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Inferring 3D Shapes of Unknown Rigid Objects in
Clutter Through Inverse Physics Reasoning

Changkyu Song and Abdeslam Boularias

Abstract—We present a probabilistic approach for building, on
the fly, three dimensional (3D) models of unknown objects while
being manipulated by a robot. We specifically consider manipula-
tion tasks in piles of clutter that contain previously unseen objects.
Most manipulation algorithms for performing such tasks require
known geometric models of the objects in order to grasp or rear-
range them robustly. One of the novel aspects of this work is the
utilization of a physics engine for verifying hypothesized geome-
tries in simulation. The evidence provided by physics simulations
is used in a probabilistic framework that accounts for the fact that
mechanical properties of the objects are uncertain. We present an
efficient algorithm for inferring occluded parts of objects based
on their observed motions and mutual interactions. Experiments
using a robot show that this approach is efficient for constructing
physically realistic 3D models, which can be useful for manipula-
tion planning. Experiments also show that the proposed approach
significantly outperforms alternative approaches in terms of shape
accuracy.

Index Terms—RGB-D perception, computer vision for automa-
tion, perception for grasping and manipulation.

I. INTRODUCTION

PRIMATES learn to manipulate all types of unknown ob-
jects from an early age. Yet, this seemingly trivial capabil-

ity is still a major challenge when it comes to robots [1], [2].
Consider for instance the task of searching for an object inside
a drawer, as illustrated in Fig. 1. To perform this task, the robot
needs to detect the objects in the scene, and to plan grasping,
pushing, and poking actions that would reveal the position of the
searched object. The majority of motion planning algorithms,
such as RRT and PRM [3], require geometric models of the ob-
jects involved in the task. The need for models has been put on
display particularly during the Amazon Picking Challenge [4],
where robots were tasked with retrieving objects from narrow
shelves, and collisions of the picked objects with other objects
were a major source of failure, due to inaccurate estimates of
the objects’ poses.

In warehouses and factories, manipulated objects are typi-
cally known in advance, with their CAD models obtained from
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Fig. 1. Experiments are performed using a Kuka arm mounted on a Clearpath
mobile platform and equipped with a Robotiq hand and a depth-sensing camera
SR300.

full 3D scans [5]–[8]. Recent research efforts in grasping and
manipulation are focused rather on tasks where object models

are unavailable [9]–[13]. While most of these new methods
ignore object modeling all together and focus on learning ac-
tions directly, other works have also explored automated model-
ing of unknown 3D objects [14]. A common approach consists
in taking point clouds from multiple views and merging them
using the popular Iterative Closest Point (ICP) technique [15],
[16]. A large body of related works, known as active vision,
is concerned with selecting the point of view of the camera to
maximize information gain with respect to the location of an
object [17]–[19]. There is also a growing interest in robotics on
interactive perception, wherein a manipulator intervenes on the
scene by pushing certain objects so as to improve segmentation
or object recognition [20]–[23]. Our approach differs form these
works in two aspects. First, our goal is to construct full CAD
models that can be used by manipulation planning algorithms,
and not to improve segmentation or object recognition. Second,
we are concerned here only with predicting shapes of manip-
ulated objects from RGB-D images, and not with optimizing
the data collection process, which can be achieved by combin-
ing our approach with techniques for selecting camera views or
poking/pushing actions. In this work, the camera is fixed and
the objects pushed by the robot are chosen randomly.

Volumetric shape completion for partially occluded objects
is an increasingly popular topic in computer vision [24]–[26].
Learning-based approaches typically focus on known objects or
specific categories, such as furniture [27]–[30]. Approaches for
unknown objects use energy minimizing solutions that penalize
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Fig. 2. Work-flow of the integrated system.

