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1. Overview

• Inverse planning refers to the problem of learning a probabilis-
tic model of the dynamics of a robot (or a human) by observing
her optimal behavior performing a given task.

• This work extends previous work on inverse reinforcement
learning [Ng et Russell, 2000, Ramachandran & Amir, 2007,
Baker et al., 2009] to the problem of learning a transition func-
tion when a reward function is given.

•We show that inverse planning can be efficiently used for co-
operative planning in teams of heterogenous robots.

2. Model

A Transition-Independent Multi-Agent Markov Decision Process
(MMDP) is defined by:

• I: a set of agents.

• {Si}: a set of states per agent.

• {Ai}: a set of actions per agent.

• {T i}: a set of independent transition functions, where
T i(s, a, s′) is the probability that agent i will end up in state
s′ after taking action a in state s.

•R: a reward function, R(s, a) is the reward that all the agents
receive when they execute the joint action a in joint state s.

3. Problem

Assumptions:

1. Every agent i knows only her own transition function T i.

2. The agents know the reward function R.

3. The agents can observe the states and actions of the others.

4. The agents cannot communicate.

Problem: Find an optimal joint policy under these assumptions.

4. A Toy Example

Obstacle between robots i and j

Optimal policy using uniform priors

Optimal policy using inverse planning
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Figure 1: Meeting problem 1.

•Robots i and j want to meet, but they cannot communicate.

• Actions of both i and j succeed with probability 0.7

•Neither i nor j can cross the obstacle.

•Using a uniform prior about the transition function of the other
robot (a 0.5 probability to cross the obstacle), the optimal policy
is to stay and wait for the other robot to cross the obstacle.

• By observing the other robot waiting, and using bayesian in-
verse planning, every robot learns that the probability that the
other one can cross the obstacle is less 0.5

5. Planning

The planning algorithm executed by an agent i:

t = 0

Initialize the Dirichlet prior D
j
t of the

transition function of the other agent j

The learned transition function
T̃ j of the other agent is given by
the maximum a posteriori of D

j
t

Find an optimal policy πi based on
the transition functions T i and T̃ j

Execute πi for k steps

Use bayesian inverse planning al-
gorithm to calculate the posterior
of D

j
t conditioned on the observed

transitions and executed actions of j

t← t + 1

6. Bayesian Inverse Planning

The posterior distribution of a transition function T given a prior
Dt and a trajectory Ht = {(s0, a0, s1), . . . , (sk, ak, sk+1)} is:

Pr(T |Dt, Ht)︸ ︷︷ ︸
posterior distribution

∝
∏

(s,a,s′)∈Ht

Pr(s′|s, a, T )︸ ︷︷ ︸
transition evidence

Pr(a|s, T )︸ ︷︷ ︸
policy evidence

Pr(T |Dt)︸ ︷︷ ︸
prior

•We assume that the actions are given by a softmax function:

Pr(a|s, T ) ∝ eαtQ
∗
T (s,a)

Q∗T (s, a) are calculated by using the transition function T.

• The posterior distribution does not have a closed form

•We use a gradient ascent algorithm to calculate a local maxi-
mum a posteriori of T.

7. Example II

Walls Door, only robot i can open it

Optimal policy using uniform priors

Optimal policy after one step of inverse planning

Optimal policy after two steps of inverse planning
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Figure 2: Meeting problem 2.

8. Preliminary Results
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Figure 3: Results on the meeting problem 1.

9. Conclusion and Future Work

✓ Inverse planning can be used to learn the parameters related
to states that are not even contained in the collected data.

✓ Preliminary results show that this technique is promising for
cooperative planning problems.

✗ The complexity of calculating the gradient is O(|S|4).
✗ The results of the gradient heavily depend on the stepsize.

✗ The tradeoff between the transition evidence and the policy
evidence is not well-captured by the vanilla gradient.

As a future work, we target to:

• Find an appropriate riemannian metric and use the natural gra-
dient.

• Find a fast approximation of the gradient.

•Use inverse planning in tasks involving a human-machine in-
teraction.
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