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1 Overview

A nonparametric approach for policy learning for POMDPs is proposed. The approach represents
distributions over the states, observations, and actions as embeddings in feature spaces, which are
reproducing kernel Hilbert spaces. Distributions over states given the observations are obtained by
applying the kernel Bayes’ rule to these distribution embeddings. Policies and value functions are
defined on the feature space over states, which leads to a feature space expression for the Bellman
equation. Value iteration may then be used to estimate the optimal value function and associated
policy. Experimental results confirm that the correct policy is learned using the feature space repre-
sentation.

2 Background

2.1 Partially Observable Markov Decision Process (POMDP)

A POMDP is a tuple 〈S,A, T, R,O, Z〉, where S is the set of states, A is the set of actions, T is the
transition function with T (s, a, s′) = Pr(s′|s, a) for s′, s ∈ S and a ∈ A, R is the reward function
with R(s, a) for s ∈ S and a ∈ A, O is the set of observations, and Z is the observation function
with Z(s, o) = Pr(o|s) for o ∈ O and s ∈ S.

2.2 Reinforcement Learning in POMDP Environments

Belief Update Rule:
Belief b is a distribution over S . Given an initial belief b0 and a history of actions and observations
ht+1 = {a0, o1, ..., at, ot+1}, belief bt+1(t ≥ 0) is updated according to Bayes’ rule

bt+1(st+1) =
Z(st+1, ot+1)P (st+1|at; bt)

P (ot+1|at; bt)
, (1)

where P (st+1|at; bt) = ESt∼bt [T (St, at, st+1)] and P (ot+1|at; bt) = ESt+1∼P (·|bt,at) [Z(ot+1, St+1)].

In what follows, bt+1(st+1) = ba,o
′

when o′ is observed after executing action a in belief b.

Goal:
A goal is to find an optimal policy π∗ : b 7→ a that maximizes the expected sum of discounted rewards
with infinite horizon E[

∑∞
t=0 γ

tRt], where γ ∈ (0, 1) is a discount factor.

Bellman Optimality Equation:
The optimal policy π∗ and the value function V ∗(b) are the fixed point of the Bellman optimality
equation

V ∗(b) = max
a∈A

Q∗(b, a), π∗(b) = arg max
a∈A

Q∗(b, a), Q∗(b, a) = ES∼b [R(S, a)] + γEO′∼p(·|b,a)

[
V ∗(ba,O

′
)
]
,

Value Iteration Algorithm:
The optimal policy π∗ and the value function V ∗(b) are estimated by the value iteration algorithm
Vd = HVd−1(d ≥ 1), where H is the Bellman operator and Vd is the d-step value function. H is
isotonic and contractive.

Initial Value:
Initial value V0(b) is set with initial Q-value Q0(s, a) as V0(b) = max

a∈A
ES∼b(·) [Q0(S, a)]. Exam-

ples are reward Q0(s, a) = R(s, a) and QMDP approximation Q0(s, a) = QMDP (s, a) [?], where
QMDP (s, a) is the result of MDP value iteration, approximating the POMDP by an MDP.

2.3 Kernel Method for Probabilities

Mean Embedding:
The mean embedding of distribution P in HX is the mean features of P , i.e., the RKHS element
µX = EX∼P [kX (X, ·)]. 〈µX , f〉HX = EX∼P [f (X)] holds for all f ∈ HX . Empirical esti-
mate µ̂X has a form µ̂X = Υα, where Υ = (kX (·, X1), . . . , kX (·, Xn)) is a feature matrix and
α = (α1, . . . , αn)> ∈ Rn is a weight vector on samples (X1, . . . , Xn). EX∼P [f (X)] can then be
nonparametrically estimated by 〈µ̂X , f〉HX = α>f , where f = (f (X1), . . . , f (Xn))> is the sample
vector of f .

Conditional Embedding Operators & Kernel Bayes’ Rule (KBR):
Let HX and HY be RKHSs associated with kX and kY over (X ,BX ) and (Y ,BY), respectively. Let
(X, Y ) be a random variable taking values on X ×Y with distribution P and the density p(x, y). The
conditional density functions {p(Y |X = x)|x ∈ X} define a family of embeddings {µY |x} in HY .

A mapping from kX (x, ·) ∈ HX to µY |x ∈ HY for all x ∈ X can be characterized by conditional
embedding operator UY |X : HX → HY ,

µY |x = UY |XkX (x, ·) = CY XC
−1
XXkX (x, ·), (2)

where CY X and CXX are uncentred covariance operators with respect to P [?].
Since a posterior distribution is a conditional distribution, the embedding of a posterior can be ex-
pressed as a conditional embedding operator [?]. Let Π be a prior distribution with density π(x), and
(X̄, Ȳ ) be a new random variable with distribution Q and the density q(x, y) = p(y|x)π(x). The
embedding of a posterior q(X̄|Ȳ = y) given y is expressed by a conditional embedding operator UX̄|Ȳ

µX̄|y = UX̄|Ȳ kY(y, ·) = CX̄ȲC
−1
Ȳ Ȳ

kY(y, ·), (3)

where CX̄Ȳ and CȲ Ȳ are covariance operators with respect to Q.