curvature variation [31], extract geometric primitives (planes
or cylinders) from 3D meshes [32], or exploit symmetry and
Manhattan properties [33]. Some works have also considered
physical reasoning for shape completion. For instance, [34],
[35] presented an approach for scene understanding by rea-
soning about the physical stability of objects in a point cloud.
Our method differs by its use of a physics engine to simulate
both a robot’s action and the gravitational and normal forces
exerted upon a pile of objects, in addition to probabilistically
reasoning about the unknown mechanical properties, and visu-
ally tracking the objects being pushed. This approach is inspired
from previous works in cognitive science that have shown that
knowledge of intuitive Newtonian principles and probabilistic
representations are important for human-level complex scene
understanding [36], [37]. Note also that there are works that
use physical reasoning to predict the stability of a scene from
an image [38]. We are interested in the inverse problem here,
i.e., predicting shapes of objects based on observed motions or
stability of a scene.

In this letter, we present an integrated system that combines:
a robotic manipulator for pushing/poking objects in clutter, a
segmentation and clustering module that detects objects from
RGB-D images, and an inverse physical reasoning unit that in-
fers missing parts of objects by replaying the robot’s actions
in simulation using multiple hypothesized shapes and assigning
higher probabilities to hypotheses that better match the observed
RGB-D images. The main contributions of this work are: (1), a
novel approach utilizing a physics engine to infer invisible mat-
ter in a scene and systematically construct 3D models of new
objects, (2), a Monte Carlo search method that returns a distribu-
tion of models, and (3), a system that integrates the components
mentioned above and that is deployed on the robot shown in
Fig. 1. The first contribution is perhaps the most important. We
demonstrate in our experiments that explicitly reasoning about
all the physical interactions between the objects, and between
the robot and the manipulated objects, does help improve shape
inference in comparison with purely geometric, learning-based,
or stability-checking methods. To the best of our knowledge,
this result was not shown before. A video of the experiments
along with a dataset containing annotated robotic actions and
ground-truth 3D models and 6D poses of objects are available
at https://goo.gl/1oYLB7.

II. OVERVIEW OF THE PROPOSED METHOD

A high-level overview of the proposed system is illustrated
in Fig. 2. The system takes as inputs a sequence of RGB-D
images of a clutter as well as recorded pushing or poking actions
performed by a robot, and returns complete 3D models of the
objects in the clutter. The system proceeds by first segmenting
and clustering the given point clouds into objects. The parts of
the objects that are hidden are hypothesized and sampled from
a spectrum of possibilities. Each hypothesized object model is
assigned a probability. The system then proceeds by replaying
the robot’s actions using various hypothesized object models,
and comparing the movements of the objects in simulation to
their observed real motions. The probabilities of the models
that result in the most realistic simulations are systematically
increased by using the reality gap as a likelihood function.

III. SCENE SEGMENTATION

A. Segmentation

RGB-D images of the clutter scene are obtained from a depth
camera and is segmented as follows. We start by removing the
known planes (tabletops and containers) using the RANSAC
method. The robot’s arm and hand are also removed from
the point cloud using a known model of the robot and the
corresponding forward kinematics. Each point cloud is seg-
mented into a set of supervoxels by using the mean shift al-
gorithm. A supervoxel is a small cluster of 3D points that
share the same color. Then, a graph of supevoxels is created
by connecting pairs of supevoxels that share a boundary in
the corresponding point cloud. The edges connecting super-
voxels are weighted according to the directions of their aver-
age surface normals, as proposed in [39]. A convexity prior
is enforced here, by assigning smaller weights to edges that
connect concave surfaces. An edge (i, j) is weighted with
wi,j = max{vt

i .(ci − cj ), vt
j .(cj − ci), 0}, where ci and cj are

the 3D centers of adjacent supervoxels i and j respectively, vi

and vj are their respective surface normals. Using the spectral
clustering technique [40], the supervoxels are clustered into ob-
jects based on the weights of their connections. Namely, the
normalized Laplacian Lsym of the weighted adjacency matrix
of the graph is computed, and the first n eigenvectors of Lsym



SONG AND BOULARIAS: INFERRING 3D SHAPES OF UNKNOWN RIGID OBJECTS IN CLUTTER THROUGH INVERSE PHYSICS REASONING 203

Fig. 3. Observed facets, and domains of potential hidden facets.

are retained. n is automatically determined by ranking the eigen
values and cutting off at the first value that significantly differs
from the others. Finally, the objects are obtained by clustering
the supervoxels according to their coordinates in the retained
eigenvectors, using the k-means algorithm. Thanks to this hier-
archical approach, we reduced the running time of the spectral
clustering layer by orders of magnitude. For example, segment-
ing the scenes shown in Fig. 2 required about ten milliseconds
on a single CPU.

