
Grounding Spatial Relations for Outdoor Robot Navigation

Abdeslam Boularias, Felix Duvallet, Jean Oh and Anthony Stentz1

Abstract— We propose a language-driven navigation ap-
proach for commanding mobile robots in outdoor environments.
We consider unknown environments that contain previously
unseen objects. The proposed approach aims at making in-
teractions in human-robot teams natural. Robots receive from
human teammates commands in natural language, such as
“Navigate around the building to the car left of the fire hydrant
and near the tree”. A robot needs first to classify its surrounding
objects into categories, using images obtained from its sensors.
The result of this classification is a map of the environment,
where each object is given a list of semantic labels, such as
“tree” and “car”, with varying degrees of confidence. Then, the
robot needs to ground the nouns in the command. Grounding,
the main focus of this paper, is mapping each noun in the
command into a physical object in the environment. We use
a probabilistic model for interpreting the spatial relations,
such as “left of” and “near”. The model is learned from
examples provided by humans. For each noun in the command,
a distribution on the objects in the environment is computed by
combining spatial constraints with a prior given as the semantic
classifier’s confidence values. The robot needs also to ground the
navigation mode specified in the command, such as “navigate
quickly” and “navigate covertly”, as a cost map. The cost map
is also learned from examples, using Inverse Optimal Control
(IOC). The cost map and the grounded goal are used to generate
a path for the robot. This approach is evaluated on a robot in a
real-world environment. Our experiments clearly show that the
proposed approach is efficient for commanding outdoor robots.

I. INTRODUCTION

We consider the problem of commanding mobile robots
in unknown, semi-structured, outdoor environments using
natural language. This problem arises in human-robot teams,
where natural language is a favored communication means.
Therefore, robots need to understand the environment from
the standpoint of their human teammates, and to translate
instructions received in natural language into plans.

For example, to execute the command “Navigate around
the building to the car that is left of the fire hydrant and
near the tree”, the robot needs to find out which objects in
the environment are meant by “building” and “car”, and to
plan a path accordingly. To accomplish this goal, the robot
needs to ground all the nouns in the command (“building”,
“car”, “fire hydrant” and “tree”) into specific objects in the
environment, and to interpret the spatial relations (“left of”
and “near”) and the navigation mode (“around”).

Grounding nouns as physical objects is a high-level skill
that requires a combination of different cognitive capa-
bilities. The first one is parsing command sentences, and

The authors are with the Robotics Institute of Carnegie Mellon University,
Pittsburgh, PA 15213 USA. {abdeslam, fduvalle, jeanoh,
tony}@andrew.cmu.edu

Commands:
- “Navigate to the building behind the pole.”
- “Navigate covertly to the grass in front of

the building.”
- “Navigate near the building to the car left

of the building and right of the pole.”

Fig. 1: ClearpathTM Husky robot in an unknown environment

transforming them into structures that can be given to the
grounding algorithm. Parsing and part-of-speech tagging is
a fundamental problem in computational linguistics, and it is
still a highly challenging one. Since this problem is not the
main focus of this work, we assume that command sentences
are generated using a restrained language called Tactical Be-
havior Specification (TBS). TBS is a language for specifying
action commands and spatial constraints associated with the
action. The grammar of the TBS language in the Backus-
Naur Form (BNF) is given in Figure 2.

The robot must also be able to recognize the objects in
the environment and to label them. We use the semantic
perception method proposed in [1] which has been proven
effective in outdoor environments [2]. The semantic percep-
tion module receives scene images from a 2D camera and
classifies each pixel into categories with different confidence
values. Pixels that belong to the same object are clustered
together by using a 3D LADAR image of the same scene.

