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1. Introduction

1. Present a new method to reduce the policy space dimension-
ality in DEC-POMDPs

2. Inspired from the Predictive State Representations
(PSRs) [Littman et al., 2001], an approach which was pro-
posed to reduced the state space dimensionality in POMDPs

3. Show empirical comparison of the proposed algorithm with the
original Dynamic Programming algorithm

2. DEC-POMDPs [Bernstein et al., 2002]

Definition. A Decentralized Partially Observable Markov Deci-
sion Process (DEC-POMDP) is defined by:
• I: a finite set of agents
• S: a finite set of states
• Ai: a finite set of individual actions for each agent i ∈ I
• P: a stochastic transition function
• Ωi: a finite set of individual observations for each agent i ∈ I
•O: a stochastic observation function
•R: a reward function
• T : a planning horizon
• γ: a discount factor

3. Example

• A multi-robot navigation task, with 9 states, 5 actions (stay,
move up, move down, move left, move right) and 2 observa-
tions (presence or absence of a wall around the robot)
• The goal of the two robots is to meet somewhere on the grid
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i

Figure 1: Meeting On a Grid problem [Bernstein et al., 2007].

4. Planning in DEC-POMDPs

• Planning algorithms for DEC-POMDPs aim to find the best
joint policy of horizon T , which is a collection of local policies
• A policy of horizon t for agent i, denoted by qt

i, is a mapping
from local histories of observations o1

io
2
i . . . ot

i to actions in Ai

• Planning in DEC-POMDPs is centralized, while plan execution
is decentralized
•During the execution of the plan, the agents cannot communi-

cate their observations
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Figure 2: An optimal joint policy of horizon 3.

5. Multi-agent belief state

• The belief state bi for agent i contains:
– a probability distribution over the states S.
– a probability distribution over the policies Qj of agent j.
• bi(s, qj) is the probability that the system is in state s and the

current policy of agent j is qj.

6. Dynamic Programming for DEC-POMDPs

• The expected discounted reward of a joint policy qt, started
from state s, is given recursively by Bellman value function:

Vqt(s) = R(s, ~A(qt))+γ
∑
s′∈S

P (s′|s, ~A(qt))
∑
~o∈~Ω

O(~o|s′, ~A(qt))V~o(qt)(s
′)

(1)
where ~A(qt) is the first joint action of the policy qt (the root
node), ~o is a joint observation, and ~o(qt) is the sub-policy of qt

below the root node and the observation ~o.
• The value of an individual policy qt

i, according to a belief state
bi, is given by the following function:

Vqt
i
(bi) =

∑
s∈S

∑
qt
j∈Qt

j

bi(s, q
t
j)V〈qt

i,q
t
j〉(s) (2)

where 〈qt
i, q

t
j〉 denotes the joint policy made up of qt

i and qt
j

• A policy qt
i is said to be dominated if and only if:

∀bi ∈ ∆(S ×Qt
j),∃q

t
i
′ ∈ Qt

i − {q
t
i}: Vqt

i
′(bi) > Vqt

i
(bi) (3)

7. Dynamic Programming Algorithm [Hansen et al., 2004]

Require: Qt−1
i , Qt−1

j and V t−1

1: Qt
i, Qt

j ← fullBackup(Qt−1
i ), fullBackup(Qt−1

j )
2: Calculate the value vectors V t by using V t−1

3: repeat
4: remove the policies of Qt

i that are dominated
5: remove the policies of Qt

j that are dominated
6: until no more policies in Qt

i or Qt
j can be removed

Ensure: Qt
i,Q

t
j and V t

8. Linear reduction of the policy space dimensionality

•Given a set of policies Qj, construct a binary matrix indicating
for each policy which sequences of actions and observations
are contained in this policy
•Use the linearly independent columns of this matrix as a basis

for all the remaining sequences
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9. Finding the basis sequences

Theorem. Let Qt−1
j be a set of horizon t − 1 policies, Q̃t−1

j is
the set of horizon t − 1 sequences corresponding to Qt−1

j , Qt
j is

the set of horizon t policies created from Qt−1
j by an exhaustive

backup, and Q̃t
j is the set of horizon t sequences corresponding

to Qt
j, then:

Basis(Q̃t
j) = {aoq̃t−1

j : a ∈ Aj, o ∈ Ωj, q̃
t−1
j ∈ Basis(Q̃t−1

j )}

10. Reduced belief states and reduced value vectors

• A reduced belief state b̃i contains the probabilities of basis se-
quences instead of the distribution over policies
• The value function of an individual policy qt

i in a reduced belief
state b̃i is given by:

Vqt
i
(b̃i) =

∑
s∈S

∑
q̃∗j∈Basis(Q̃t

j)

q̃∗i∈Basis(Q̃t
i)∩qt

i

b̃i(s, q̃
∗
j )Ṽ〈q̃∗i ,q̃∗j 〉(s)

where Ṽ〈q̃∗i ,q̃∗j 〉 is a reduced value vector

• The reduced value vectors are calculated by a Bellman-like
equation

11. Dynamic Programming with Policy Compression

Require: Qt−1
i ,Qt−1

j ,Basis(Q̃t−1
i ),Basis(Q̃t−1

j ), Ṽ t−1
i ,Ṽ t−1

j

1: Qt
i, Qt

j ← fullBackup(Qt−1
i ), fullBackup(Qt−1

j )
2: Basis(Q̃t

i)← Ai ×Oi ×Basis(Q̃t−1
i )

3: Basis(Q̃t
j)← Aj ×Oj ×Basis(Q̃t−1

j )

4: Calculate the vectors Ṽ t by using Ṽ t−1

5: repeat
6: remove the policies of Qt

i that are dominated
7: remove the policies of Qt

j that are dominated
8: until no more policies in Qt

i or Qt
j can be removed

9: REMOVE(Qt
i, Basis(Q̃t

i), Basis(Q̃t
j), Ṽ

t)

10: REMOVE(Qt
j, Basis(Q̃t

j), Basis(Q̃t
j), Ṽ

t)

Ensure: Qt
i, Qt

j, Basis(Q̃t
i), Basis(Q̃t

j), Ṽ t
i , Ṽ t

j

1: function REMOVE(Qt
i, Basis(Q̃t

i), Basis(Q̃t
j), Ṽ

t):
2: Use a decomposition method to find the linearly depen-

dent sequences in Basis(Q̃t
i), and remove them

3: for removed sequence q̃i from Basis(Q̃t
i) do

4: for basis sequence q̃∗i from Basis(Q̃t
i) do

5: for basis sequence q̃∗j from Basis(Q̃t
j) do

6: Ṽ〈q̃∗i ,q̃∗j 〉← Ṽ〈q̃∗i ,q̃∗j 〉 + wq̃i
(q̃∗i )Ṽ〈q̃i,q̃∗j 〉

7: // wq̃i
(q̃∗i ) is the weight of q̃∗i in q̃i

8: end for
9: end for

10: end for
Ensure: updated Basis(Q̃t

i), Ṽ
t

11: end function

12. Experimental Results

DP DP with Policy Compression
Problem T runtime policies runtime sequences ratio

MA-Tiger 2 0.20 (27,27) 0.17 (18,18) 1.5
3 2.29 (675,675) 1.79 (90,90) 7.5
4 - - 534.90 (540,540) 361.25

MABC 2 0.12 (8,8) 0.14 (8,8) 1
3 0.46 (72,72) 0.36 (24,24) 3
4 17.59 (1800,1458) 4.59 (80,80) 44.1

Table 1: The runtime (in seconds) and the number of policies
and sequences of DP algorithms, with and without compression.

13. Discussion & Further Work

3 A new compression technique for DEC-POMDPs, based on
projecting the belief points from the high dimensional space of
trees to the low dimensional space of sequences, using matrix
factorization methods to reduce the number of sequences

3 A significant improvement of both memory space and runtime
of Dynamic Programming algorithm

7 An under-constrained linear program is used for pruning dom-
inated policies, leading to more policies

Further work:

1. Use this approach in approximate DP algorithms, mainly for
domains with a large observations space

2. Investigate quick and lossy factorization techniques, and more
specifically, binary-matrices factorization algorithms
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