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1. Overview

We propose to use Predictive State Representations (PSRS) to
represent parametric stochastic policies in Partially Observable
Markov Decision Processes (POMDPs). We provide a simple
Gradient algorithm for learning the parameters of a PSR policy.
Interestingly, we show that the value function of a PSR policy can
have less local optima compared to the equivalent Finite State
Controller (FSC).

2. Partially Observable Markov Decision Processes

A POMDRP is a 8-tuple (S, A, O, {T%},{0%°},r,~v, H), where:

e S IS a set of states, A Is a set of actions, and @ is a set of
observations.

e {T%} is a set of transition functions, where T%(s, ') is the prob-
ability that the agent will end up in state s’ after taking action «
In state s.

e {0} is a set of observation functions, where O%°(s) gives
the probability that the agent receives observation o after tak-
ing action ¢ and getting to state s’.

e 1 is a reward function, such that (s, a) is the immediate reward
received when the agent executes action « in state s.

e v € [0, 1] is a discount factor.

e /1 Is the planning horizon.
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e A history h; Is a sequence of past actions and observations.

hy = apgo1a100a9203 . .. ar_10¢

e The belief state is a vector b; where b:(s) = Pr(sy = s|ht),s € S.

3. Predictive State Representations [Littman et al., 2002]

e The probabilities on states are replaced by probabilities on par-
ticular future trajectories, called core tests.

eA test ¢ IS a sequence of actions and observations:

q = alol ... akoF

e The probability of a test ¢ starting after a history h; is defined
by: Pr(q°|hs, ¢%) = Pr(ogseq = o', ..., op 1 = 0F|hy,
arp1 = al, .. ap = a”)
e The probability of any test ¢ is a linear combination of the prob-

abilities of core tests. The belief state b; is a vector containing
the probabilities of core tests.
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Vg € {A x O} : Pr(qlh;) = aPr(q|h) + BPr(q|h)
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4. Predictive State Representations with Core Histories

e The probability of any test ¢ after a history /; depends on the
probabilities of the same test after different core histories.

e \We use H to indicate the set of core histories.

e The PSR belief state is a vector i, where b;(h) is the weight of
the core history i € H In the current history h;.

e The probability of any test ¢ after a history h; Is given by:
Pr(q°he, q%) = S pery be(R)Pr(q°|h, q%) = bl m4, where ¢ are
the actions of test ¢, and ¢ are its observations.
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Vg € {A x O} : Pr(qlh)) = oy Pr(qlhy) + B:Pr(q|hs)

5. Finite State Controllers (FSCs)

e FSCs map histories (or belief states) into decision equivalence
classes called internal states (I-states).

e A finite-number of internal states can remember an infinite
number of past events.

A Finite State Controller is defined by:
e G: a finite set of internal states (I-states).

o {11”"}. a set of action-selection functions, where 1.%%(g,0) is
the probability that the agent will execute the action « if its I-
state Is g, Its last observation was o.

e {w’}: a set of transition functions, where w°(g, ¢’, 0) is the prob-
ability that the agent will select the I-state ¢ If the current |-state
IS ¢ and the perceived observation is o.

0. Finite State Controllers with Internal Belief States

A trajectory (history) h; Is a sequence of actions, observations
and sampled internal states. However:

[IThe cumulated reward of a given history depends only on the
executed actions and the perceived observations.

[IThe same trajectory h; may have been generated by different
Internal states, with different probabilities.

[IThe estimator of the performance gradient has an unneces-
sary high variance.

Shelton (2001), Aberdeen and Baxter (2002) proposed to re-
duce the variance of the gradient estimator by calculating an
Internal belief state at each step instead of sampling a single

|-state.
o':0.1 go : Y — 1, Pr(g") =0, Pr(g =

o' 0.2

A Finite State Controller

B =— 0.36, Pr(g') = 0.24, Pr(g =1

A trajectory with
Internal belief states

A trajectory with
Internal states

7. PSR based Policies

¢ A stochastic policy is defined as a PSR where the role of ac-
tions and observations are switched [Wiewiora, 2005].

e A test ¢ Is redefined as a sequence of observations and ac-

tions couples, i.e. ¢ = olal ... o"a".

e The probability of ¢ starting after h; Is redefined as:
Pr(qa’hta QO, (9) — Pr(at—l—l — ala vy Aty | = ak‘hta
Op11 = 01»--->0t+k — Ok,ﬁ)
e The probability Pr(q¢“|hs, ¢°, 0) of any test ¢ starting after a his-
tory h; Is given by a linear combination of the probabilities of
the same test ¢ starting after different core histories / € H.

e In particular, the probability of executing action « at time ¢ after
observing o Is given by:
Pr(alhi, 0) = > per bilh, 0)Pr(alh,o,0) = thm()“

8. General Approach

The gradient of both PSR and FSC value functions is given by:

H-1
P a 0]
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policy
where h Is the initial empty history, 2 denotes the actions of a
history h, and h° denotes its observations.
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9. Gradient Estimation for FSCs [Aberdeen, 2003]

If we use a Finite State Controller to represent the policy, then:
Pr(h#|n,0) = bl (,0)WrN(, ., 0).. . Wo%(_, . 0)e
Where W% (g, ¢, 0) = w’ (g, 9", 0)u"(g", 0) and

el = (1,1,...,1). Unless the structure of the FSC is provided a
priori, the graph of the FSC Is generally completely connected,
i.e. Va,o0,9,9" : w°g,q,0)u%%gq’,0) > 0. Therefore, the gradient

ap?“(géwtﬁ) IS a multivariate polynomial of degree 2t.

10. Gradient Estimation for PSR Policies

If we use a Predictive Representation of the policy, then:
Pr(h#|h,0) = bl (L, 0)MO9(., ., 0) ... MU . 0)e

Where Mi%(h, h',0) = m®%(h, 0)by,.q (W, 0).

The main advantage of PSRs comes from the fact that, contrary
to I-states, the core histories are contained within the sequence
of actions and observations, and no transition probabilities are
used to calculate the probability of a core history seguence.

Namely, when a prefix sequence oja; ... 0;a; of the history h; cor-
aPT<h?|h§79> iS a mul_

responds to a core history, then the gradient 50
tivariate polynomial of degree less than 2¢ — .

11. Small example

Pr(Ules) =1-6, Pr(R|oy) = 1 — 65
2 L Tl
Pr(Llos) =6, Pr(Uloy) = 6, 2 ; 2
’ O
Pr(gs|g1,02) = 01 Pr(gslgi,02) =1 — 6, start 1

Pr(Uloy) =1

ho = e, H = {e},b.o,u(e) = 1,m%E(e) = Pr(L|Os, ) = 0/
mO2R(e) = Pr(R|Os, ) 2 0/, mO () = Pr(U|Og,e) < 05

0= i 0.4
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VESC(hy,0) = 56100+ (1 — 09)(1 — 61) VISR (h,0') = 10, + 6/
0/ + 6 <1
In this example, the value function of an FSC has two local max-
Ima, while its equivalent PSR policy has only one maxima.

12. Empirical Results
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The results are averaged over 10 independent runs.

13. Conclusion

PSRs are alternative to Finite State Controllers in policy gradi-
ent methods for POMDPs.

Internal beliefs of PSRs are based on observable sequences.

The degree of the value function of a PSR policy is reduced by
at least the length of the shortest core history.

[IThe discovery of new core histories is based on heuristics.
[1The belief states of a PSR policy are unstable.

As a future work, we mainly target to study the performance of
PSR policies using the natural gradient.
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