
Inverse Reinforcement Learning for Strategy
Extraction

Katharina Muelling1,3, Abdeslam Boularias1, Betty Mohler2,
Bernhard Schölkopf1, and Jan Peters1,3

1Max Planck Institute for Intelligent Systems, Tübingen, Germany
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Abstract. In competitive motor tasks such as table tennis, mastering the
task is not merely a matter of perfect execution of a specific movement
pattern. Here, a higher-level strategy is required in order to win the game.
The data-driven identification of basic strategies in interactive tasks, such
as table tennis is a largely unexplored problem. In order to automatically
extract expert knowledge on effective strategic elements from table tennis
data, we model the game as a Markov decision problem, where the reward
function models the goal of the task as well as all strategic information.
We collect data from players with different playing skills and styles using
a motion capture system and infer the reward function using inverse rein-
forcement learning. We show that the resulting reward functions are able
to distinguish the expert among players with different skill levels as well
as different playing styles.

Keywords: Computational models of decision processes, Table tennis,
Inverse reinforcement learning

1 Introduction

Understanding the complex interplay between learning, decision making and mo-
tion generation is crucial both for creating versatile, intelligent robot systems as
well as for understanding human motor control. For example, in table tennis, a
player usually cannot win the game by always returning the ball safely to the
same position. Instead, players need a good strategy that defines where and how
to return the ball to the opponent’s court. An action should always be chosen to
have a high probability of successfully returning the ball as well as to make the
task of the opponent harder, i.e., it should improve the chance of winning the
game. In this paper, we want to infer strategic information from a game of table
tennis. Rather than identifying the frequencies and effectiveness of specific move-
ment patterns [1–4], we want to model the decision process for choosing actions
by players in a match of table tennis from a computational point of view. Thus,
we are not only able to use the learned model for artificial systems, such as table
tennis robots [5], but also yield a better insight into the reasons for choosing a
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given action in a specific state. Therefore, we only consider basic features available
to the player.

A common way to model decision processes in artificial systems is to use a
Markov Decision Problem (MDP [6]). Here, an agent interacts with a dynamic
environment. It chooses and executes an action that will change the state of the
player and its environment. The agent can observe this state change and may
receive a reward for its action. A strategy defines the general plan of choosing
actions in specific states in order to achieve a goal. A strategy in the MDP frame-
work is usually called a policy. The expert knowledge used to win the game can
be captured in the reward function that defines the reward the agent will receive
in a specific situation when executing an action.

The process of determining the reward function from an expert demonstration
is referred to as Inverse Reinforcement Learning (IRL [7, 8]). IRL has been applied
to many problems such as helicopter control [9], routing preferences of drivers
[10] and, user simulation in spoken dialog management systems [11]. In most of
these approaches, the underlying dynamics of the system is assumed to be known.
However, the dynamics of human behavior is usually difficult to model. We avoid
modeling these complex dynamics by learning the strategies directly from human
demonstration.

In the remainder of this paper, we will proceed as follows. In Section 2, we
present the theoretical background for modeling decision processes, including
MDPs and IRL techniques. We present the experimental setup and evaluations
in Section 3. In Section 4, we summarize our approach and the results.

2 Modeling Human Strategies

In this section, we will first introduce the notation and basic elements necessary for
the table tennis model. Subsequently, we will discuss different model-free Inverse
Reinforcement Learning (IRL) approaches and show how the states, actions and
reward features in the table tennis task can be represented.

2.1 Preliminaries

To employ IRL, the problem at hand needs to be modeled as a Markov Decision
Problem (MDP). Formally, a MDP is a tuple (S,A, T,R), where S is the state
space, A is the action space, and T is a transition function T (st,at, st+1) =
Pr(st+1|st,at), with states st, st+1 ∈ S and actions at ∈ A. The function R(s,a)
defines the reward for executing action a in state s.

