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1. Overview

We propose to use Predictive State Representations (PSRs) to
represent parametric stochastic policies in Partially Observable
Markov Decision Processes (POMDPs). We provide a simple
Gradient algorithm for learning the parameters of a PSR policy.
Interestingly, we show that the value function of a PSR policy can
have less local optima compared to the equivalent Finite State
Controller (FSC).

2. Partially Observable Markov Decision Processes

A POMDP is a 8-tuple (S,A,O, {T a}, {Oa,o}, r, γ,H), where:

• S is a set of states, A is a set of actions, and O is a set of
observations.

• {T a} is a set of transition functions, where T a(s, s′) is the prob-
ability that the agent will end up in state s′ after taking action a
in state s.

• {Oa,o} is a set of observation functions, where Oa,o(s) gives
the probability that the agent receives observation o after tak-
ing action a and getting to state s′.

• r is a reward function, such that r(s, a) is the immediate reward
received when the agent executes action a in state s.

• γ ∈ [0, 1] is a discount factor.

•H is the planning horizon.

Hidden states s0 s1 st st+1

Belief states b0 b1 bt bt+1

a0 a1 at
at+1

a0 a1 at at+1

o1 ot ot+1

• A history ht is a sequence of past actions and observations.

ht = a0o1a1o2a2o3 . . . at−1ot

• The belief state is a vector bt where bt(s) = Pr(st = s|ht), s ∈ S.

3. Predictive State Representations [Littman et al., 2002]

• The probabilities on states are replaced by probabilities on par-
ticular future trajectories, called core tests.

• A test q is a sequence of actions and observations:
q = a1o1 . . . akok

• The probability of a test q starting after a history ht is defined
by: Pr(qo|ht, q

a) = Pr(ot+1 = o1, . . . , ot+k = ok|ht,

at+1 = a1, . . . , at+k = ak)

• The probability of any test q is a linear combination of the prob-
abilities of core tests. The belief state bt is a vector containing
the probabilities of core tests.
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∀q ∈ {A ×O}∗ : Pr(q|ht) = αPr(q1|ht) + βPr(q2|ht)

4. Predictive State Representations with Core Histories

• The probability of any test q after a history ht depends on the
probabilities of the same test after different core histories.

•We use H to indicate the set of core histories.

• The PSR belief state is a vector bt, where bt(h) is the weight of
the core history h ∈ H in the current history ht.

• The probability of any test q after a history ht is given by:
Pr(qo|ht, q

a) =
∑

h∈H bt(h)Pr(qo|h, qa) = bTt mq, where qa are
the actions of test q, and qo are its observations.
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5. Finite State Controllers (FSCs)

• FSCs map histories (or belief states) into decision equivalence
classes called internal states (I-states).

• A finite-number of internal states can remember an infinite
number of past events.

A Finite State Controller is defined by:
• G: a finite set of internal states (I-states).

• {µo,a}: a set of action-selection functions, where µo,a(g, θ) is
the probability that the agent will execute the action a if its I-
state is g, its last observation was o.

• {ωo}: a set of transition functions, where ωo(g, g′, θ) is the prob-
ability that the agent will select the I-state g if the current I-state
is g and the perceived observation is o.

6. Finite State Controllers with Internal Belief States

A trajectory (history) ht is a sequence of actions, observations
and sampled internal states. However:
✗ The cumulated reward of a given history depends only on the

executed actions and the perceived observations.

✗ The same trajectory ht may have been generated by different
internal states, with different probabilities.

✗ The estimator of the performance gradient has an unneces-
sary high variance.

✓ Shelton (2001), Aberdeen and Baxter (2002) proposed to re-
duce the variance of the gradient estimator by calculating an
internal belief state at each step instead of sampling a single
I-state.
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7. PSR based Policies

• A stochastic policy is defined as a PSR where the role of ac-
tions and observations are switched [Wiewiora, 2005].

• A test q is redefined as a sequence of observations and ac-
tions couples, i.e. q = o1a1 . . . okak.

• The probability of q starting after ht is redefined as:
Pr(qa|ht, q

o, θ) = Pr(at+1 = a1, . . . , at+k = ak|ht,

ot+1 = o1, . . . , ot+k = ok, θ)

• The probability Pr(qa|ht, q
o, θ) of any test q starting after a his-

tory ht is given by a linear combination of the probabilities of
the same test q starting after different core histories h ∈ H.

• In particular, the probability of executing action a at time t after
observing o is given by:

Pr(a|ht, o) =
∑

h∈H bt(h, θ)Pr(a|h, o, θ) = bTt moa

8. General Approach

The gradient of both PSR and FSC value functions is given by:

∂V (h0, θ)

∂θi
=

H−1∑
t=0

∑
ht∈{A×O}t

∑
a∈A

γt ∂Pr(ha
t a|ho

t , θ)

∂θi︸ ︷︷ ︸
policy

Pr(ho
t |ha

t )R(a|ht)︸ ︷︷ ︸
environment

where h0 is the initial empty history, ha denotes the actions of a
history h, and ho denotes its observations.

9. Gradient Estimation for FSCs [Aberdeen, 2003]

If we use a Finite State Controller to represent the policy, then:

Pr(ha
t |ho

t , θ) = bT0 (., θ)W o1a1(., ., θ) . . . W otat(., ., θ)e

Where W ojaj(g, g′, θ) = ωoj(g, g′, θ)µoj,aj(g′, θ) and
eT = (1, 1, . . . , 1). Unless the structure of the FSC is provided a
priori, the graph of the FSC is generally completely connected,
i.e. ∀a, o, g, g′ : ωo(g, g′, θ)µo,a(g′, θ) > 0. Therefore, the gradient
∂Pr(ha

t |ho
t ,θ)

∂θi
is a multivariate polynomial of degree 2t.

10. Gradient Estimation for PSR Policies

If we use a Predictive Representation of the policy, then:

Pr(ha
t |ho

t , θ) = bT0 (., θ)Mo1a1(., ., θ) . . . Motat(., ., θ)e

Where Mojaj(h, h′, θ) = mojaj(h, θ)bhojaj
(h′, θ).

The main advantage of PSRs comes from the fact that, contrary
to I-states, the core histories are contained within the sequence
of actions and observations, and no transition probabilities are
used to calculate the probability of a core history sequence.
Namely, when a prefix sequence o1a1 . . . oiai of the history ht cor-
responds to a core history, then the gradient ∂Pr(ha

t |ho
t ,θ)

∂θi
is a mul-

tivariate polynomial of degree less than 2t− i.

11. Small example
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In this example, the value function of an FSC has two local max-
ima, while its equivalent PSR policy has only one maxima.

12. Empirical Results
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The results are averaged over 10 independent runs.

13. Conclusion

✓ PSRs are alternative to Finite State Controllers in policy gradi-
ent methods for POMDPs.

✓ Internal beliefs of PSRs are based on observable sequences.

✓ The degree of the value function of a PSR policy is reduced by
at least the length of the shortest core history.

✗ The discovery of new core histories is based on heuristics.

✗ The belief states of a PSR policy are unstable.

As a future work, we mainly target to study the performance of
PSR policies using the natural gradient.
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