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Abstract

Spoken language communication between human and machines has become a
challenge in research and technology. In particular, enabling the health care robots
with spoken language interface is of great attention. Recently due to uncertainty
characterizing dialogues, there has been interest for modelling the dialogue man-
ager of spoken dialogue systems using Partially Observable Markov Decision Pro-
cesses (POMDPs). In this context, we would like to learn the reward model of
dialogue POMDPs from expert’s data.
In a previous paper, we used an unsupervised learning method for learning the
states, as well as the transition and observation functions of the dialogue POMDPs
based on human-human dialogues. Continuing our objective of learning the com-
ponents of dialogue POMDPs from data, here we introduce a novel inverse re-
inforcement learning (IRL) algorithm for learning the reward function of the di-
alogue POMDP model. Based on the introduced method, and from an available
corpus of data, we construct a dialogue POMDP. Then, the learned dialogue poli-
cies, based on the learned POMDP, are evaluated. Our empirical evaluation shows
that the performance of the learned POMDP is higher than expert performance in
non, low, and medium noise levels, but the high noise level. At the end, current
limitations and future directions are addressed.

1 Introduction

Currently, we are working on the project robotic assistant for persons with disabilities1 with the goal
of equipping Smartwheeler [11] with a robust language interface. Smartwheeler is a wheelchair
available at Mcgill university which is used for research on increasing the autonomy and safety
of individuals with severe mobility impairment2. In this context, we are interested in modelling the
Dialogue Manager of Smartwheeler using methods of sequential decision making under uncertainty.

Recently, there has been a great interest for modelling the dialogue manager of spoken dialogue sys-
tems using Partially Observable Markov Decision Processes (POMDPs) [14]. In fact, POMDPs can
be used to model uncertainty available in spoken language which is induced by Automatic Speech
Recognition (ASR), and Natural Language Understanding (NLU). However, in POMDPs estimating
the environment’s dynamics is a significant issue; as it has direct impact on their applicability in the
domain of interest. This is because of the fact that POMDP model can highly impact planned poli-
cies. For instance, [7] suggests learning the POMDP model from data for their proposed POMDP
for assisting persons with dementia during hand washing.

1http://damas.ift.ulaval.ca/projet.php#i
2http://www.cs.mcgill.ca/˜smartwheeler/
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In a previous work [1], we learned a set of states, as well as transition and observation functions for
a dialogue POMDP from expert dialogues [12]. By expert dialogues we mean some human-human
dialogues generated through a (simulated) voice channel, where human at one side has the role of
a dialogue manager (expert), and the one at the other side has the role of a user who is trying to
interact with the machine to achieve her goal similar to SACTI dialogues [13] [12]. In this paper,
first we describe our previous work for learning the states, transition and observation functions, for
a dialogue POMDP using unannotated data available in [13].

Moreover, Inverse Reinforcement Learning (IRL) methods are used for learning the reward function
of (PO)MDP models using expert dialogues. In fact, IRL methods suits us as our available data
have been generated based on human human conversion in a wizard-of-oz setting. In this paper, we
introduce a novel IRL algorithm for POMDPs to learn the reward function which the human expert,
in the role of a dialogue manager, is maximizing.

In the rest of the paper, we briefly present POMDP background in Section 2, and describe our past
work for learning states, as well as transition and observation functions in Section 3. Section 4
introduces IRL and our algorithm for learning the reward function in POMDPs followed by the
experiments in Section 5. Finally, the conclusion and future directions are presented in Section 6.

2 Background

A POMDP can be represented by n-tuple {S,A,O, T,R,Ω, γ,H} where S is the set of some dis-
crete states,A is the set of some discrete actions, R(s, a) is the reward of taking action a in the state
s, and T the transition model which consists of the probability of state transitions:

T (s, a, s′) = P (st+1 = s′|at = a, st = s)

where s is for the current state of the system and s′ for the next state of the system.

