constraint specified in the command–
a building is behind a car–and the cost was lower.

In Figure 11, the robot needed to choose among three cars
in front to ground an action-constraint landmark. Because
navigating left of car1 or car2 was highly costly due to ob-



Table 3: Sample TBS commands used in the experiments in free-form English.
Navigate covertly to the back of the building that is to the right of the car.
Navigate to a traffic barrel that is front/behind/left/right of the robot.
Navigate covertly/quickly to the left/right of the building/gas pump.
Navigate quickly to a car that is near the fire hydrant.
Navigate covertly/quickly to the building that is to the left/back of the car/fire hydrant.
Navigate quickly to the building that is near the traffic barrel.
Navigate covertly to the left of the building that is behind the fire hydrant and to the right of the fire hydrant.
Stay to the left/right of the building; navigate quickly to a traffic barrel that is to the left/right/back of the building.
Stay to the left of the car; navigate quickly to the building that is near the car.
Stay to the right of the car; navigate quickly to a traffic barrel that is behind the car.
Stay to the right of the car; navigate quickly to a traffic barrel that is to the left of the building.
Keep to the left of the gas pump; navigate quickly to a traffic barrel that is to the left of the gas pump.
Stay around the traffic barrel; navigate quickly to the building that is to the left of the traffic barrel.
Keep to the left/right of the gas pump; navigate quickly to the building that is to the back/left of the gas pump.
Keep to the right of the traffic barrel; navigate quickly to the right of the building that is near the traffic barrel.
Keep to the right of the fire hydrant; navigate covertly to the left of the building that is behind the fire hydrant.
Stay to the left of the building; navigate quickly to a fire hydrant that is to the left of the building
Stay to the left of the building; navigate quickly to the building that is near the car.
Stay to the right of the car; navigate covertly to the right of the car/building that is behind the car.

Car 

Car 
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Building 

Building 

Fig. 10: Keep to the right of a car; navigate to a building that
is behind the car. The map (right) displays 10 m grid; darker
blue indicates a path preference of navigating the right side
of the car.
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Fig. 11: Keep to the left of a car; navigate to a traffic barrel.

stacles and a longer distance to travel to a traffic barrel, the
robot selected car3 to be the landmark with high confidence.

9 Conclusion

This paper describes an intelligence architecture for human-
robot teams and details its application to a mobile robot
system that goes beyond metric navigation to rich sym-
bolic navigation. By leveraging high-level contextual rea-
soning capabilities and semantic understanding of metric
information, the system enables mobile robots to navigate
and perform nontrivial tasks in real-world environments.
The system has been verified through extensive outdoor ex-
periments; results suggest that our integrated approach to
robotics has the potential to create competent human-robot
teams.

Building on the results presented in this paper, we are
working on more complex team tasks that require a mission-
level planning capability to compose various actions in se-
quence or in parallel and a bidirectional communication ca-
pability through a multimodal interface.
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