Grounding is performed by combining the labels obtained
from semantic perception with the spatial relations obtained
from parsing the command. There are three main sources of
uncertainty that make grounding a challenging task. First, ob-
jects are often misclassified because of occlusions and noise
in the sensory input. Classification errors also occur when the
environment contains objects that are significantly different
from the ones used for training the classifier. Second, the
commands can be ambiguous, i.e. multiple objects satisfy the
constraints in a given command. Third, spatial relations are
often subjectively interpreted. People have different views on
what “left of a building” is, for example. Some people would
define it relatively to their current position, others would look
for the main entrance of a building to define its left and right
sides. Moreover, humans disagree on the correct term to use
for describing the location of an object, if it is both on left
and in front of a building for instance. Concepts such as



near and far are also very subjective. Therefore, one should
not rely on fixed deterministic rules for grounding spatial
relations, especially given the uncertainty in the labels of
the objects. To illustrate this point, consider the following
simple example. The robot is commanded to navigate to
“the car behind the tree”. The robot detects a tree and two
objects. One of them is almost certainly a car, but is not
exactly behind the tree and rather far from it. The other one
is perfectly behind the tree, but the robot is not certain about
its label. Which object should the robot choose as a goal?

To trade off these uncertainties, we use a Bayesian model
for grounding. Our approach is based on using the confidence
values of the perception as a prior distribution on the true
category of each object. A posterior joint distribution on
the objects is computed based on how well each object
satisfies the spatial constraints. A key component of this
model is a function that maps two objects and a spatial
relation into a probability. This function is learned from
annotated examples. We also learn a function that maps a
navigation mode into a cost map for path planning, using
Inverse Optimal Control (IOC) [3]. Learning by imitation
enables the robot to interpret commands according to the
subjective definitions of its human user. Moreover, navigation
modes as “navigate covertly” do not have clear definitions
that can be used for handcrafting a path cost function.

Finally, we compute a joint distribution on goal objects and
on landmark objects used for specifying a navigation mode,
so that results with small path costs have high probabilities.
For path planning, we use the cost map based planner, PMAP
with Field D* [4]–[7]. The plan of the grounding result with
the highest probability is executed by the robot.

This paper describes the grounding module of our
language-driven navigation system. We start by reviewing
related work in Section II. We then present the TBS grammar
in Section III, the IOC approach for learning navigation
modes in Section IV, and the probabilistic approach for
grounding nouns in Section V. Section VI presents experi-
ments in simulation and using a real robot. The final section
concludes this paper with a summary of our findings.

II. RELATED WORK

The challenge of building human-robot interfaces using
natural language generated a large body of work [8]–[19].
A full review of the related works is beyond the scope of this
paper, so we highlight here some relevant examples. Symbol
grounding was first formulated in [8] as the problem of
mapping words (symbols) into manifestations in the physical
world. A framework for following verbal route instructions
was proposed in [9]. The proposed grounding algorithm
translates a high-level action, such as “turn to face the build-
ing”, into a sequence of implicit low-level actions using fixed
rules. The same problem was addressed in [10]. We solve a
similar problem in this paper by learning cost functions for
different navigation modes. An algorithm for generating and
resolving referring spatial expressions was presented in [11].
The proposed algorithm was based on a knowledge base and

rule inference, in contrast to our probabilistic approach. First-
order dynamic logic was used in [12] for grounding goal
and action utterances. Golland et al. [13] described a game-
theoretic approach for dialogue management, wherein spa-
tial relations were learned from annotated examples. Using
virtual examples, the authors showed that learned relation
models are generally beneficial. Our grounding approach is
closely related to [13]. However, we take into account label
uncertainty and path cost in grounding, contrary to [13].
The Generalized Grounding Graphs (G3) [14] is a generic
framework that casts symbol grounding as a learning and
inference problem in a Conditional Random Field. G3 is
an efficient graph factorization technique for grounding all
the words in a given sentence. Our approach is tailored
for grounding only navigation modes and spatial relations,
in BNF, while taking into consideration perception errors.
Note, however, that we use the same type of spatial relation
clauses as the ones presented in [15] and used in [14]. A
human-robot dialogue system based on the G3 model was
presented in [16]. The navigation system described in [17],
also based on G3, incorporates odometry and path constraints
in grounding, which is conceptually comparable to our use of
perception confidence and path costs in grounding. Matuszek
et al. [18] showed that a joint model of language and percep-
tion for grounding can be learned simultaneously, although
the considered spatial relations were simple. Guadarrama et
al. [19] presented a system for human-robot interaction that
also learns both models for spatial prepositions and for object
recognition. However, simple relations were considered and
perception uncertainty was not taken into account.

