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Abstract— This work proposes a self-supervised learning sys-
tem for segmenting rigid objects in RGB images. The proposed
pipeline is trained on unlabeled RGB-D videos of static objects,
which can be captured with a camera carried by a mobile
robot. A key feature of the self-supervised training process is
a graph matching algorithm that operates over the point cloud
over-segmentation output that is reconstructed from each video.
The graph matching, along with point cloud registration, is able
to find reoccurring object patterns across videos and combine
them into 3D object pseudo labels, even under occlusions or
different viewing angles. Projected 2D object masks from 3D
pseudo labels are used to train a pixel-wise feature extractor
through contrastive learning. During online inference, a clus-
tering method uses the learned features to cluster foreground
pixels into object segments. Experiments highlight the method’s
effectiveness on both real and synthetic video datasets, which
include cluttered scenes of tabletop objects. The proposed
method outperforms existing unsupervised methods for object
segmentation by a large margin.

I. INTRODUCTION

Household autonomous robots should be able to reason
about objects even when human supervision is not available.
This work considers a setup where a robot navigates in a
static environment and passively collects RGB-D videos.
The environment contains unknown, rigid objects, which rest
stably, potentially in cluttered configurations, on supporting
surfaces, such as tabletops. The same object instances can
reappear in various scenes with arbitrary 6D poses, while
being partially occluded by different surrounding objects.
This raises the following question: Can a robot learn to
correctly segment objects in RGB images given its prior
experience of collecting unlabeled videos that contain the
involved objects without any human supervision?

While some objects, such as a ”coke can” or a ”sugar
box”, can be relatively easily singled out from a scene due
to their characteristic texture or simple geometries, other
more complex and articulated objects pose a more serious
challenge in the absence of prior knowledge. Objects made
of multiple parts of different shapes and colors, such as a
”lamp” with a concave shape involving a gooseneck and a
base, are particularly challenging to be identified as unique
objects. For such objects, the robot cannot tell from a single
snapshot if the different parts are individual objects or part
of the same object. This paper argues that robots can address
this problem without prior knowledge or human supervision
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Fig. 1: Self-Supervised Learning Pipeline. Top: Step 1. The training
system over-segments the 3D scene reconstruction of each video. Step 2.
An initial feature detector φ1 is trained using contrastive learning, where
positive examples come from pixels belonging to the same 3D segment.
Step 3. Graph-matching operates over the 3D segments and their φ1 features
to identify sets of segments to be grouped as objects. Step 4. Contrastive
learning is used to train detector φ2, which uses as positive examples pixels
that belong to the same hypothesized objects. Bottom: Upon inference, given
an RGB image and a foreground mask, the network φ2 generates pixel-wise
features, which allow a clustering algorithm to segment objects.

by simply collecting videos of scenes, which can be ex-
tended to a lifelong learning process. The idea is to identify
object parts that appear simultaneously in the same spatial
arrangement in different scenes. The key contribution of this
work towards this idea is a graph-matching algorithm that
identifies reoccurring sets of neighboring 3D object parts.
The overall approach utilizes the results of the matching
algorithm to train a pixel-wise feature extractor through
contrastive learning, which can be directly consumed by a
clustering method for object segmentation.

The proposed pipeline is shown in Fig. 1. The learning
system receives as input a collection of unlabeled RGB-D
videos from multiple scenes, and returns a pixel-wise feature
extractor φ2 that can generate distinctive object features for
segmentation. The system first performs (over-)segmentation
of the 3D point cloud for each input video resulting in 3D
segments corresponding to simple geometries. This is done
by reconstructing each 3D scene by using KinectFusion [1],
removing the background using plane detection, and seg-
menting the scene using existing non-learning, geometry-
based methods [2], [3]. The 3D segments are projected to the
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2D frames, and a pixel-wise feature extractor φ1 is learned
to generate distinctive features for each 3D segment through
contrastive learning, similar to MaskContrast [4]. The 3D
segments are then abstracted as nodes of a graph, where
edges connect adjacent nodes, and nodes are represented by
their features according to φ1. Reoccurring graph patterns
are searched across different scenes by a feature-based, sub-
graph matching algorithm [5]. Graph matching is used here
as a mechanism to identify candidate pairs of object instances
with multiple parts. The corresponding point clouds of the
candidates are registered using RANSAC [6], and matched
nodes with low registration scores are pruned out. The
remaining matched nodes and the segments represented by
those nodes are considered as part of the same object. Then,
a second network φ2 is learned using contrastive learning
to generate pixel-wise features of object instances. During
inference, given an RGB image and a foreground mask, φ2

returns pixel-wise object features, which are then clustered
using a variant of the mean-shift algorithm [7], [8] to output
the object segmentation of the input RGB image.

