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1. Overview

e \We cast the problem of Apprenticeship Learning (Imitation
Learning) as a classification problem.

e \We use a modified version of the k-nearest neighbors method.

e The distance between two vertices iIs the distance between the
graphs defined around these vertices.

e The distance between two graphs is the largest error of a ho-
momorphism between the two graphs.

2. Markov Decision Process (MDP)

A Markov Decision Process (MDP) is defined by:
e S: a finite set of states.
e A: a finite set of actions.

e 7' a transition function, where 7'(s,a, s') is the probability of
ending up in state s’ after taking action « in state s.

e 2. a reward function, R(s,a) is the immediate reward that the
agent receives for executing action « In state s.

ey c (0,1] is a discount factor.

3. Policies

¢ A policy 7 Is a function that maps every state into a distribution
over the actions:

T:SxA—|0,1]
m(s,a) = Pr(a; = a|st = s)

e The value of a policy 7 Is the expected sum of the rewards that
an agent receives by following this policy.

O

V() = E[Y 7' R(st,ar)|]

t=0

e Solving an MDP consists in finding an optimal policy.

4. Apprenticeship Learning

e Specifying a reward function by hand is not easy in most of the
practical problems [Abbeel & Ng, 2004].

e It IS often easier to demonstrate examples of a desired behav-
lor than to define a reward function.

e In apprenticeship learning, we assume that the reward function
IS unknown.

There are two parts involved in apprenticeship learning:

1. An expert agent demonstrating an optimal policy 7~ for some
states.

2. A apprentice agent trying to learn a generalized policy 7 by
observing the expert.

5. Problem of Policy Transfer

e Problem: How to generalize the expert’s policy to states that
have not been encountered during the demonstration.

e Previous works have attempted to solve this problem by rep-
resenting the states as vectors of features, and classifying the
states accordingly.

e Inverse reinforcement learning algorithms learn a reward func-
tion from the demonstration of the expert policy, and use it to
find a generalized policy [Abbeel & Ng, 2004].

e These algorithms assume that the reward function can be ex-
pressed by considering only the features of the states.

e However, the reward function may depend on the topology of
the graph rather than the features of the states.

6. MDP Homomorphism [Ravindran, 2004]
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A homomorphism from MDP A/ to MDP 1/’ is a surjective func-
tion f that maps every state in 1/ to a state of A/’ such that:
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51+1€8S,f(8141)=5"141

0.5 \_Pl 1
/ 1 1 Q

> 000
=

A vertex in the second graph is the image of the vertices in the
first graph that have the same color.
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7. Soft MDP Homomorphism [Sorg & Singh, 2009]

A soft homomorphism is a function f that maps every state in \/
to a distribution over the states of 1/’ such that:

/
Z f St,St St,CL S t—i—l Z T St,CL St+1 f<8t+178t+1>

sies’ Si+1€S

Finding a soft homomorphism can be casted as a linear program.

Definition . Two states are locally similar if there is a soft homo-
morphism from the MDP defined by the neighbors (within a given
distance d) of the first state to the MDP defined by the neighbors
of the second.

8. Racetrack Example

A demonstration of the expert policy

R

Similar graphs  Dissimilar graphs

e There are two possible speeds in each direction of the vertical
and horizontal axis, in addition to the zero speed in each axis.

e Actions: accelerate or decelerate in each axis, or do nothing.

e Actions succeed with probability 0.9 in low speeds and only 0.5
In high speeds.

e The cost of an off-road is —5 and the reward for reaching the
finish line is 200.

9. Algorithm

Return the expert
action 7%(9)

s the expert action yes
for state S known?

no

Initialize the
neighboring
distance k to 1|

1

Is there a neighbor

locally similar to S yes
with a known expert

action?

Run a vote with the
neighbors that are
locally similar to S

Nno

Return the policy
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10. Results of the Racetrack Simulation
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11. Conclusion and Future Work

Policy transfer by soft local homomorphisms is well-suited for
problems where the rewards depend on the topology of the
graph.

Using homomorphisms leads to a significant improvement in
the quality of the policies learned by imitation.

[ This approach involves solving O(|S|?) linear programs, though
the number of variables is bounded by the maximal distance.

[IThere are no guarantees about the optimality of the solution.

As a future work, we target to use random walk kernels as a
measure of similarity between graphs, and find the theoretical
guarantees about the optimality of the solution.
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