Finally, note that the grounding approach presented in this
paper was briefly explained in [20], where other components
of the complete robotic system were presented.

III. TACTICAL BEHAVIOR SPECIFICATION
GRAMMAR

The Tactical Behavior Specification (TBS) language is
defined to instruct a robot to perform tactical behavior
including navigation, searching for an object or observation.
The language is specifically focused on describing desired
behavior using spatial relationships with objects in an en-
vironment. In this paper, we focus on the navigate action,
where the main components of a command are a goal and
a navigation mode. An object (or a symbol) referenced in a
command can be associated with a spatial constraint relative
to another object. For instance, in a command “Navigate
covertly to a fire hydrant behind the building,” a goal is
to reach a fire hydrant, “behind the building” is a goal
constraint, and “covertly” is the navigation mode. Often, the
navigation mode also refers to an object. For instance, the
navigation mode in “Navigate around the car to a fire hydrant
behind the building” refers to an object named “car”, which
can also have its own spatial constraints that are independent
from the constraints of the goal named “fire hydrant”.

The full specification in the Backus-Naur Form (BNF) is
included in Figure 2.



<tbs> ::= <trigger><action>[<direct-obj>][<mode>]
<goal>[<goal-constraint>]

<trigger> ::= NONE
<action> ::= navigate | search | observe
<direct-obj> ::= <named-obj>
<named-obj> ::= "Robot" | "Building" | "Wall" |

"Door" | "Grass" | "Asphalt" |
"Concrete" | "Person" |
"TrafficBarrel" | "Car" |
"GasPump" | "FireHydrant"

<mode> ::= <simple-mode> { <path-constraint> }
<simple-mode> ::= "quickly" | "covertly"
<path-constraint> ::= <constraint-list>
<goal-constraint> ::= <constraint-list>
<constraint-list> ::= <constraint> | <constraint>

{ <operator> <constraint> }
<constraint>::=[not]<spatial-relation><landmark>

| [not] "(" <constraint-list> ")"
<spatial-relation> ::= left | right | behind |

front | around | near | away
<landmark> ::= <named-object>
<operator> ::= and | or
<goal> ::= { to | <spatial-relation> }<named-obj>

Fig. 2: Tactical Behavior Specification (TBS) language in
BNF. In this work, we consider only navigation actions.

IV. NAVIGATION MODE GROUNDING

Once the landmark objects have been grounded and the
metric position of the goal has been determined, the robot
must plan a path from its current position to the given
goal location that obeys the path constraints imposed in the
command. Path constraints describe a navigation mode. For
example, the user may specify that the robot should stay
“left of the building”, or navigate “covertly”. We return to
the object grounding question, “which building should the
robot stay left of?”, in Section V.

Path constraints are subjective and explicitly writing down
a cost function that encapsulates them would be time con-
suming due to the many trade-offs inherently present in the
planning problem. For example, the robot must trade off path
length with distance from the building. A covert navigation
behavior may look different to different people. We instead
use Imitation Learning to learn how to navigate between a
start and end position using examples of desired behavior.

We treat understanding spatial language as learning a map-
ping from terms (such as “left of”, “around”, or “covertly”)
to a cost function c which can be used to generate a matrix
of costs known as a cost map. A planner can then optimize
to produce the minimum cost path under this cost function.

Specifically, given a term σ (such as “left of”) in the
command specifying the navigation mode, the robot solves
the planning problem of finding the minimum cost path ξ∗

under cost function cσ:

ξ∗ = argmin
ξ∈Ξ

cσ (ξ) = argmin
ξ∈Ξ

wTσ φ (ξ) (1)

where the set of valid paths is Ξ, and we assume that the cost
function cσ takes the form of a linear sum of features φ under
weights wσ . The features describe the shape of the path, the
geometry of the landmark, and the relationship between the

High 

low 

Fig. 3: Learned cost function for the navigation mode “left
of”. The landmark is the rectangle in the center (e.g., a build-
ing), and the path (optimized by minimizing the traversal
costs) correctly stays on the left side of the landmark.

(a) Demonstrated paths. (b) Learned cost function and an op-
timal path generated accordingly.