A deterministic policy π is a mapping: S 7→ A and defines which action
is chosen in a state s ∈ S. A stochastic policy is a probability distribution
over actions in a given state s and is defined as π(s|a) = Pr(a|s). The per-
formance of a policy is measured with the so-called value function V π(s). The
value function of a policy π evaluated at state s for a finite horizon H is given
by V π(s) = 1

HE[
∑H−1
t=0 R(st,at)|π, T , s0 = s], and corresponds to the expected

reward following policy πstarting from state s. The optimal value function is de-
fined by V ∗(s) = maxπ V

π(s) ∀s ∈ S. The goal of an agent is to find the optimal
policy π∗, i.e., a policy that maximizes the expected return for every s ∈ S.
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We assume that the reward function R is given by a linear combination of
m feature functions fi with weights wi. The reward function is therefore defined
by R(s,a) =

∑m
i=1 wifi(s,a) = wTf(s,a), where w ∈ Rm and f(s,a) ∈ Rm.

The features fi are fixed, known, bounded basis functions mapping from S × A
into R. Similarly to the value function, we can define the feature count fπi under

policy π by fπi (s) = 1
HE[

∑H−1
t=0 fi(st, at)|π, T , s0 = s] as the expected features

observed when following policy π. As a result, V π can be written as V πw(s) =∑m
i=1 wif

π
i (s) = wTfπ(s), where fπ ∈ Rm is a vector containing the single feature

counts fπi (s) as entries.

2.2 Learning the Reward Function

The reward function is a crucial part of the MDP as it defines the goal of the
task and shapes the policy optimization process. The problem of designing the
right reward function led to the development of IRL methods. Given the actions
of an agent that is assumed to behave in an optimal manner, the available sensory
information about the environment and, if possible, a model of the environment,
the goal of IRL is to determine a reward function that can (mostly) justify the
demonstrated behavior. A recent review of IRL algorithms can be found in [12].

Most IRL approaches rely on a given model of the environment T or assume
that it can be accurately learned from the demonstrations. In this paper, we
want to estimate the underlying reward function for playing table tennis based
on demonstrations without having to model the correct dynamics model. Only few
model-free IRL methods have been suggested [13, 14].

Instead of collecting only demonstrations from an expert we use also demon-
strations from less skilled players for finding the reward function. To compute the
reward weights, we compared two different methods. The first evaluated method
is based on the max-margin algorithm of Abbeel and Ng [15], while the sec-
ond is the model-free relative entropy IRL algorithm [13]. In the following, we
assume that we are given a set of expert demonstrations DE = {τp}Pp=1, where
τp = sp1a

p
1, ..., s

p
Tp
apTp

corresponds to one rally (i.e., state-action trajectory), as well

as a set of non-optimal demonstrations DN = {τl}Ll=1. Here, Tp is the number of
volleys (i.e., state-action pairs) in the observed rally τp.

Model Free Maximum Margin. The max-margin method of Abbeel and
Ng [15] aims at finding a policy π that has feature counts close to that of the
expert, i.e., ‖fπ− fπE‖2 ≤ ε. Using the max-margin algorithm [15] in a model-free
setup in a straight forward manner is not suited as it is unlikely that any player
plans the strokes for more than only a few steps ahead. Therefore, we need to
compare the values of the expert in every state in the recorded trajectories to the
ones of the non-experts in the same state. We can find the weight vector w by
solving the quadratic optimization problem

max
w

P∑
p=1

Tp∑
t=0

(
V πE
w (spt )− V̂ πN

w (spt )
)
− λ||w||2,

where V̂ πN
w (spt ) is an estimated value of the non-expert players in the current

state spt of the expert. Estimating the value V̂ πN in a given state s is a regres-
sion problem that we propose to solve by using the k-nearest neighbors method,
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(a) State (b) Experimental Setup

Fig. 1. Fig. a illustrates the state of the system, defined by the relative position of the
agent (dsx, dsy) and the the relative position (dox, doy) and velocity (vo) of the opponent
towards the table, as well as the the position (dbx, dby) and velocity (vb) of the ball.
Fig. b shows the experimental setup. A naive player (right side) plays against an skilled
opponent (left side).