The experimental results of Section VI show that the
proposed technique significantly outperforms multiple base-
lines both on real-world and photo-realistic synthetic video
datasets. Its performance is close to training with supervision.

II. RELATED WORK

Self-Supervised Learning. Many recent studies on self-
supervised learning [9], [10], [11], [12] focus on generating
a pre-trained model from a large dataset using pseudo labels
without human supervision. Given the pre-trained model,
downstream tasks (e.g., object segmentation) can be trained
with less annotated data. Many of the existing methods
require object region proposals that contain one or very few
salient objects. This object localization process is usually
performed by 2D region proposals [13] and saliency de-
tection [4] for static images, or object tracking [14], [15]
and optical flow [16], [17] for videos. Nevertheless, they
are not as suitable for cluttered static scenes where many
objects are occluded [18], as the errors introduced during
region proposal are often too large. Meanwhile, generating
a pretrained model is not ideal as it requires finetuning for
downstream tasks, such as segmentation. This issue is more
pronounced in instance-level segmentation. This work, on the
other hand, focuses on finding object pseudo labels that can
be directly used for training.

Object Segmentation without Manual Annotation.
Many unsupervised methods have been proposed for ob-
ject/scene segmentation. Notable non-learning methods are
Mean Shift [7] for image segmentation, and LCCP [2],
SymSeg [3], CPC [19] for point cloud segmentation. More
recently, some efforts have studied RGB-D segmentation
for unknown objects, including UOC [20], UOIS [21],
RICE [22], SD-MaskRCNN [23]. These methods typically
train a neural network on synthetic data of object mesh
models using domain randomization, where ground-truth
labels are automatically generated. These methods perform
well on objects similar to the training data, but often generate

sub-optimal results for objects out of the training distribution.
Fine-tuning the network on real data is nontrivial without
manual annotation.

Unsupervised Object Discovery An object detection
method uses part-based matching with bottom-up region pro-
posals [24]. An alternative formulates the problem as ranking
amenable to distributed methods available for eigenvalue
problems and link analysis [25]. Both methods aim for object
detection instead of pixel-wise segmentation.

III. PROBLEM SETUP AND NOTATION

This work addresses the problem of object segmentation
given an RGB-D image I of a novel scene, which contains
various, potentially cluttered objects. Each object is assumed
to have appeared before in a collection of m unlabeled raw
RGB-D videos V = {V1, V2, ..., Vm} that were passively
recorded by a mobile robot while observing static scenes.
There are K unique object instances O = {O1, O2, ..., OK}
that the robot can observe. Image frame at time t in the train-
ing i-th video Vi is denoted as Iti , i.e., Vi = (I1

i , I
2
i , ..., I

Ni
i ),

where Ni is the total number of frames in Vi. Each frame
Iti is composed of a color and a depth image, denoted as
Iti .color and Iti .depth respectively. Each frame I of a video,
as well as the test image, may contain only a subset of
the object set O, denoted as OI ⊆ O. Background objects,
such as furniture, are assumed to be known a priori, and
are automatically removed from the RGB-D images. No
additional information, such as the number of objects in each
scene, or labels that help with segmentation are available.

IV. OBJECT SEGMENTATION DURING TESTING

During online inference, a learned function φ2(x) : X →
Z is used to extract a normalized feature vector z for
each pixel x in the given test RGB image. A clustering
algorithm is applied over the foreground pixels based on their
extracted features. This foreground mask can be generated
with a saliency detection method, such as BasNet [26] and
DeepUSPS [27]. See the example of Fig. 2.

Fig. 2: Example of saliency detection [26] for generating the foreground
mask (right) given RGB input (left).

Since the number of objects in a given image is not known,
clustering methods, such as K-Means, which require this
input, are not applicable. Thus, this work adapts a variant of
the von Mises-Fisher mean-shift [8] for feature clustering.
This variant not only considers feature similarity of pixels
but also 2D proximity of pixels. Furthermore, a simple post-
processing step is applied so that pixels in a feature cluster
are separated if the corresponding pixels do not form a
connected component. Online inference is computationally
efficient (∼ 6fps). The detailed training process of φ2 is
described in the following section.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2112 submitted to 2023 IEEE International Conference 
on Robotics and Automation (ICRA). Received September 15, 2022.