Moreover, O is the set of some discrete observations which is used for estimating the current state
using the model Ω, with Ω(o, s, a) = P (o|a, s), i.e. the probability of observing o after taking the
action a which results in the state s. The system’s initial belief state is b0, and the belief state at
time t is derived from bt = P (st|b0, a0, o1, . . . , bn−1, an−1, on), γ is a discount factor, and H is the
planning horizon. The belief at time t + 1, bt+1, can be computed from the previous belief, bt, the
last action a, and observation o, by applying Bayes rule:

ba,ot+1(s′) =
1

P (o|bt, a)
Ω(o, s′, a)

∑
s∈S

T (s, a, s′)bt(s)

where P (o|bt, a) =
∑
s′∈S Ω(s′, a, o)

∑
s∈S T (s, a, s′)bt(s) is the probability of observing o after

doing action a in belief bt, this acts as a normalizing constant such that bt+1 remains a probability
distribution:

In POMDPs, the system’s goal is to find an optimal policy, π, where π : S × A → [0, 1], that
maximizes the expected discounted rewards. That is, the policy which has the maximum value. The
value of policy π is defined as:

V π(s) =

∞∑
t=0

Est,at [γ
tR(st, at)|s0 = s, π]

If the environment dynamics are not known, i.e. transition probabilities, observation probabilities,
or the reward function are not known in advance, the system has to assume the environment as an
unknown POMDP and during interaction with the user tries to approximate the unknown model(s).
Conversely, if the dynamics are known to the system then the classic dynamic programming tech-
niques, such as point based value iteration [10], can be used to find an optimal policy π∗. In this
work, we would like to learn the dialogue POMDP from data, to be able to learn the POMDP policy
from available model-based algorithms.
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3 Learning dialogue POMDP states, and transition and observation
functions

In this section, we briefly describe our previous work for learning states, as well as transition and
observation functions from dialogues [1]. First, we briefly explain Hidden Topic Markov Model
(HTMM) [6] that we use to learn hidden intentions behind user’s utterances.

HTMM is a method which combines Hidden Markov Model (HMM) and Latent Dirichlet Analysis
(LDA) for obtaining some topics for documents [6]. HMM is a framework for obtaining the hidden
states based on some observations in Markovian domains such as part-of-speech tagging [3]. In
LDA, similar to Probabilistic Latent Semantic Analysis (PLSA), the observations are explained by
groups of latent variables. For instance, if we consider observations as uttered words in a dialogue,
then the dialogue is considered as a bag of words with mixture of some intentions, where intentions
are represented by the words with higher probabilities. In LDA as opposed to PLSA, the mixture
of intentions is generated from a Dirichlet prior mutual to all dialogues in a dialogue set. Since
HTMM adds the Markovian property inherited in HMM to LDA, in HTMM the dependency between
successive words is regarded, and the dialogue is no longer seen as a bag of words. Notice that
HTMM can be considered as a clustering method such as LSA, however, it is probabilistic similar
to PLSA, and moreover, the Markovian property between the utterances are considered as opposed
to PLSA or LSA.

Hidden intentions can be used as user’s hidden states in a dialogue POMDP [4]. For each dialogue
in the corpus, we assign its hidden state as the maximum likely state, then we estimate the transition
function using maximum likelihood with a smoothing method to make it more robust. To construct
an observation function for the dialogue POMDP, we use the learned hidden states for each utterance
as its meta observation. This meta observations are used as the POMDP observation set rather than
the whole words in the utterance to be able to reduce the size of observation set significantly. How-
ever, this model is a fully observable Markov Decision Process (MDP). To do it in POMDPs, we
estimate the observation function from dialogues using maximum likelihood and add-one smooth-
ing, similar to the transition function. This allows that each meta observation be allowed in other
states with a small probability.

In HTMM, the special form of the transition matrix enables a reduced time complexity ofO(|d|N2),
where |d| is the length of the dialogue d, and N is the number of desired user’s intentions, given to
the algorithm [5]. The small time complexity of the algorithm enables the dialogue system to apply
it at any time to update the observation function based on its recent observations.