V̂ πN
w (s) = 1

k

∑
s′∈Nk(s)

V πN
w (s′), where Nk(s) is the set of k-nearest neighbors of s

among all the states that have been observed in the non-optimal trajectories. We
use a Gaussian kernel to define a similarity measure between states.

The value functions V πE and V πN of the expert’s policy πE and non-optimal
policies πN are computed as

V πw(spt ) =
1

Hp
t − t+ 1

Hp
t∑

i=t

wTfπ(spi ,a
p
i ),

where Hp
t = min{t+H − 1, Tp} and H is the planning horizon, i.e., the number

of steps we look into the future. In the following, we will refer to this algorithm
as MM (Maximum Margin).

Relative Entropy Method. The relative entropy IRL method [13] finds a dis-
tribution P over trajectories that minimizes the KL-divergence to a reference
distribution Q, while ensuring that the feature counts under P are similar to the
feature counts in the expert trajectories. The solution to this problem takes the
following form

P(τ |w) =
1

Z(w)
Q(τ) exp

(
wT fτi

)
,

where Z(w) =
∑
τ Q(τ) exp (wT fτi ). The reward weight vector w is found by

solving the optimization problem maxw wT fπE − lnZ(w)− λ‖w‖1. The gradient
of this objective function is calculated by re-using the expert and non-optimal
trajectories with importance sampling. For our experiments, we choose the refer-
ence distribution Q to be uniform. In the following, we will refer to this algorithm
as RE (Relative Entropy).

2.3 Computational Model for Representing Strategies in Table
Tennis

As a next step, we need to specify the states, actions and reward features of
the table tennis task. The state of the system consist of all sensory information
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experienced by the agent. However, learning in such high-dimensional contin-
uous state domains is likely to be intractable. Therefore, we assume that the
player has to decide where and how to hit the ball when the hitting move-
ment is initiated. Furthermore, we assume that the decision depends on the fol-
lowing information: the planar Cartesian position of the agent ds = [dsx, dsy],
the opponent’s position do = [dox, doy] and velocity vo, the state of the rally
g ∈ {player serve, opponent serve, not served} as well as the ball position db =
[dbx, dby], velocity |vb| and direction given by the angles θpy and θpz (see Fig. 1).
The variables θpy and θpz are defined as the horizontal and vertical bouncing
angles of the ball at the moment of impact on the player’s side of the table, re-
spectively. θpz defines the bouncing angle in the xz-plane and corresponds to how
flat the ball was played. θpy defines the bouncing angle in the xy-plane. Addition-
ally, we define a set of terminal states sT ∈ {W,L} for winning and loosing the
rally respectively.

The action defines where and how to return the ball to the opponent’s court.
This decision includes the desired bouncing point pb of the ball on the opponent’s
court, the corresponding bouncing angles θoy and θoz, the velocity ||vb|| and the
spin of the ball. Since the different kinds of spin are hard to capture without
an expert classifying the sampled data, we discard the spin and use only basic
strategic elements.

The reward features fi(s,a) for each state-action pair are defined by: (i) the
goal of the ball on the opponent’s court, (ii) the proximity of the ball to the edge of
the table δt, (iii) the distance of the bouncing point of the ball on the opponent’s
court and the right hand of the opponent δo, (iv) the proximity of the ball to the
elbow δelbow, (v) the velocity of the ball ‖vb‖, (vi) the velocity of the opponent vo
relative to the ball in y-direction, (vii) the bouncing angles θoz and θoy of the ball
when bouncing on the opponent’s side of the court, and (viii) whether the ball
was a smash or not. All features are scaled to lie in an interval of [0 1], except for
the direction sensitive features θoy and vo, which lie in an interval of [-1 1].