V. SELF-SUPERVISED LEARNING PIPELINE

A. Video Pre-processing

Given a set of unlabeled RGB-D videos of static objects,
KinectFusion [1] is used to reconstruct a 3D scene for
each video. Background removal is performed after down-
sampling the 3D reconstructed point cloud with a voxel
size of 5mm. The foreground masks during training are
generated by removing the known background objects on the
3D reconstructed scenes, and projecting the remaining object
point cloud to individual 2D frames. It is important to employ
3D reconstruction, instead of individual depth images from
the same scene, for multiple reasons: a) It allows to generate
pseudo labels on the reconstructed point cloud once and then
acquire consistent labels for segments on all of the frames of
each video via 3D to 2D projection, b) It increases visibility
of each object given multiple views, which reduces issues
due to occlusions that can arise for individual viewpoints, c)
It avoids having to find correspondences between segments
across frames, which can be error-prone, d) Performing
segmentation on each frame is more time-consuming.

B. Object Over-Segmentation

Each reconstructed 3D scene is over-segmented into a
set of small segments corresponding to simple geometries.
Ideally, this over-segmentation should be consistent across
different scenes, where consistency means that the same
object surface is segmented in the same way across different
scenes. This work first adopts LCCP [2] for this purpose.
LCCP is a non-learning segmentation method based on the
local convexity of point clouds. It is able to segment convex
objects, such as a box, in to a whole, and segment complex
objects into small, approximately convex parts. During the
development of this work, it is found that LCCP can fail
on certain objects with a large concave surface, such as a
bowl. To alleviate this issue, SymSeg [3] is introduced to
assist with improving segmentation accuracy for symmetric
concave objects. SymSeg first detects symmetries in point
cloud and then uses them for segmentation. If no symmetry is
detected, SymSeg is not applied. In this work, only rotational
symmetries are used, since reflection symmetries often lead
to under-segmentation in clutter. A simple strategy to fuse
the results of LCCP and SymSeg is illustrated in Fig. 3. A
3D segment generated by LCCP is first split into multiple
parts if an overlapping symmetric segment is detected by
SymSeg. LCCP segments are then merged if they appear in
the same symmetric segment of SymSeg, with an exception
when the split boundary lies in a 2D plane that is orthogonal
to the rotational symmetric axis (e.g. a bottle standing in a
bowl). Small segments with less than 200 points are pruned.
Note that this work does not argue that this combination
is the best for over-segmentation, but they work sufficiently
well as a sub-module in the pipeline. Any recent progress in
class-agnostic over-segmentation may benefit this work.

C. Contrastive Learning over 3D Segments

The next step is to train a feature extractor φ1 using
contrastive learning. This allows learning a distinctive feature

h

Fig. 3: Splitting and Merging Segmentation Results of LCCP and
SymSeg. (a) Reconstructed point cloud of a “Jell-O” box in a bowl.
(b) Irregular segments generated by LCCP due to notable concavity. (c)
Detected rotational axis and segments generated by SymSeg. (d) Splitting
segments. (e) Merging segments.

for each 3D segment, which can be used later during graph
matching for evaluating the similarity of 3D segments. This
contrastive learning is based on the assumption that points
in the same segment belong to the same object. Each 3D
segment is projected to all video frames using estimated
camera poses during reconstruction. If a pair of pixels (i, j)
belongs to the same 3D segment, their pixel embeddings
(zi, zj) are pulled closer in the feature space. If (i, j) belong
to different 3D segments, their features are pushed away. In
practice, P � N , where P is the number of foreground
pixels per image, and N is the number of segments per
scene. The number of pixel pairs is O(P 2), which results in
a computationally expensive sampling process. To alleviate
this issue, we adopt the strategy from MaskContrast [4] to
reduce the computational complexity from O(P 2) to O(PN)
as follows. Let Mi be the set of pixels from segment i. Define
the mean pixel embedding of Mi as z̄i = 1

|Mi|
∑|Mi|
k=1 z

k
i . The

mean feature z̄i is used to represent the features of all pixels
in Mi. Given positive pairs (zk, z̄i), for k ∈Mi, and negative
pairs (zk, z̄j), for k 6∈Mj , the contrastive loss for each fore-
ground pixel k is defined as: Lk = −log exp(zk·z̄i)/τ∑N

j=1 exp(zk·z̄j/τ)
,

where τ is a temperature hyperparameter that has a constant
value of 0.07 in all our experiments (as in MoCo [10]). The
mean feature z̄i obtained from contrastive learning is used
to represent the 3D segment i.