4 Learning dialogue POMDP Reward Function

The key insight behind Inverse Reinforcement Learning (IRL) is that the reward function is the
most succinct hypothesis for explaining a behaviour. Thus, an observed behaviour can be better
generalized to new contexts when a reward function is known. IRL refers to the problem of finding
a reward function that explains the human’s demonstrated actions. In this section, we first present
the background on IRL in MDPs, then we describe an efficient new algorithm for IRL in Partially
Observable MDPs (POMDP).

4.1 Inverse Reinforcement Learning in MDPs

We assume the existence of a feature vector of size k, φi ∈ R|S||A|, such that the reward function R
is a linear combination of these features with unknown weights wi ∈ R:

∀(s, a) ∈ S ×A : R(s, a) =

k∑
i=1

wiφi(s, a)

The expected frequency of a feature i when the agent starts executing policy π in state s is defined
as:

V πi (s) =

∞∑
t=0

Est,at [γ
tφi(st, at)|s0 = s, π]
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Input: A POMDP model (S,A,O, T,Ω, b0, γ,H) without a reward function, and a set D of trajectories
am1 o

m
1 . . . amt−1o

m
t−1a

m
t , t ≤ H demonstrated by a human;

Output: Reward weights wi ∈ R;
1 Extract the human’s stochastic policy π from the demonstration;
2 Initialize the set of variables V with the weights wi;
3 Initialize the set of linear constraints C with {∀(s, a) ∈ S ×A : Rmin ≤

∑k

i=1
wiφi(s, a) ≤ Rmax} ;

4 for t = H to 1 do
5 foreach h ∈ D, such that h is a trajectory of length t, do
6 Calculate bh, the belief state at the end of trajectory h;
7 foreach (a, o) ∈ A×O do
8 Add the variable Vhao to V // is an approximation of the value of π at bhao defined below;
9 if hao /∈ D and t < H then

10 Let bhao be the belief corresponding to the trajectory hao;
11 Calculate the belief states bhi corresponding to the trajectories in D of length t+ 1 ;
12 Find a list of weights αi such that bhao =

∑n

i=0
αibhi ;

13 Add to C the constraint Vhao =
∑n

i=0
αiVhi ;

14 // Vhao is an approximation of the value of π at the belief corresponding to the trajectory hao

15 end
16 if hao /∈ D and t = H then
17 Add the constraint Vhao = 0 to the set C ;
18 end
19 end
20 Add the variable Vh to V // the value of π at bh;
21 Add to C the constraint Vh =

∑
a∈A π(h, a)[

∑
s∈S bh(s, a)

∑k

i=1
wiφi(s, a)

+ γ
∑

o∈O Pr(o|h, a)Vhao] ;
22 foreach a ∈ A do
23 Add the variable V a

h to V // the value of an alternative policy choosing a after the trajectory h ;
24 Add to C the constraint V a

h =
∑

s∈S bh(s, a)
∑k

i=1
wiφi(s, a) + γ

∑
o∈O Pr(o|h, a)Vhao;

25 Add the variable εah to the set V;
26 Add to C the constraint Vh − V a

h ≥ εah;
27 end
28 end
29 end
30 Maximize

∑
h∈H

∑
a∈A ε

a
h subject to the constraints of set C;

Algorithm 1: Point-based Inverse Reinforcement Learning for POMDPs.

Using this definition, the value of a policy π can be written as: V π(s) =
∑k
i=1 wiV

π
i (s). Given a

set D of M trajectories
sm1 a

m
1 . . . smtma

m
tm ,

m ≤ M, tm ≤ H , sampled by executing a policy π, the expected frequency of a feature i can be
approximated by using the following Monte Carlo estimation:

V̂ πi =
1

M

M∑
m=1

tm∑
t=1

γtφi(s
m
t , a

m
t ) (1)

Assuming that the rewards are in the interval [Rmin, Rmax], a reward function R can be found by
solving the following linear program:

max
{wi}

min
π′ 6=π

∑
s∈S

k∑
i=1

wi[V̂
π
i (s)− V π

′

i (s)]

s.t. ∀(s, a) ∈ S ×A : Rmin ≤
k∑
i=1

wiφi(s, a) ≤ Rmax

Instead of comparing the value of the demonstrated policy π with that of each possible alternative
policy π′, [9] proposed to start with a randomly chosen policy π0, and iterate between finding a
reward function Rk by solving the linear program above with π′ = πk, and finding an optimal
policy πk+1 given the reward Rk.
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4.2 Inverse Reinforcement Learning in POMDPs