3 Experiments and Evaluations

In this section we describe the experiments for the data collection and the results
of the evaluation of the presented approach.

3.1 Experimental Setup and Data Collection

We recorded table tennis players with various skill levels. Therefore, we used
eight right-handed subjects of all genders which could be grouped into naive and
skilled players. The group of naive players consisted of five subjects and fulfilled
the following requirements: (i) never played in a table tennis club, (ii) did not
train any racket sports on a regular basis in the last five years, and (iii) did not
participate in table tennis tournaments. The group of skilled players consisted of
three subjects and fulfilled the following requirements: (i) played for at least eight
years in a table tennis club, (ii) trained at least twice a week and (iii) participate
regularly in table tennis competitions.
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One of the skilled players were used as a permanent opponent and, therefore,
was not considered part of the subject set. Each subject played a game of table
tennis under the following three conditions. In Condition 1, the subjects played a
cooperative game of table tennis for a ten minute period. In Condition 2, the sub-
jects were told to perform a competitive game of table tennis, while the opponent
was instructed to return the ball “nicely” (i.e., the opponent was instructed to
play towards the subject in a cooperative way). In Condition 3, both the subject
and the opponent were instructed to play a competitive game of table tennis.

In order to collect information about the position of the participants, the table
and the ball during the game, we used a VICON motion capture system. With this
setup a 3D kinematic model of the upper body of each individual was captured
during the game. The experimental setup is also shown in Fig. 1b.

3.2 Results and Discussion

Only one of the skilled subjects was able to win against the opponent under
Condition 3. All other games were won by the fixed opponent. The scoring results
of the subjects that lost the game can be found in Table 1. Based on these results,
the data was divided into two subsets: (1) a non-expert data set and (2) an expert
data set. The non-expert data set included all games of the subjects who lost
against the fixed opponent, i.e., all naive subjects and one of the skilled players,
as well as all cooperative games. We will refer to the players that lost as Naive 1
to 5 and Skilled 1. The expert data set consisted of all rallies in the competitive
game (Condition 3) of the skilled player that won against the opponent. We will
refer to this player as Expert. When asked which player performed worst, the
opponent stated that Naive 3 was the worst.

To evaluate the potential reward functions, we performed a leave-one-subject-
out testing scheme. We computed the reward feature weights for each of the two
methods as described in Section 2.2 seven times. Every time leaving out all rallies
(i.e., state-action trajectories) of one of the subjects that lost or the rallies of the
cooperative game of the Expert respectively. We also excluded 20 rallies of the
Expert for the validations. For the MM algorithm we determined empirically an
optimal planning horizon of three, which is used throughout the evaluations.

Classifying the skill levels of the players. We computed the differences in
the average reward for a state-action pair of the spared expert and non-expert

Table 1. Summary of the results of the evaluations for the different methods. The
differences in the average rewards with respect to the expert, define the differences
between the reward of the expert and the spared test subject of the non-expert data set.

Method Naive 1 Naive 2 Naive 3 Naive 4 Naive 5 Skilled 1 Coop.

Average reward MM 1.16 0.07 1.24 0.86 0.71 0.33 0.50
differences RE 0.70 0.11 0.60 0.80 0.42 0.31 0.55
Scores in Condition 2 5:33 12:33 2:33 5:33 2:33 21:34
Scores in Condition 3 13:33 17:33 10:33 5:33 17:33 20:33
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Fig. 2. Fig. (a) shows the weights of all other features for the MM algorithm and the
RE algorithm, respectively. Fig. (b) shows the differences of the average reward of the
expert and the naive player for each feature seperately.

data for the obtaind reward functions (see Table 1). All reward functions were
able to distinguish between the non-expert games and the expert game, as well as
between the different playing styles of the expert (competitive vs cooperative). In
general the average reward for each player reflected the skill level of the players
with the exception of Naive 2.