D. Graph Matching

For each scene, a graph is generated by assigning each
3D segment to a node and defining an edge between every
two segments that share a boundary in the 3D space. Re-
occurring subgraphs across multiple graphs (i.e., scenes) are
hypothesized objects, since it is unlikely for two separate
objects to always appear in the same poses relative to
each other in all of the scenes encountered by the robot.
To find these reoccurring subgraphs, this work adapts an
algorithm based on error-tolerant, minimum-cost subgraph
matching [5]. Given a source graph G1 = (V1, E1) and
a target graph G2 = (V2, E2), the algorithm identifies a
subgraph S ⊆ G2, that minimizes the cost of matching S to a
subgraph in G1 given both structural and feature distortions.
This optimization problem is formulated into a binary linear
program (BLP) with the following objective function:

J = min
x,y,α,β

( ∑
i∈V1

∑
k∈V2

xi,k · c(i→ k)) +
∑
i∈V1

αi · c(i→ ε)+

∑
ij∈E1

∑
kl∈E2

yij,kl · c(ij → kl) +
∑
ij∈E1

βij · c(ij → ε)
)
(1)
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Fig. 4: Graph Matching. (a) Colored 3D reconstruction of two scenes. (b) 3D segments, and corresponding graphs, resulting from over-segmentation
of the point clouds. (c) Matched nodes from graph matching are highlighted. Parts of the “dumbbell” and the “lamp” are correctly matched, while the
“bleach cleanser” and the “master chef can” are incorrectly matched. (d) Matched connected components are shown in the same color. (e) 3D point cloud
registration of matched components. (f) Segments/nodes that do not register well (such as the “bleach cleanser” and the “master chef can”) are rejected
before merging the remaining segments into objects.

where xi,k, yij,kl, αi and βij are binary variables to optimize:
xi,k expresses the mapping of node i from source graph
G1 to node k from target graph G2; yij,kl expresses the
mapping of edge (i, j) from source graph G1 to edge (k, l)
from target graph G2; deletion variables αi and βij are set
to be 1, if node i and edge (i, j) are deleted, respectively,
according to the match. This can happen when the 3D
segment corresponding to node i in the source scene does
not appear anywhere in the target scene. The cost of node
mapping c(i→ k) is defined as the cosine distance between
the corresponding segment features z̄i and z̄k. The cost of
edge mapping c(ij → kl) is set to 1. The cost c(i → ε)
(or c(ij → ε)) expresses the cost of not assigning a vertex
(or edge) of the source graph to a vertex (or edge) in the
target graph. Both costs are set to 0.1, which can be viewed
as thresholds for rejection.

∑
k∈V2

xi,k ≤ 1, ∀i ∈ V1;
∑
i∈V1

xi,k ≤ 1, ∀k ∈ V2 (2a)

αi = 1−
∑
k∈V2

xi,k, ∀i ∈ V1; βij = 1−
∑
kl∈V2

yij,kl,∀ij ∈ E1 (2b)

∑
l∈V2 s.t. kl∈E2

yij,kl ≤ xi,k,∀ij ∈ E1, ∀k ∈ V2;∑
k∈V2 s.t. kl∈E2

yij,kl ≤ xj,l, ∀ij ∈ E1, ∀l ∈ V2
(2c)

xi,k ∈ {0, 1}, ∀i ∈ V1, ∀k ∈ V2;
yij,kl ∈ {0, 1}, ∀ij ∈ E1, ∀kl ∈ E2

(2d)

The objective function is subject to constraints 2a-2d. Con-
straints 2a indicate that each node from either graph can be
mapped to at most one node from the other graph. Constraint
2b indicates that if a node in G1 is not matched to any vertex
in G2, then it must be deleted. Constraints 2c indicate that
an edge should be mapped only if the corresponding vertices
are also mapped. The constraints 2d ensure that the variables
to be optimized are binary variables. Note that constraints 2b
are implicitly respected given constraints 2a and 2c. Thus, the
deletion variables αi and βij in equation 1 can be removed to
reduce the search space resulting in the following objective
function:

J = min
x,y

( ∑
i∈V1

∑
k∈V2

xi,k
(
c(i→ k))− c(i→ ε)