B. Facet Decomposition

The result of segmentation and tracking process is a set of n
partial objects, {O1 , O2 , . . . , On}, wherein each partial object
Oi is a set of facets, i.e., Oi = {Fo

1 , F o
2 , . . . F o

k }. A facet is a
small homogeneous region that belongs to a side of an object.
For instance, a cubic object is made of six facets, whereas a
spherical object can be approximately modeled as a large set of
small facets. The facets of an object are obtained by clustering its
supervoxels into larger regions, using the curvature calculated
from the normals as a distance in the mean shift algorithm. Fig. 3
shows simple examples of partial objects segmented into facets
using this process.

IV. INVERSE PHYSICS REASONING

The objective of the inverse physics reasoning is the infer-
ence of plausible full models that complete the observed partial
models of objects {Oi}n

i=1 , by simulating the forces applied
on the objects by the robot and environment and weighing the
hypothesized models based on how accurately they predict the
observations. We start by describing the range of shapes consid-
ered here, then we formulate the inference problem, and present
our solution to the problem.

A. Probabilistic Object Models

We define an object model Xi as a set of facets
{F1 , F2 , . . . Fm}, wherein each facet is itself a set of 3D points
in a common coordinate system. A partial object Oi is a set
of observed facets that belong to Xi , i.e., Oi ⊆ Xi . Therefore,
an object model is the union of two sets of facets, observed
ones and hypothesized unseen ones, i.e., Xi = Oi ∪ Hi where
Hi = {Fh

j }l
j=1 is the set of imagined hidden facets. We define

P (Xi) as the probability that the object with observed facets Oi

has exactly l additional hidden facets given in Hi = Xi − Oi .
Our goal is to estimate P (Xi).

B. Facet Hypotheses

Fig. 3 shows an example of a self-occluded object. The
space occluded by the object defines the range of its hidden
facets {Fh

j }l
j=1 . Any surface inside the invisible space could

Fig. 4. Sampling possible hidden facets of a partially occluded book from the
scene of Fig. 2.

potentially belong to the object. Fig. 4 shows an example of a
hypothetical hidden surface of an object. Inferring hidden facets
in the space of all possible 3D surfaces is computationally chal-
lenging for robotic manipulation tasks that require real-time
inference. Therefore, we limit the space of hypotheses by ex-
ploiting the Manhattan properties that are commonly made in
the literature [33]. The Manhattan structure assumption states
that the occluded facets have curvatures similar to the observed
ones. This is not true in general but holds for most everyday
objects. Therefore, the first m imagined facets are obtained by
mirroring the m observed facets along with their surface nor-
mals. Specifically, for each observed facet Fo

j of an object we
calculate the average surface normal of the facet and use the av-
erage tangent plane of the normal as a plane of symmetry. The
point cloud of the observed facet Fo

j is then mirrored along the
tangent plane to generate a hypothesis facet Fh

j after translating
the mirrored facet along the opposite direction of the surface
normal by a distance dj . Distance dj is a free parameter that
controls the position of Fh

j , it is iteratively sampled from an
interval of [Dmin

j ,Dmax
j ], where Dmin

j is the minimum length for
objects to have a volume, and Dmax

j is the maximum length.
Dmax

j , computed using ray tracing, ensures that no point in the
space between the observed facet Fo

j and its mirrored facet Fh
j

would belong to the visible volume of the scene.
One would not be able to cover for all types of occlusions if