Fig. 4: Demonstrated paths and resulting learned cost func-
tion (along with a validation example) for “covert” naviga-
tion. Paths are in black, the red rectangles are buildings. Each
path starts with a pink cross and ends with a green one.

two [14]. We use imitation learning to learn the weights wσ
from a set of demonstrated paths {ξ̂i}N1 .

To learn the weights wσ , we minimize the difference
between the cost of the expert’s demonstrated path ξ̂ and
the minimum cost path under the current cost function:

`
(
wσ, ξ̂

)
= wTσ φ(ξ̂)−min

ξ∈Ξ
wTσ φ (ξ) +

λ

2
‖wσ‖2 (2)

under our regularization parameter λ. The first term in
Equation 2 is the cost of the demonstrated path under the
current cost function, and the second term is the cost of the
optimal path (again, under the current cost function). Note
that we are omitting the loss-augmentation term for clarity.
Ignoring regularization, we achieve zero loss when the cost
function produces the expert’s path. This loss is optimized
using the sub-gradient technique [3], [21].

Figure 3 shows the learned cost function for the relation
“left of”, and Figure 4 shows the training examples and
learned cost function for “covert” navigation, along with the
minimum cost path for a given start and end. Note that we
learned to avoid being in the center area between the rows
of buildings, and the planner took a sharper path across.



V. OBJECT GROUNDING WITH SPATIAL
CONSTRAINTS

A. Problem

The object grounding algorithm receives as inputs a text
command, a set O = {o1, o2 . . . , on} of perceived objects
in the environment, and the position (x, y) of the robot at
the time when the command was given. Each object o in set
O is represented as a two-dimensional polygon, defined by
the convex envelope of the object’s points. Each object o is
given a probability distribution Po over labels l ∈ L, obtained
from the semantic perception module. For example, label l
is “car” and Po(l) is the probability that object o is a car. A
command contains one or more symbols from the label set
L. The symbols of particular interest for planning a path are
the landmark-objects in goal and path constraints, denoted by
ψg and ψp, respectively. For example, ψg = “car” and ψp =
“building” in the command “Navigate near the building to
the car that is behind the fire hydrant”. The object grounding
algorithm returns a joint probability distribution P on each
pair of objects (oi, oj) ∈ O×O. P (oi, oj) is the probability
that objects oi and oj are what the commander intended by
symbols ψg and ψp, respectively. To compute P (oi, oj), one
needs to compute the probability of each object given all
the symbols in the command, such as “behind” and “fire
hydrant”, in addition to symbols ψg and ψp. But only these
two last symbols are used for planning a path. The other
symbols only help grounding ψg and ψp. There are several
ways for planning the robot’s path based on the resulting
distribution P . In this work, we pick the pair (oi, oj) that
has the highest probability, and use it to generate a path
according to the grounded navigation mode (Section IV).
We show how P is computed in the rest of this section.

B. Model

Label prior distribution Po is directly obtained from the
object recognition method proposed in [1]. A uniform distri-
bution on all labels in L is used for objects that do not belong
to any known class. This happens when the robot encounters
a new type of objects for the first time. Also, the symbols
in a received command that are not in L are automatically
added to L. Po is adjusted such that the probabilities of the
new labels are nonzero. For instance, the user refers to a “fire
hydrant” in our previous example. That means that one of
the objects in the environment has to be grounded as a ‘fire
hydrant’ even if this term (or label) was never used before.

We use a log-linear model to represent PR,oi(oj), the
probability that object oj ∈ O is the one that satisfies spatial
relation R with object oi ∈ O,

PR,oi(oj) =
exp

(
wTRφ(x, y, oi, oj)

)∑
ok∈O exp

(
wTRφ(x, y, oi, ok)

) , (3)

wherein φ(x, y, oi, oj) is a vector of spatial features of the
objects oi and oj from the robot’s perspective at current
position (x, y), and wR is a vector of weights specific to
relation R. We dropped the robot’s coordinates (x, y) and
objects set O from the notation PR,oi because they are

constant during the grounding process. The spatial features
used here are the distance between center(oi) and center(oj),
the centers of objects oi and oj , in addition to the sine
and cosine of the angle between (x, y)-center(oi) axis and
center(oi)-center(oj) axis. These features are adequate for
learning spatial relations between relatively small objects.
For large objects, such as buildings, the spatial relations
depend on the overall shape and orientation of the object.
Therefore, we use Principal Component Analysis (PCA) to
find the primary and secondary axis of oi when oi is most
likely a building (according to the perception module), and
replace the (x, y)-center(oi) axis by the nearest axis to it
among the primary and secondary axis. We also define the
distance between a building oi and the center of another
object oj as the smallest of the distances between oj and
each vertex of oi. These geometric features were sufficient
for learning weights wR of all the spatial relations used in
our experiments. The same general approach can be used for
learning other relations by using additional features.

