
DAMAS
www.damas.ift.ulaval.ca

Exact Dynamic Programming for Decentralized POMDPs with
Lossless Policy Compression

Abdeslam Boularias and Brahim Chaib-draa
DAMAS Laboratory,

Department of Computer Science and Software Engineering,
Laval University, Canada

{boularias;chaib}@damas.ift.ulaval.ca

1. Introduction

1. Present a new method to reduce the policy space dimension-
ality in DEC-POMDPs

2. Inspired from the Predictive State Representations
(PSRs) [Littman et al., 2001], an approach which was pro-
posed to reduced the state space dimensionality in POMDPs

3. Show empirical comparison of the proposed algorithm with the
original Dynamic Programming algorithm

2. DEC-POMDPs [Bernstein et al., 2002]

Definition. A Decentralized Partially Observable Markov Deci-
sion Process (DEC-POMDP) is defined by:
• I: a finite set of agents
• S: a finite set of states
• Ai: a finite set of individual actions for each agent i ∈ I
• P: a stochastic transition function
• Ωi: a finite set of individual observations for each agent i ∈ I
•O: a stochastic observation function
•R: a reward function
• T : a planning horizon
• γ: a discount factor

3. Example

• A multi-robot navigation task, with 9 states, 5 actions (stay,
move up, move down, move left, move right) and 2 observa-
tions (presence or absence of a wall around the robot)
• The goal of the two robots is to meet somewhere on the grid

j

i

Figure 1: Meeting On a Grid problem [Bernstein et al., 2007].

4. Planning in DEC-POMDPs

• Planning algorithms for DEC-POMDPs aim to find the best
joint policy of horizon T , which is a collection of local policies
• A policy of horizon t for agent i, denoted by qt

i, is a mapping
from local histories of observations o1

io
2
i . . . ot

i to actions in Ai

• Planning in DEC-POMDPs is centralized, while plan execution
is decentralized
•During the execution of the plan, the agents cannot communi-

cate their observations

down

down

down

wall

down

nothing

wall

stay

down

wall

down

nothing

nothing

right

right

right

wall

right

nothing

wall

stay

right

wall

right

nothing

nothing

policy of agent i policy of agent j

Figure 2: An optimal joint policy of horizon 3.

5. Multi-agent belief state

• The belief state bi for agent i contains:
– a probability distribution over the states S.
– a probability distribution over the policies Qj of agent j.
• bi(s, qj) is the probability that the system is in state s and the

current policy of agent j is qj.

6. Dynamic Programming for DEC-POMDPs

• The expected discounted reward of a joint policy qt, started
from state s, is given recursively by Bellman value function:

Vqt(s) = R(s, ~A(qt))+γ
∑
s′∈S

P (s′|s, ~A(qt))
∑
~o∈~Ω

O(~o|s′, ~A(qt))V~o(qt)(s
′)

(1)
where ~A(qt) is the first joint action of the policy qt (the root
node), ~o is a joint observation, and ~o(qt) is the sub-policy of qt

below the root node and the observation ~o.
• The value of an individual policy qt

i, according to a belief state
bi, is given by the following function:

Vqt
i
(bi) =

∑
s∈S

∑
qt
j∈Qt

j

bi(s, q
t
j)V〈qt

i,q
t
j〉(s) (2)

where 〈qt
i, q

t
j〉 denotes the joint policy made up of qt

i and qt
j

• A policy qt
i is said to be dominated if and only if:

∀bi ∈ ∆(S ×Qt
j),∃q

t
i
′ ∈ Qt

i − {q
t
i}: Vqt

i
′(bi) > Vqt

i
(bi) (3)

7. Dynamic Programming Algorithm [Hansen et al., 2004]

Require: Qt−1
i , Qt−1

j and V t−1

1: Qt
i, Qt

j ← fullBackup(Qt−1
i ), fullBackup(Qt−1

j )
2: Calculate the value vectors V t by using V t−1

3: repeat
4: remove the policies of Qt

i that are dominated
5: remove the policies of Qt

j that are dominated
6: until no more policies in Qt

i or Qt
j can be removed

Ensure: Qt
i,Q

t
j and V t

8. Linear reduction of the policy space dimensionality

•Given a set of policies Qj, construct a binary matrix indicating
for each policy which sequences of actions and observations
are contained in this policy
•Use the linearly independent columns of this matrix as a basis

for all the remaining sequences

a1

a2

a1

o1
a1

o2

o1
a1

a1

o1
a1

o2

o2

a1

a2

a1

o1
a3

o2

o1
a1

a1

o1
a3

o2

o2

a1

a2

a2

o1
a1

o2

o1
a1

a2

o1
a1

o2

o2

a1

a2

a2

o1
a3

o2

o1
a1

a2

o1
a3

o2

o2

Qj = {qa, qb, qc, qd}

qb

qc qd

qa


1 0 1 0 1 0 1 0

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

0 1 0 1 0 1 0 1



=


1 0 1

1 0 0

0 1 1

0 1 0

×
 1 0 0 1 1 0 0 1

0 1 0 1 0 1 0 1

0 0 1 −1 0 0 1 −1



qa

qb

qc

qd

a
1 o

1 a
2 o

1 a
1

a
1 o

1 a
2 o

1 a
2

a
1 o

1 a
2 o

2 a
1

a
1 o

1 a
2 o

2 a
3

a
1 o

2 a
1 o

1 a
1

a
1 o

2 a
1 o

1 a
2

a
1 o

2 a
1 o

2 a
1

a
1 o

2 a
1 o

2 a
3

Basis(Q̃j)︷ ︸︸ ︷
q̃∗1 q̃∗2 q̃∗3

9. Finding the basis sequences

Theorem. Let Qt−1
j be a set of horizon t − 1 policies, Q̃t−1

j is
the set of horizon t − 1 sequences corresponding to Qt−1

j , Qt
j is

the set of horizon t policies created from Qt−1
j by an exhaustive

backup, and Q̃t
j is the set of horizon t sequences corresponding

to Qt
j, then:

Basis(Q̃t
j) = {aoq̃t−1

j : a ∈ Aj, o ∈ Ωj, q̃
t−1
j ∈ Basis(Q̃t−1

j )}

10. Reduced belief states and reduced value vectors

• A reduced belief state b̃i contains the probabilities of basis se-
quences instead of the distribution over policies
• The value function of an individual policy qt

i in a reduced belief
state b̃i is given by:

Vqt
i
(b̃i) =

∑
s∈S

∑
q̃∗j∈Basis(Q̃t

j)

q̃∗i∈Basis(Q̃t
i)∩qt

i

b̃i(s, q̃
∗
j )Ṽ〈q̃∗i ,q̃∗j 〉(s)

where Ṽ〈q̃∗i ,q̃∗j 〉 is a reduced value vector

• The reduced value vectors are calculated by a Bellman-like
equation

11. Dynamic Programming with Policy Compression

Require: Qt−1
i ,Qt−1

j ,Basis(Q̃t−1
i ),Basis(Q̃t−1

j ), Ṽ t−1
i ,Ṽ t−1

j

1: Qt
i, Qt

j ← fullBackup(Qt−1
i ), fullBackup(Qt−1

j )
2: Basis(Q̃t

i)← Ai ×Oi ×Basis(Q̃t−1
i )

3: Basis(Q̃t
j)← Aj ×Oj ×Basis(Q̃t−1

j )

4: Calculate the vectors Ṽ t by using Ṽ t−1

5: repeat
6: remove the policies of Qt

i that are dominated
7: remove the policies of Qt

j that are dominated
8: until no more policies in Qt

i or Qt
j can be removed

9: REMOVE(Qt
i, Basis(Q̃t

i), Basis(Q̃t
j), Ṽ

t)

10: REMOVE(Qt
j, Basis(Q̃t

j), Basis(Q̃t
j), Ṽ

t)

Ensure: Qt
i, Qt

j, Basis(Q̃t
i), Basis(Q̃t

j), Ṽ t
i , Ṽ t

j

1: function REMOVE(Qt
i, Basis(Q̃t

i), Basis(Q̃t
j), Ṽ

t):
2: Use a decomposition method to find the linearly depen-

dent sequences in Basis(Q̃t
i), and remove them

3: for removed sequence q̃i from Basis(Q̃t
i) do

4: for basis sequence q̃∗i from Basis(Q̃t
i) do

5: for basis sequence q̃∗j from Basis(Q̃t
j) do

6: Ṽ〈q̃∗i ,q̃∗j 〉← Ṽ〈q̃∗i ,q̃∗j 〉 + wq̃i
(q̃∗i )Ṽ〈q̃i,q̃∗j 〉

7: // wq̃i
(q̃∗i ) is the weight of q̃∗i in q̃i

8: end for
9: end for

10: end for
Ensure: updated Basis(Q̃t

i), Ṽ
t

11: end function

12. Experimental Results

DP DP with Policy Compression
Problem T runtime policies runtime sequences ratio

MA-Tiger 2 0.20 (27,27) 0.17 (18,18) 1.5
3 2.29 (675,675) 1.79 (90,90) 7.5
4 - - 534.90 (540,540) 361.25

MABC 2 0.12 (8,8) 0.14 (8,8) 1
3 0.46 (72,72) 0.36 (24,24) 3
4 17.59 (1800,1458) 4.59 (80,80) 44.1

Table 1: The runtime (in seconds) and the number of policies
and sequences of DP algorithms, with and without compression.

13. Discussion & Further Work

3 A new compression technique for DEC-POMDPs, based on
projecting the belief points from the high dimensional space of
trees to the low dimensional space of sequences, using matrix
factorization methods to reduce the number of sequences

3 A significant improvement of both memory space and runtime
of Dynamic Programming algorithm

7 An under-constrained linear program is used for pruning dom-
inated policies, leading to more policies

Further work:

1. Use this approach in approximate DP algorithms, mainly for
domains with a large observations space

2. Investigate quick and lossy factorization techniques, and more
specifically, binary-matrices factorization algorithms

References

Littman, M., Sutton, R., and Singh, S. (2001). Predictive Representations
of State. In Advances in Neural Information Processing Systems 14
(NIPS’01), pages 1555–1561.

Bernstein, D., Immerman, N., and Zilberstein, S. (2002). The Complexity of
Decentralized Control of Markov Decision Processes. Mathematics of Op-
erations Research 27(4):819–840.

Hansen, E., Bernstein, D., and Zilberstein, S. (2004). Dynamic Programming
for Partially Observable Stochastic Games. In Proceedings of the 19th Na-
tional Conference on Artificial Intelligence (AAAI’04), pages 709–715.

Bernstein, D., Hansen, E., and Zilberstein, S. (2007). Bounded Policy Iteration
for Decentralized POMDPs. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI’07), pages 1287–1292.