the hypothetical facets are limited to be dj -distant mirror images
of the observed facets, as described above. This solution covers
only for self-occlusions. To account for occlusions caused by
surrounding objects in clutter, we need to hypothesize additional
facets. Consider the example of the book in Fig. 2. This book
is inside a drawer and a significant part of it is occluded by
the drawer’s front. To solve these problems, we create a convex
hull of all the facets (observed and hypothesized) every time
we mirror the observed facets and we look for new facets in
the convex hull. The new facets are then inserted to the set
Hi that contains all hypothetical facets of object model Xi .
The new facets are also mirrored along their tangent planes,
translated along new sampled distance, and inserted to set Hi .
This process is repeated until no new facets can be generated by
mirroring or translating the existing ones without stepping out
of the invisible space of the scene. A large number of models,
with different volumes and geometries, can be generated with
this procedure. The principal steps of this process are provided
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in Algorithm 1. Fig. 4 shows how a hypothetical model of the
object is sampled. We first mirror the only observed facet (part
of the front cover) and translate it by a random distance. The
convex hull of the two facets (front cover and hypothesized back
cover) gives rise to six new side facets, which are also added to
the set and mirrored in their turn to get different shapes and sizes
of the book. This simple process, when repeated, can generate
increasingly complex shapes.

C. Global Geometric Constraints

After performing the segmentation and facet decomposition
steps described in Section III, we call Algorithm 1 several times
to sample a large number of different models for every detected
object i. Each model j of an object i is a set Xj

i = Oi ∪ Hj
i

made of observed facets set Oi , and generated facets set Hj
i . If

the number of detected objects is n, and the number of models
per object is m, then the total set of hypotheses is {Xj

i }n
i=1

m
j=1 .

In cluttered scenes, it is important to reason about combinations
of models. What could look like a good model for an object may
limit the choices of a neighboring object to unrealistic models.
Therefore, the generated hypotheses should satisfy certain geo-
metric constraints, such that an object’s surface cannot penetrate
another object or the support surface, and a hypothesized hidden
facet cannot intersect with the observed and known space of the
scene.

We define a joint model for n objects in the scene as an n-
tuple X = (Xj1

1 ,Xj2
2 , . . . , Xjn

n ). Constraints(X, {Vt}T
t=0) is a

Boolean-valued function, defined as true if and only if:

∀F, F ′ ∈ n∪
i=1

Xji

i : (F �= F ′) ⇒ (F ∩ F ′ = ∅).

The constraint implies that all the facets are distinct, which
ensures that there are no nonempty intersections of objects.
These geometric constraints immediately prune a large number
of hypotheses before starting the physics-based inference.

D. Inference Problem

Given a sequence {μt}T
t=0 of pushing forces applied by the

robot on the 3D points in the clutter along with the gravitational
and normal forces, and a list {Oi,t}n

i=1
T
t=0 of extracted partial

models of n objects obtained from segmentation, the problem

Fig. 5. An example of hypothesized shapes and reconstructed scene.

consists in calculating

P
(
X|{Oi,t}n

i=1
T
t=0 , {μt}T

t=0

)

∝ P
(
{Oi,t}n

i=1
T
t=0 |X, {μt}T

t=0

)
P (X), (1)

wherein P (X) is a prior of object models, which is uniform if
the objects are completely unknown or a more informed distri-
bution if the robot had already observed or manipulated similar
objects, and P ({Oi}n

i=1
T
t=0 |X, {μt}T

t=0) is the likelihood of the
observations given a joint model X , which is described in the
next section. Note that P (X) = 0 for any model X for which
Constraints (X, {Vt}T

t=0) = false.