3 Kernel POMDP (kPOMDP)

3.1 Kernel Bellman Equations (KBEs)

Let mean embeddings of relevant distributions b(S), P (S′|a; b), P (O′|a; b), ba,o
′
(S′) in the corre-

sponding RKHSs HS , HO be

µS = ES∼b(·)[ϕ(S)], µS ′|a;µS = ES ′∼p(·|a;b)[ϕ(S′)],

µO′|a;µS = EO′∼p(·|a;b)[φ(O′)], µ
a,o′

S ′ = ES ′∼ba,o′(·)[ϕ(S′)].

Let US ′|S,A and UO|S be conditional embedding operators for transition model T and observation

model Z, respectively, U (a,µS)

S̄|Ō be a posterior embedding operator with a prior embedding µS ′|a;µS,

corresponding to eq.(3). These embedding operators yield relations

µS ′|a;µS = US ′|S,AµS ⊗ kA (a, ·) , µO′|a;µS = UO|SµS ′|a;µS, µ
a,o′

S ′ = U (a,µS)

S̄|Ō kO(o′, ·). (4)

Let PS be the set of beliefs and IS be the set of embeddings of PS in HS .

Claim 1. Let R(·, a) ∈ HS and V ∗
(
µ
a,(·)
S ′

)
∈ HO for all a ∈ A and µS ∈ IS. The kernel

Bellman optimality equations on RKHS HS may be

V ∗(µS) = max
a∈A

Q∗(µS, a) , π∗(µS) = arg max
a∈A

Q∗ (µS, a) .

Q∗(µS, a) = 〈µS, R (·, a)〉HS+γ
〈
µO′|a;µS, V

∗
(
µ
a,(·)
S ′

)〉
HO

,

4 Empirical Expression

Training samples are a set of Dn = {(s̃i, õi), ãi, R̃i, (s̃′i, õ
′
i)}

n
i=1 according to a POMDP. We assume

that the true state samples {(s̃i, s̃′i)} are available for training, but not during the test phase.

Belief Embedding Update Rule:

Empirical estimates µ̂S, µ̂O′|a;µ̂S, µ̂
a,o′

S ′ take respective forms µ̂S = Υα, µ̂O′|a;µS = Φβ′a;α, µ̂
a,o′

S ′ =

Υα′a,o′. Update rule α 7→ β′a;α is a linear transformation β′a;α = LO|S,aα for all a ∈ A by n× n
matrix

LO|S,a = (GS+εSnIn)−1GSS ′
(
G(S,A)+ε(S,A)nIn

)−1
G(S,A)(S,a) (5)

with GSS ′ := Υ>Υ′, G(S,A)(S,a) := D (kA(a))GS, and kA(a) = Ψ>ψ(a). Update rule β′a;α 7→ α′a,o′

is a transformation α′a,o′ = RS|O(β̂
′
a;α)kO(o′) with a non-negative vector β̂

′
a;α and n× n matrix

RS|O(β̂
′
a;α) =

(
D(β̂

′
a;α)GO + εnIn

)−1
D(β̂

′
a;α). (6)

Claim 2.Given samples Dn, the empirical expression of the kernel Bellman optimality equation
(Claim 1) is

V̂ ∗ (α) = max
a∈A

Q̂∗ (α, a) , π̂∗ (α) = arg max
a∈A

Q̂∗ (α, a) , Q̂∗ (α, a) = α>Ra + γβ′>a;αV
∗
(
α′a,O0

)
,

where Ra = (R(s̃1, a), . . . , R(s̃n, a))> ∈ Rn is the reward vector on samples S0 for action a

and V̂∗
(
α′a,O0

)
=
(
V̂ ∗
(
α′a,õ1

)
, . . . , V̂ ∗

(
α′a,õn

))>
∈ Rn is the posterior belief value vector on

samples O0 given action a.

Kernel Value Iteration Algorithm:

V̂d = ĤnV̂d−1(d ≥ 1), where Ĥn is the kernel Bellman operator

(ĤnV ) (α) = max
a∈A

[
α>Ra + γβ′>a;αV

(
α′a,O0

)]
. (7)

Ĥn can be enforced to be isotonic and contractive by replacing above weight vectors with probability

vectors α̂, β̂
′
a;α, α̂

′
a,o′ as ŵi =

max{wi,0}∑n
i=1 max{wi,0}

for weights w, proposed in [?].

5 Experiments

5.1 Sets S, O, A are Finite
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10× 10 Gridworld (naive extension of 4× 4 Gridworld), Network, and Hallway1 benchmark problems
from left to right. Plots are averaged discounted sum of rewards earned in test experiments (vertical)
against the number of training samples n (horizontal). Training samples are collected by uniform
random actions. Parameters are within the title (γ, S, A, O, T, N) = (γ, |S|, |A|, |O|, T , N),
where T and N indicates that one episode consists of T steps and results are averaged over N trials.
kPOMDP are compared with hitogram methods, in which transition and observation matrices are
naively estimated by histograms.

5.2 Sets S, O are Euclidian spaces Rd
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An inverted pendulum problem, where hidden state s is angular and angular velocity (θ, θ̇), and
angular θ is only observed. All the points (colored by RGBY) in the three 3D plots indicate training
samples on hidden states S , and z axis indicates belief embedding weights α̂ on their samples (after
normalization). The true hidden state is marked by the black point in each 3D plot. Since θ̇ is
uncertain at the initial point, positive weights spread in the direction of θ̇ axis in the middle 3D figure.
The left and right 3D figures show that θ̇ is well estimated by the kPOMDPs dynamics for both of
executed actions a1 and a2.
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