C. Inference

Algorithm 1 computes a joint distribution P on landmark-
objects named as ψg and ψp in the goal and the path
constraints of a TBS command (Figure 2). Each of the two
objects can be subject to one or more spatial constraints,
parsed as a binary tree and denoted by Tg and Tp respectively.
We start by first computing a distribution on the objects in
O for each label mentioned in the command. The object
distribution, denoted by Pl for label l, is computed from the
label distributions Po (available from semantic perception)
using Bayes’ rule and a uniform prior. The next step consists
in computing two distributions on goal and path landmarks,
denoted as PTg and PTp , from the spatial constraints in
trees Tg and Tp. The trees are traversed in a post-order
depth-first search, which corresponds to reading the con-
straints in a reverse Polish notation. The logical operators
(“and”,“or”,“not”) are in the internal nodes of the tree,
whereas the atomic spatial constraints (“behind building”,
“near car”, etc.) are in the leaves. In the following, we
show how object distributions PTg and PTp are recursively
computed and updated (Algorithm 2). Since PTg and PTp are
computed in the same way, we simply use P to denote both
PTg and PTp in Algorithm 2.

At a leaf node with spatial relation R and symbol ψ used
to indicate a reference object, P is given by

P (oj) =
∑
oi∈O

PR,oi(oj)Pψ(oi). (4)

The reference object symbol ψ is the name of the reference
object in the spatial relation. For instance, the word “build-
ing” is the reference object symbol ψ in the relation “near the
building”. PR,oi(oj) is given by Equation 3. In Equation 4,
every object oi ∈ O is considered as a potential candidate
for being the reference object intended by the user, with a
prior probability Pψ(oi) obtained from semantic perception.

At every internal node of the tree, two distributions Pleft
and Pright are calculated by recursively calling Algorithm 2.



The two distributions are combined according to the logical
operator. We normalize the distributions by conditioning on
the fact that one of the objects at least should satisfy all the
constraints, using a uniform prior.

The last step of Algorithm 1 consists in combining PTg
and PTp , obtained from Algorithm 2, in a joint distribution
P on pairs of goal and path (or navigation) landmark
objects while taking into account the label priors given
by the semantic perception. We also calculate the costs of
paths that go to each candidate goal object using every
potential navigation landmark. The path costs are computed
as explained in Section IV. Pairs of goal and path landmarks
that lead to costly paths are given a lower probability. The
reweighting of P according to path costs is optional, we used
it in the simulation experiments, but we removed it in the
robotic experiments because of the real-time requirements.

D. Learning
Given a weight vector wR, probability PR,oi(oj) (Equa-

tion 3) indicates how likely a human user would choose
oj among all objects in a set O as the one that satisfies
R(oi, oj). Because of perception uncertainties, estimating
PR,oi(oj) for each object oj is more important than simply
finding the object that most satisfies relation R with oj .

We used twenty examples for learning the spatial relations
R ∈ {“left”, “right”, “front”, “behind”,“near”,“away”}.
Each example i contains a set of objects in a simulated
environment, a position (xi, yj) of the robot, a command
with spatial constraints, in addition to the best answer o∗i
according to a human teacher. Weight vector wR of each
relation R is obtained by maximizing the log-likelihood of
all the training examples using gradient descent, with the l1
regularization for sparsifying the weights [22].