A POMDP can be seen as an MDP where the states correspond to belief states. Building upon
this observation, [2] showed that the IRL algorithm introduced by [9] can be extended to POMDPs
without making major changes. However, the number of possible belief states grows double ex-
ponentially with respect to the planning horizon and the number of observations. Moreover, the
human’s optimal action is unknown for most of these belief states. Therefore, the error introduced
by the Monte Carlo estimator (Equation 1) can be significantly large when used for a POMDP.

In this section, we propose a robust point-based IRL algorithm for POMDPs. Our approach is de-
scribed in Algorithm 1. The main idea of this algorithm is to gradually construct a linear program
by adding variables corresponding to the values Vh of the human’s stochastic policy π after each
trajectory h, as well as the values of alternative policies V ah selecting a deterministic action at h,
and following π for the remaining time-steps. These variables are subject to linear constraints cor-
responding to Bellman equation (steps 21 and 24). Whenever a trajectory hoa does not appear in
the demonstration, the value of a policy after hoa, for (o, a) ∈ O × A, is approximated by a linear
combination of the values of the human’s policy at other trajectories hi that appeared in the demon-
stration and have the same length as hoa (Step 13). Notice that, due to the piecewise linearity of the
optimal value function, this latter approximation corresponds to the true value if the human’s policy
in the belief state bhoa is the same as in the belief states bhi used in the linear combination. This
condition is more likely to be verified when the beliefs bhi

are closer to bhao. Finally, we explicitly
state that the value of the human’s policy at any history h is higher than the value of any alternative
policy by a margin εah (Step 26) that should be maximized (Step 30). An alternative policy is de-
fined as a deterministic policy that selects an action a and then follows the human’s policy for the
upcoming time-steps (Step 24 in the algorithm).

This algorithm requires solving one linear program with O(|A||O|MH) variables and O(|A|MH)
constraints. Furthermore, the computational complexity of each linear approximation isO(M3H3),
given that there areO(MH) belief states where the human’s policy is known. Therefore, the overall
complexity of the algorithm is polynomial in the parameters |A|, |O|, M and H .

5 Experiments

5.1 Learning the dialogue POMDP for SACTI1

This section describes the method that we use for learning POMDP states, as well as the transition
and observation functions for SACTI1 dialogues [13]. Using HTMM [6], we designed a dialogue
POMDP for SACTI1 dialogues which is publicly available at: http://mi.eng.cam.ac.uk/
projects/sacti/corpora/. There are about 144 dialogues between 36 users and 12 experts
who have the role of a dialogue manager for 24 total tasks. The utterances from users to human
experts are first confused using a speech recognition error simulator [8].

Figure 1 shows the 3 captured user’s intentions and their top 20 words with their probabilities learned
by HTMM. For each intention, we have highlighted the keywords which best distinguish the inten-
tion. These intentions are for the user’s intentions for request information about some visiting places,
the transportation, and food places, respectively. The number of intentions (here 3) is set manually.
Similarly, the highlighted words for indicating the meaning of each state has been done manually.

Without loss of generality, we can consider the user’s intention as the system’s state [4]. Based on
the above captured intentions, we defined 3 primary states for the SACTI1 DM as follows: visits (v)
, transports (t) , and foods (f). Moreover, we defined two absorb states, i.e., Success (S) and Failure
(F) for dialogues which end successfully and unsuccessfully, respectively. The Success and Failure
states are identified by user. In SACTI1 corpus, after finishing each dialogue, the user assigns the
level of precision and recall [13]. These are the only explicit feedback that we require from the user,
which is used to define absorb states of dialogue POMDP. A dialogue is successful if its precision
and recall is above a predefined threshold. The set of actions are coming directly from SACTI1
corpus.