E. Physical Likelihood Model

We define likelihood P ({Oi}n
i=1

T
t=0 |X, {μt}T

t=0) as a func-
tion of the error between the current observation Ot with push-
ing force μt and the image predicted in simulation given object
model X . In other terms, the likelihood function quantifies the
ability of a geometric model X at predicting how the objects
in the scene move under the effect of gravity and the robot’s
pushing actions. We take advantage of the availability of rigid-
object simulators that can make such predictions. In this work,
the Bullet1 physics engine is utilized along with the Blender
3D renderer for this purpose. The scene is recreated in simu-
lation using each hypothesized joint model X . The objects are
placed in their initial positions by making sure that the observed
facets have the same positions in simulation and in the initial real
scene. All the forces exerted on the objects, including the robot’s
pokes and pushes as well as gravity, are simulated for time-steps
t ∈ {0, . . . , T}. The likelihood function is then defined as

P
({Oi,t}n

i=1
T
t=0 |X, {μt}T

t=0
)

= exp

(
−

T∑
t=0

n∑
i=1

α‖Oi,t − Ôi(X, {μk}t
k=0)‖2

)
, (2)

wherein Ôi(X, {μk}t
k=0) is the predicted depth image of object

i according to a given hypothesized joint model X and given

1http://bulletphysics.org
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Fig. 6. Simulating the red box from the scene in Figs. 1 and 2. The bottom of
the box is occluded by the drawer. The top of the box falls down due to gravity
in model (a) while it stands stable in (b) where the bottom part is hypothesized,
which increases the probability of hypothesis (b).

Fig. 7. Inferring the shape of the book from the scene in Figs. 1 and 2. The
book, in yellow here, is adjacent to a red box. The white stick is the robot’s
end-effector pushing the book. The book is partially occluded by the drawer.
Replaying the robot’s horizontal pushing action in simulation using the bottom
hypothesis predicts a rotation of the book that better matches with the real
observation, compared to the small top model where the book moves more
freely. Thus, the bottom hypothesis gets a higher probability.

exerted forces {μk}t
k=0 up to time t. This prediction is gener-

ated by rendering poses of all the objects. The L2 distance is the
difference between the observed depth image and the predicted
one. Note that the result depends on mechanical properties (fric-
tion and density), which are also unknown but can be searched
along with the geometric model. We found out from our exper-
iments that searching for friction and density is not necessary
for the type of manipulation actions considered in this work.
Thus, we use the same density and friction coefficient for all
the objects in the simulation and we show in Section V-F that
the results are not sensitive to variations in density and friction.
In fact, the forces applied by the robot on the objects are high
enough to push them ahead but low enough to keep them in
contact with the end effector.

Figs. 6 and 7 show intuitive examples of how the physical
likelihood helps inferring more accurate shapes.

F. Inference Through Monte-Carlo Tree Sampling

Solving the inference problem of Section IV-D is in-
tractable in practice due to its combinatorial nature. To com-
pute P (X|{Oi,t}n

i=1
T
t=0 , {μt}T

t=0), one needs to integrate the
physics likelihood function over all possible hypothesized hid-
den facets of all objects, which has a complexity of O(mn )
where m is the number of model hypotheses and n is the num-
ber of objects. Moreover, the integral of the marginal likelihood
does not have a closed-form solution because of the discontinu-
ities resulting from the collisions of the objects with each other.
We propose a Monte Carlo sampling method for approximat-
ing P (X|{Oi,t}n

i=1
T
t=0 , {μt}T

t=0). This technique is explained
in Algorithm 2.

Algorithm 2 starts by generating a maximum number of can-
didate 3D models for each object (Line 1), by following the
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Fig. 8. Scene reconstruction in a physics engine with Monte Carlo Tree
Search.

approach described in Algorithm 1. The algorithm then tries to
reconstruct, in a physics simulation, the initial scene before the
robot’s actions were executed (Lines 3–26). This reconstruc-
tion is performed by using a Monte Carlo Tree Search (MCTS)
approach. Each attempt consists in placing the objects in the
physics engine, one after another, according to the initial po-
sitions of their observed facets. At each stage, a new object is
placed on top or next to the other objects in simulation, until
the entire initial scene is reconstructed. Therefore, there is a
set of n − s + 1 objects left to choose from at a given stage
s, these objects are indicated by the binary array placed. The
order of placing the objects is important because objects that
are on top of others cannot be placed before them. Moreover,
each object i has many candidate models Xj

i that all match its
observed facets. At each stage, we sample one model that we
use for placing the selected object. We use an exploration prob-
ability (Exploration_Prob [i,j]) to sample a model Xj