Algorithm 1 Object Grounding
Input: Binary trees Tg and Tp of goal and path BNF

constraints in the command, set of objects O,
distribution Po on labels of each object, learned
relation weights {wR}, robot position (x, y)

Output: Joint distribution P on the landmark objects in
the goal and the path constraints

foreach label l occurring in the command do
Calculate a posterior distribution Pl, defined as
Pl(o) = P (o|l), using Bayes Rule with Po and a
uniform prior on objects o ∈ O;

Calculate distribution PTg (resp. PTp ) on objects using
Tg (resp. Tp), O, Pl, {wR}, and (x, y) in Algorithm 2;
foreach (oi, oj) ∈ O ×O do

Calculate ci,j , the cost of the optimal path that
goes from (x, y) to goal object oi, using oj as a
navigation landmark;

foreach (oi, oj) ∈ O ×O do

P (oi, oj) ∝
(
Pψg

(oi)Pψp
(oj)PTg (oi)PTp(oj)

exp(−αci,j)
)

Algorithm 2 Recursive Grounding of Spatial Relations
Input: Binary tree T of BNF constraints describing

spatial relations, set of objects O, distribution
Pl on objects for each label, learned relation
weights {wR}, robot position (x, y)

Output: Probability distribution P on objects that sat-
isfy constraints tree T with priors Pl

if T is a leaf node then
foreach oi ∈ O do

Calculate P (oi) with Equation 4;

else
Calculate Pleft (resp. Pright) recursively by calling
Algorithm 2 with the left (resp. right) branch of T ;
foreach o ∈ O do

if root node(T ) = “and” then

P (o) ∝ Pleft(o)Pright(o);

if root node(T ) = “or” then

P (o) ∝ Pleft(o) + Pright(o)− Pleft(o)Pright(o);

if not(T ) then
foreach o ∈ O do

P (o) ∝ 1− P (o);

VI. EXPERIMENTS

We performed experiments in simulated and real-world
environments. We report here a summary of the results.

A. Simulation experiments

In the first simulation experiment, we created a simple
world model containing 18 objects (Figure 5). The robot’s
environment is discretized as a 20×20 grid for path planning.
Each object is given one label with a high probability
(between 0.8 and 0.95), except one unknown object which
is given a uniform distribution on the labels.

Table I shows all the TBS commands that were sent
to the robot in this experiment, and the grounded goals.
Detailed commands and answers are reported here because
the interpretation of these results is subjective. However, we
can verify that all these answers are valid. Note also how
object 12 is correctly interpreted as the fire hydrant intended
in the commands, although it is labeled as unknown with a
uniform prior on the labels. Other objects, such as the traffic
cone nearby, could well satisfy the spatial constraints in this
case, but they have a low probability for label “fire hydrant”.
Equation 4 shows how label priors were taken into account.

The second series of experiments is a study involving
three uninformed human subjects. We created a world model
with eleven objects: a building, two cars, six traffic cones
and two unknown objects. We used five simple commands
and five complex commands. Each command contains a
navigation mode (“quickly” or “covertly”) with a spatial
constraint of the path, in addition to a spatial constraint



12 

building	
  

car	
  

grass	
  

traffic	
  cone	
  

unknown	
  

14 

11 

Fig. 5: A world model used with commands in Table I.

Command Grounded Goal
“Navigate to Building right of Traffic Cone” object 9
“Navigate to Building left of Traffic Cone” object 4
“Navigate to Building right of Fire Hydrant” object 10
“Navigate to Building left of Fire Hydrant” object 5
“Navigate to Building near of Fire Hydrant” object 5
“Navigate to Building away of Fire Hydrant” object 6
“Navigate to Car behind of Grass” object 15
“Navigate to Car front of Grass” object 14
“Navigate to Car left of Grass” object 17
“Navigate to Car right of Grass” object 18
“Navigate to Car behind of Grass and right of Grass” object 15
“Navigate to Car behind of Grass and left of Grass” object 16
“Navigate to Car behind of Grass or left of Grass” object 15
“Navigate to Car behind of Grass or left of Grass
and near of Building” object 17

“Navigate to Car not near of Building” object 18

TABLE I: TBS examples and grounded goals in the world
model of Figure 5, using Algorithm 1 with learned weights.