All reward functions obtained in the evaluation resulted in a very small differ-
ence in the average reward of the Expert and Naive 2, followed by Skilled 1 and
Naive 5. Furthermore, both methods showed relatively large differences between
the Expert and Naive 1, Naive 3 and Naive 4. However, they disagree in the rank-
ing of these players. While the reward function obtained by the RE algorithm
shows the highest difference for the Expert and Naive 4, the reward function ob-
tained by the MM algorithm yields the highest difference between the Expert and
Naive 3. Naive 4 being the worst player is in compliance with the scoring results
for Condition 3, while Naive 3 being the worst player is in compliance with the
statement of the opponent. Analyzing player Naive 2, we can conclude that the
player chooses his actions based on the same principles as both skilled players,
but lost against the opponent due to his inaccurate movement execution.

Individual reward features. Analyzing the reward weights individually, the
different methods showed similar weights for the most important features (i.e.,
the features with the highest weights). The reward weights and differences for the
individual features are displayed in Fig. 2a and b. The largest influence resulted
from the bouncing angles θy and θz, the table preferences and the distance between
the desired bouncing point and the racket of the opponent. We will discuss these
features in the following. Other features as playing against the moving direction
and the velocity of the ball were also positive correlated.

Goal preferences on the table. The resulting reward functions of the different
algorithms showed a preference for the areas where the opponent would have to
return the ball using the backhand, while the areas that are suited for returning
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the ball with the forehand and the areas directly after the net are rather avoided.

Distance to the opponent. Maximizing the distance in y-direction (i.e., along
the width of the table) between the bouncing point and the racket of the opponent
resulted in a high reward in both reward functions. This feature also influenced
the differences in the reward yield by the naive and expert table tennis player.
The overall performance on average only increased slightly. The differences in the
average reward for the features before a terminal state, increased dramatically and
became a dominant factor in the reward function (see Fig. 2b). This observation
suggests that the chance of winning a point increases with an increasing distance
between the bouncing point and the racket between the player.

Bouncing Angles. The horizontal angle θz had a high negative reward value,
i.e., playing the ball flat was preferred. The angle θy also had a high negative
weight, i.e., playing the ball cross to the backhand area was preferred opposed
to playing the ball cross towards the forehand area. These results are conform
with the table preferences. This feature was one of the dominating factors in the
reward function and in the evaluations of the excluded subjects. However, the
average difference between expert and naive players for the state right before the
terminal state was only decreased slightly. The average reward two states before
the terminal state on the other side became one of the dominant factors.

This observation together with the results of the distance of the bouncing
point and the racket, suggests the following strategy successfully applied by the
Expert only. When playing the ball very cross to the outer backhand area of
the opponent, the opponent was forced to move to his left. The expert used this
opportunity to play the ball to the other side of the table in order to increase the
distance between the ball and the opponent.

4 Conclusion
In this paper, we modeled table tennis as a MDP. We have shown that it is
possible to automatically extract expert knowledge on effective elements of basic
strategy in the form of a reward function using model-free IRL. To accomplish this
step, we collected data from humans playing table tennis using a motion capture
system. Participants with different skill levels played in both a competitive and
a cooperative game during this study. We divided the data into an expert and a
non-optimal data set and used them to infer and evaluate the reward functions.

We have tested two different model-free inverse reinforcement learning meth-
ods. One was derived from the model-based IRL method of Abeel and Ng [15]. The
second algorithm was model-free relative entropy [13]. The resulting reward func-
tions were evaluated successfully in a leave-one-subject-out testing scheme. All
learned reward functions were able to distinguish strategic information of players
with different playing skills and styles. The key elements revealed by the model
were (i) playing cross to the backhand area of the opponent, (ii) maximizing the
distance of the bouncing point of the ball and the opponent, and (iii) playing the
ball in a flat manner. Other elements as playing against the moving direction and
the velocity of the ball were also positively correlated.
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