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e {S'}: a set of states per agent. Execute 7' for k steps % ol
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_ The posterior distribution of a transition function 7' given a prior A Learning Step
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Assumptions. | Figure 3: Results on the meeting problem 1.

1. Every agent » knows only her own transition function 7".

2. The agents know the reward function R. Pr(T|Dy, Hy) o< H Pr(s'|s,a,T) Pr(als,T) Pr(T|Dy)
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Problem: Find an optimal joint policy under these assumptions. * We assume that the actions are given by a softmax function:

Inverse planning can be used to learn the parameters related

Pr(als,T) o e Qr(5:0) to states that are not even contained in the collected data.
4. A Toy Example Preliminary results show that this technique is promising for

(Q)%(s, a) are calculated by using the transition function T. cooperative planning problems.
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