The transition model is calculated using maximum likelihood with add-one smoothing to make a
more robust transition model:
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Sheet1

Page 1

Intention 0: visits Intention 1:  transports Intention 2:  foods
the 0.08 like 0.01 the 0.08 a 0.02 you 0.06 um 0.02
i 0.06 hotel 0.01 to 0.04 does 0.02 the 0.04 and 0.02
to 0.05 for 0.01 is 0.04 road 0.02 i 0.04 thank 0.01
um 0.02 would 0.01 how 0.03 and 0.01 a 0.03 to 0.01
is 0.02 0.01 um 0.02 on 0.01 me 0.03 of 0.01
a 0.02 tower 0.01 it 0.02 long 0.01 is 0.02 restaurant 0.01
and 0.02 castle 0.01 uh 0.02 of 0.01 uh 0.02 there 0.01
you 0.02 go 0.01 i 0.02 much 0.01 can 0.02 do 0.01
uh 0.02 do 0.01 from 0.02 bus 0.01 tell 0.02 could 0.01
what 0.01 me 0.01 street 0.02 there 0.01 please 0.02 where 0.01

i'm

Figure 1: Intentions learned by HTMM for SACTI1, with their 20-top words and their probabilities.

T (s1, a1, s2) =
Count(s1, a1, s2) + 1

Count(s1, a1) +K

where K = |S|2|A|.
For the choice of observation function, we assumed 5 observations, each one is specific for one
state, i.e. user’s hidden intention. we use the notation O= { VO, TO, FO, SuccessO, FailureO }
for the observations for visits, transports, foods, Success, and Failure, respectively. For each user’s
intention, one can capture POMDP observations given each utterance W = {w1, . . . , w|W |} by
taking a maximum likely state using HTMM learned observation model. Note that during learning
time, for each hidden state s HTMM learns a vector βw,s which gives the probability of observing
each word wi. Then, during human-machine interaction, given any arbitrary user’s utterance the
POMDP observation o is captured as:

o = argmaxz
∏
i

βwis (2)

Then, the observation function is learned similar to the transition function using maximum likeli-
hood with add-one smoothing. The learned transition and observation functions, together with the
dialogue trajectories have been used in our IRL algorithm to learn the reward function. The dialogue
trajectories are in the form of observation action, oa, for non, low, med, and high noise dialogues.

Because of the small time complexity of the algorithm discussed earlier, the algorithm took real time
(less than a second) to converge on the authors machine with 1.7 MHz cpu and 4 gigabytes memory.
This fact suggests use of the algorithm after finishing some tasks by the system to update its model,
and hopefully a better policy.

5.2 Experimental Results

We captured the components of the dialogue POMDP for SACTI1 corpus as described above. The
generated dialogue POMDP consist of 5 states, 14 actions and 5 meta observations drawn by HTMM
using 817 primitive observations (words). We solved the POMDP models, using ZMDP software
available online at: http://www.cs.cmu.edu/˜trey/zmdp/. We set a uniform distribution
on the 3 primary states (visits, transports, and foods), and set the discount factor to 90%. Based
on simulation, we evaluated the quality of the learned models based on the performance of their
policies learned by ZMDP.

First, we evaluated use of HTMM for learning states, transition and observation function for SACTI1
dialogues. So, we fixed the reward function similar to a hand-crafted reward function. That is, a large
positive reward for successfully dialogue completion, a large negative reward for unsuccessfully
dialogue completion, and -1 reward for any other dialogue state. On the other hand, we applied
our IRL algorithm on the expert dialogues to learn the reward function of our POMDP. Then, we
evaluated the influence of the number of training dialogues on the quality of the learned transition
and observation functions. To do so, we fixed the number of states and the reward function, and
updated the transition and observation functions using 24, 48, 72, and 96 dialogues (labelled as
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Figure 2: (a): Comparison of performance in dialogue POMDPs v.s. experts with respect to the
number of expert dialogues. (b): Comparison of performance in dialogue POMDPs v.s. experts
with respect to the noise level.

Number of Training Data in Figure 2(a) ). Then, we solved each POMDP model using ZMDP. We
measured the average gathered rewards for each learned POMDP based on simulation runs. The
average rewards for each model was measured for 24, 48, 72, and 96 runs, respectively.