i for object
i (Lines 24–26). Lines from 7 to 23 explain how the explo-
ration probabilities are computed to focus the sampling on good
models. The probability of using a model Xj

i is proportional
to the stability of the scene that results from placing object i

with model Xj
i , while keeping the models of the already placed

objects fixed, and using a minimum shape model for the other
remaining objects. The minimum shapes are made of only the
observed facets. Subsequently, the object that is easiest to place
(the one that can stand still on the support surface or on top
of the already placed objects) is selected at each stage. At the
end, the robot’s actions are simulated on the fully reconstructed
scene, and the probabilities of the sampled models are updated
according to the similarity of the physics simulation to the actual
observed motions of the facets in the real scene, using

Equation 2(Line 30). Note that we also cancel out the sam-
pling bias to ensure unbiased estimates by using Importance
Sampling. This process is repeated all over, with different sam-
pled models, until a timeout occurs.

V. EXPERIMENTS

We evaluated the proposed algorithm (IPR) in various scenes
of unknown objects using the robotic platform in Fig. 1.
The corresponding datasets are described in Section V-B.
We compared with recent alternative techniques, described in
Section V-C. The results are summarized in Section V-E.

A. Metrics

We report the average Intersection over Union (IoU) between
the ground-truth occupied space of each object and its predicted

Fig. 9. Examples of our results on physics-based shape inference from a
partial view; (top) input image of unknown objects; (middle and bottom) front
and back views of the highest-probability hallucinated models.

occupied space. We also report the IoU between the entire oc-
cupied space of each scene and the union of the predicted 3D
models of the objects within it, which is a weaker metric, but
needed for some datasets (Voxlets).

B. Datasets

Experiments are performed on two datasets: on a newly re-
leased Voxlets dataset [29], and a dataset that we created using
the YCB benchmark [6] objects. The Voxlets dataset contains
static scenes of tabletop objects. 250 scenes are used for train-
ing and 30 are used for testing. This dataset does not contain
ground-truth poses of individual objects, therefore we only eval-
uate the IoUs of entire scenes (union of objects). Our dataset
with YCB objects includes the scenes shown in Fig. 9 as well as
piles of objects inside a tight box that can be seen in the attached
video. This dataset is more challenging than the Voxlets dataset
because the piles are denser and contain more objects. Objects
in this dataset are severely occluded. We split the dataset into
two subsets, one with only static scenes and another with only
dynamic ones. Static scenes are 12 in total. Dynamic scenes, 13
in total, include at least one robotic pushing action per scene.
We manually annotated the ground-truth voxel occupancy by
fitting each object CAD model to the scenes.

C. Methods

Zheng et al. [34] uses geometric and physics reasoning for re-
covering solid 3D volumetric primitives based on the Manhattan
assumptions. This method, like ours, is completely unsupervised
and well-suited for our setup. Voxlets [29] is a learning-based
method that predicts local geometry around observed points by
employing a structured Random Forest classifier, which enables
predicting shapes without any semantic understanding. It needs
to be trained with a number of scenes, and it generalizes to new
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TABLE I
IOU ON THE Voxlets DATASET [29]

scenes. We trained Voxlets with three different datasets: a) the
original Voxlets dataset [29], b) a synthetically generated YCB-
object dataset of 10,000 scenes, each containing 20 objects, and
the objects in the scenes are different from the ones used in
testing, and c), a synthetically generated YCB-object dataset of
10,000 scenes that contains exactly the same objects and angle
of view that we used in the real testing scenes.

D. Variants of the Inverse Physics Reasoning (IPR)

We performed an ablation study where we compare several
variants of the IPR algorithm: 1) Collision Checker is IPR with
a uniform prior on the object models minus the physics simu-
lations, i.e., we only enforce the geometric constraints on the
generated shapes. 2) IPR+uniform uses a uniform prior on the
models of the objects, but simulates only gravity and collisions
and does not simulate the robot’s actions. 3) IPR+size is the
same as the previous one, but uses a more informed prior where
models with smaller volumes are given higher prior probabil-
ities compared to large-sized models. 4) IPR+action+uniform
is the same as IPR+uniform but also replays the robot’s actions
in simulation. 5) IPR+action+size is the same as IPR+size but
also includes the robot’s actions.