of the goal. Complex commands contain additional goal
constraints. Participants were separately asked to point to
the goal they would choose for executing each command.
The best answer, chosen by a majority vote, is compared to
the robot’s answer. Table II shows that the robot’s answer
matches with the best answer in 80% of the commands. A
robot’s answer is counted as valid if it matches the answer
of at least one participant. All the grounded goals were valid
in this study. We also report the consensus rate which is
the percentage of commands where all the three participants
agreed on one answer. The low rates of consensus clearly
show the advantage of customized human-robot interfaces
that can learn from users. For instance, one participant
interpreted “front of a building” as the side where the cars
were located. Similarly, we asked each participant to classify
the robot’s path as conform to the navigation mode and
constraints or as non-conform. The mode was classified as
conform by the majority of the participants in only 60%
of the commands. We noticed that the participants had all
different definitions of what it means to navigate covertly.

B. Robot experiments

We performed extensive experiments using the robotic
platform shown in Figure 6. The robot’s environment con-
tained mainly buildings, cars, traffic cones, fire hydrants, and
a gas pump. We evaluated the performance of the learned
grounding model in five different scenes. Figure 7 shows
one the scenes, as perceived by the robot. In each scene, we

Simple Commands Complex Commands
Best goal 80% 80%
Valid goal 100% 100%

Consensus 40% 20%

Best navigation mode 60% 60%
Valid navigation mode 100% 100%

Consensus 60% 60%

TABLE II: Comparing the learned grounding model to hu-
man subjects. Notice the low consensus among the subjects
on the best answers, which are chosen by a vote of majority.

used five simple commands and five complex ones. The total
number of test scenarios is then 50. In each test scenario, we
select a goal and a navigation mode, send a command to the
robot, and rate the planned path as a success if it matches the
selected goal and mode, and as a failure otherwise. Table III
shows the results of these experiments. Overall, we notice
that complex commands help finding the right goals because
they are less ambiguous than simple commands.

Fig. 6: The robotic platform used in our experiments: a
ClearpathTMHusky robot equipped with the General Dynam-
ics XR 3D LADAR sensor and Adonis camera.

VII. CONCLUSION

Communicating with robots in natural language is a highly
challenging problem. To correctly understand the different
commands given to them, robots need to reason about their
environments like humans. Spatial navigation and relations
are one type of subjective linguistic concepts that robots
can learn from human users. Our approach to solving this
problem uses inverse optimal control for learning navigation
modes, and a Bayesian model for trading off perception
uncertainties with spatial constraints. Empirical evaluations
show that the human-robot interface built using the proposed
approach is an efficient tool for commanding mobile robots.
In a future work, we plan to train the robot to ground other
spatial relations and actions such as “search” and “observe”.
This work can also be improved by considering more com-
plex contextual features. For instance, the frontal façade of
a building can be detected from the objects surrounding it.



(a) Simple Commands
Correct Goals Correct Navigation Modes

Scene 1 5/5 5/5
Scene 2 4/5 4/4
Scene 3 4/5 4/4
Scene 4 3/5 3/3
Scene 5 5/5 5/5

Average 84±17 % 100±0 %

(b) Complex Commands
Correct Goals Correct Navigation Modes

Scene 1 4/5 4/4
Scene 2 5/5 5/5
Scene 3 4/5 3/4
Scene 4 4/5 3/4
Scene 5 5/5 5/5

Average 88±11 % 90±14 %

TABLE III: Results of experiments using the robot.

ACKNOWLEDGMENT

This work was conducted through collaborative participa-
tion in the Robotics Consortium sponsored by the U.S Army
Research Laboratory under the Collaborative Technology
Alliance Program, Agreement W911NF-10-2-0016.

REFERENCES

[1] D. Munoz, Inference Machines: Parsing Scenes via Iterated Predic-
tions. PhD thesis, The Robotics Institute, Carnegie Mellon University,
June 2013.

[2] D. Munoz, J. A. Bagnell, and M. Hebert, “Stacked Hierarchical
Labeling,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2010.

[3] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum Margin
Planning,” in Proceedings of the International Conference on Machine
Learning, 2006.

[4] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), pp. 3310–3317, 1994.

[5] D. Ferguson and A. Stentz, “Field D*: an interpolation-based path
planner and replanner,” in Proceedings of the International Symposium
on Robotics Research (ISRR), October 2005.