Figure 2 (a) shows that in overall by increasing expert dialogues, as training data, the updated
POMDP models perform better. In other words, by increasing data the introduced method learns
better dialogue POMDP models. This is in particular an advantage for us; as stated earlier the time
complexity for learning the transition and observation functions is polynomial with respect to the
length of all used dialogues. The exception in the quality of the learned model is when we used 48
dialogues where the dialogue POMDP performance decreased compared to when 24 dialogues were
used. The reason could be the use of EM for learning the model which is prone to local optima.
Moreover, EM depends on the priors α and η. In this work, we set the priors based on heuristic
given in [6], and our trial and error experiments, which is indeed a drawback for use of parametric
models in real applications.

Moreover, based on our simulations, we evaluated the behaviour of generated POMDP models to
ASR noise since SACTI1 data has been produced based on a simulated ASR channel [8]. The tran-
scribed dialogues from user to the human expert, as the dialogue manager, can contain no, low,
medium, or high noise. For each noise level, we randomly took 24 expert dialogues and learned
the transition and observation functions of the POMDP model. Then, for each POMDP model we
learned its policy using ZMDP, and performed 24 simulations to calculate their average gathered
rewards. Figure 2 (b) compares these averaged rewards to the average of gathered rewards in their
corresponding expert dialogues. As the figure shows the dialogue POMDP models are more robust
to ASR noise levels compared to their corresponding expert dialogues. That is, the relative perfor-
mance of POMDP is much better in higher levels of noise, i.e. medium and high noise levels than
non or low noise levels. This result is not surprising as in the higher noise levels, there is more
uncertainty which POMDPs can show their performance better compared to lower levels of noise
with no or little uncertainty.

Furthermore, we evaluated the performance of our IRL algorithm for learning the reward function of
the dialogue POMDP. We used the four learned POMDPs mentioned-above as our baseline (learned
using non, low, medium, and high noise dialogues, respectively, and with hand-crafted reward). On
the other hand, we applied our IRL algorithm on the expert trajectories with non, low, medium, and
high levels of noise to learn 4 reward functions. Using ZMDP, we learned the policy for the POMDPs
with the 4 learned rewards, respectively. Then, for each dialogue turn in all the dialogues of the cor-
pus we found the suggested actions by each of the POMDPs. Table 1 shows the number of mistakes
for each dialogue POMDP with respect to the expert actions inside dialogues in the corpus. The
results in the table suggest that POMDPs with learned rewards using non, low, and medium noise
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levels performed much better than corresponding POMDPs with hand-crafted rewards. However,
the number of mistakes increased drastically for the POMDP with learned rewards using high noise
dialogues. This is because in a high level of noise, the belief states are almost uniform distributions
in several time-steps. Therefore, a similar reward, of around 100, was attributed to many different
actions by our IRL algorithm. This problem may be addressed, in a future work, by multiplying
each error margin by an importance factor that is proportional to the entropy of the corresponding
belief state.

Table 1: Number of mistakes for hand-crafted reward POMDPs, and learned reward POMDPs.
Noise level non low med high
Hand-crafted reward POMDP mistakes 1076 1088 1040 746
Learned reward POMDP mistakes 546 546 1007 1028

6 Conclusion

This paper presents our work on learning dialogue POMDP states, transition, observation and reward
functions using data containing real human dialogues. In particular, we described our IRL algorithm
for constructing a linear program with a polynomial time complexity. The POMDPs with learned
rewards performed well in lower levels of noise. In fact, the rewards in lower levels of noise seem
to capture the human’s trade-off between enquiring information and making a shorter dialogue. In
high noise levels however, the belief states have almost uniform distribution, and a similar reward
of around 100, was attributed to many different actions. This problem may be solved by using more
demonstrations.

In the future work, we are going to enhance our IRL algorithms for instance by using some infor-
mative features, as we did not use any feature of this kind in our current IRL algorithm. Moreover,
we may incorporate domain-knowledge in form of priors on the reward function.
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