E. Results

Table I shows the results on the Voxlets dataset [29]. We fol-
lowed the same evaluation metric as in [29], where we calculate
the IoU between piles instead of individual objects because the
poses of objects in this dataset are missing. We did not compare
to the variants of IPR with robotic actions because the scenes in
Voxlets are all static. Both IPR+uniform and IPR+size achieved
a higher IoU and recall than the other methods. Improvement
over Collision Checker in particular shows that physics-based
reasoning can help infer better models. Precision of IPR is com-
parable to other methods, but Zheng et al. 2013 [34] has the
highest precision because it predicts volume only where it is
very certain, which makes the objects too small in general. The
Collision Checker has a performance that is very similar to
Zheng et al. 2013 [34] because it is based on the same Man-
hattan assumptions and objects in the Voxlets dataset [29] are
relatively away from each other.

Tables II and III show the results on our collected YCB
dataset. Both tables are split into two parts: the bottom part
is for the IoUs between each object and its predicted model, and
the top part is for the IoU between each entire scene the union of
all predicted models of objects in it. Table II is for static scenes,
while Table III is for dynamic scenes where we can compare
all variants of IPR. Results of per-object IoUs (bottom parts of
the tables) are more relevant to robotics because it is important
for motion planning and grasping to accurately infer shapes of
individual objects.

IPR shows superior IoU in both sub-datasets as well as
f-measure (F1 = 2 · precision·recall

precision+recall ). The physics simulation plays

TABLE II
AVERAGE IOU IN STATIC SCENES USING YCB OBJECTS

TABLE III
AVERAGE IOU IN DYNAMIC SCENES USING YCB OBJECTS

a major role in predicting the occluded volumes properly, as
demonstrated by the fact that IPR outperforms its variant Col-
lision Checker that reasons only about geometries without in-
cluding evidence from physics simulations of the scenes.

In Table III, we can clearly see that replaying the robot’s ac-
tions in simulation (IPR+action+uniform and IPR+action+size)
significantly improves the IoU of objects. Unlike with the static
scenes in Table II, the size prior does not help a lot when the
robot’s actions are already taken into account in computing the
likelihood of hypothesized models.

We measured the average computation time per object in
the dynamic scenes: Zheng et al. 2013 [34] took 0.34 seconds,
Voxlets [29] took 21.71 seconds, Collision Checker took 0.32
seconds, and the full IPR (IPR + action + prior) method took
21.75 seconds. IPR takes a comparable computation time as
Voxlets [29] while it achieves a significantly higher accuracy.
The computation time of IPR with exhaustive search (instead
of Monte Carlo) is 115.09 seconds. The hypothesis generation
step takes 7.75 seconds per object. Full IPR has only 13.04%
of the exhaustive search’s computational burden, if we exclude
the hypothesis generation preprocessing step which is common
to both methods.
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F. Physics Simulation With Unknown Mechanical Properties

The uncertainty regarding mechanical properties (friction and
volumetric mass density) of objects can cause different simula-
tion results even when the same object shape is used. To verify
the real impact of these properties on our results, we sampled
1,000 different values of mass densities and friction coefficients
in the ranges between the maximum and minimum of mass
density and friction values of the entire YCB objects dataset.
The friction ranges were obtained from [41]. We simulated the
motions of the sampled mechanical models of objects under
gravity and the robot’s pushing actions and we found that the
standard deviation of the objects’ positions is 0.658 cm, which
is negligible considering that we down-sampled the input point
clouds into 3D voxels of 0.5 cm and the noise in the point cloud
is within the same order. This result holds only when the range
of the mechanical properties of the objects is not too large. The
general problem of inferring simultaneously 3D and mechanical
models will be the subject of a future work.
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