[6] J. P. Gonzalez, B. Nagy, and A. Stentz, “The geometric path planner
for navigating unmanned vehicles in dynamic environments,” in Pro-
ceedings of the 1st Joint Emergency Preparedness and Response and
Robotic and Remote Systems, 2006.

[7] A. Stentz and B. Naggy, PMAP User’s Guide. National Robotics
Engineering Center, Carnegie Mellon University, 1.0 ed., Mar. 2007.

[8] S. Harnad, “The symbol grounding problem,” Physica D, vol. 42,
pp. 335–346, 1990.

[9] M. MacMahon, B. Stankiewicz, and B. Kuipers, “Walk the Talk:
Connecting Language, Knowledge, and Action in Route Instructions,”
in National Conference on Artificial Intelligence, 2006.

[10] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, “Learning to
Parse Natural Language Commands to a Robot Control System,” in
International Symposium on Experimental Robotics, 2012.

[11] H. Zender, G.-J. M. Kruijff, and I. Kruijff-Korbayová, “Situated
resolution and generation of spatial referring expressions for robotic
assistants,” in Proceedings of the Twenty-First International Joint
Conference on Artificial Intelligence (IJCAI), pp. 1604–1609, 2009.

[12] J. Dzifcak, M. Scheutz, C. Baral, and P. W. Schermerhorn, “What to do
and how to do it: Translating natural language directives into temporal
and dynamic logic representation for goal management and action
execution,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 4163–4168, 2009.

Fig. 7: Example of the experiments with the robot. Blue
objects are classified as buildings and pink objects are
classified as cars. Using the approach described in this paper,
the green path is planned for the command “Navigate to car
in front of a building and behind a car”, while the black
path is planned for the command “Navigate to car in front
of a building and in front of a car”.

[13] D. Golland, P. Liang, and D. Klein, “A game-theoretic approach to
generating spatial descriptions,” in Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 410–
419, 2010.

[14] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J.
Teller, and N. Roy, “Understanding natural language commands for
robotic navigation and mobile manipulation.,” in Proceedings of the
25th AAAI Conference on Artificial Intelligence, 2011.

[15] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Toward understanding
natural language directions,” in Proceedings of the 5th ACM/IEEE
International Conference on Human-robot Interaction (HRI), pp. 259–
266, 2010.

[16] S. Tellex, P. Thaker, R. Deits, T. Kollar, and N. Roy, “Toward
information theoretic human-robot dialog.,” in Robotics: Science and
Systems IIX, 2012.

[17] M. R. Walter, S. Hemachandra, B. Homberg, S. Tellex, and S. J.
Teller, “Learning semantic maps from natural language descriptions,”
in Robotics: Science and Systems IX, 2013.

[18] C. Matuszek, N. Fitzgerald, L. Zettlemoyer, L. Bo, and D. Fox,
“A joint model of language and perception for grounded attribute
learning,” in Proceedings of the 29th International Conference on
Machine Learning (ICML), pp. 1671–1678, 2012.

[19] S. Guadarrama, L. Riano, D. Golland, D. Gouhring, Y. Jia, D. Klein,
P. Abbeel, and T. Darrell, “Grounding spatial relations for human-robot
interaction,” in Proceedings of the 26th IEEE International Conference
on Intelligent Robots and Systems (IROS), pp. 1640–1647, 2013.

[20] J. Oh, A. Suppe, F. Duvallet, A. Boularias, J. Vinokurov, L. Navarro-
Serment, O. Romero, R. Dean, C. Lebiere, M. Hebert, and A. Stentz,
“Toward Mobile Robots Reasoning Like Humans,” in Proceedings of
the 29th AAAI Conference on Artificial Intelligence, 2015.

[21] N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to Search:
Functional Gradient Techniques for Imitation Learning,” Autonomous
Robots, 2009.

[22] C. M. Bishop, Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2006.


	INTRODUCTION
	RELATED WORK
	TACTICAL BEHAVIOR SPECIFICATION GRAMMAR
	NAVIGATION MODE GROUNDING
	OBJECT GROUNDING WITH SPATIAL CONSTRAINTS
	Problem
	Model
	Inference
	Learning

	EXPERIMENTS
	Simulation experiments
	Robot experiments

	CONCLUSION
	References