)
+
∑
ij∈E1

∑
kl∈E2

yij,kl
(
c(ij → kl)− c(ij → ε)

)
+
∑
i∈V1

c(i→ ε) +
∑
ij∈E1

c(ij → ε)
) (3)

Furthermore, since the 3D segment graphs are undirected,
i.e., (ij ∈ E) ⇔ (ji ∈ E),∀i, j ∈ V × V , constraints 2c can
be further combined into a single one, i.e.∑

l∈V2 s.t. kl∈E2

yij,kl ≤ xi,k + xj,k, ∀ij ∈ E1,∀k ∈ V2 (4)

The final formulation is to minimize the objective function
according to Eq. 3 given the constraints of Eqs. 2a, 4 and 2d.
Each weakly connected component in every 3D scene graph
is matched against all the weakly connected components in
all other scenes. Note that source and target graphs are not
commutative, i.e., J(G1, G2) 6= J(G2, G1).

E. False Matches Pruning

This optimization returns matched node pairs with mini-
mum cost, which are used to find matched subgraphs. Three
criteria are used to prune falsely matched subgraphs.
1. A threshold T1 is set so that only pairs of subgraphs with
a total matching cost J below this threshold are considered
valid matches. The implementation sets T1 to be proportional
to N = |V1|+ |E1|, i.e., T1 = αN , because the total cost is a
sum over both node and edge costs. A large graph is likely
to generate a higher cost than a small one. The empirical
ratio α is set to be 0.1.
2. The matching pairs of subgraphs that satisfy criteria 1 are
filtered by RANSAC-based point cloud registration [6]. An
empirical threshold T2 = 0.9 is set for both precision and
recall of the registered point cloud of each pair of matched
nodes. If a pair of nodes does not meet this threshold, the
nodes will not be merged with other nodes in their respective
subgraphs, as shown in Fig. 4.
3. If an object is found to be isolated in a scene, which is
performed automatically, then other segments should not be
merged with this object. To achieve this, if a source graph
G1 = (V1, E1) is matched with a subgraph S of the target
graph G2, such that S = (V ′, E ′), |V1| = |V ′|, then any
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matched subgraph Ŝ = (V̂, Ê) ⊆ G2 that contains all the
nodes of S as a proper subset, i.e., V ′ ⊂ V̂ , will be filtered.

Once pruning is completed, the remaining nodes in the
matched graphs are merged. The merged segments are con-
sidered objects, and projected back to each frame of the video
as object masks for training. The training process for the
network φ2 is the same as in Sec. V-C.

VI. EXPERIMENTAL RESULTS
A. Dataset

Two video datasets, shown in Fig. 5, are used for ex-
periments and evaluation. The first one is a physics-aware
photo-realistic video dataset generated by BlenderProc [28].
All the 17 toys from the HomeBrewedDB dataset [29] are
selected to create random scenes in simulation. For each
scene, 12 unique toys are randomly selected and dropped
on a surface. A virtual camera captures a video of each
scene by rotating around it with a fluctuating height. In total,
36 videos are collected with 800 frames each. The second
dataset is collected in real environments with 20 unique
objects. 13 objects among them, such as the “power drill”,
are from the YCB dataset [30]. Since some of the YCB
objects have simple geometries, seven additional objects are
included: “lamp”, “dumbbell”, “toy dinosaur”, “toy duck”,
“Clorox bottle”, “detergent”, and “toy Charmander”. Each
of these non-convex objects contains several sub-parts of
varying shapes. The real dataset contains 30 videos with
10 unique objects and ∼1000 frames each. The ground-
truth segmentation for the real dataset is manually annotated.
Background removal in these scenes where objects are rest-
ing stably on a tabletop is performed using RANSAC [6] for
plane detection and removal of the support surface.

Fig. 5: Datasets. (a) A physics-aware photo-realistic synthetic video dataset
generated by BlenderProc [28]. (b) A manually collected real dataset with
30 videos and 20 unique objects.

B. Evaluation Metrics

Standard metrics for object segmentation are used, i.e.,
average precision, recall and Intersection over Union (IoU).
The association of predicted and ground-truth segments is
performed by using the Hungarian algorithm [31] where the
cost of association is based on the IoU of two segments.
Ground-truth foreground masks are provided for all methods,
and only segmentation of foreground pixels are evaluated.
The segmentation results are tested on every 10 frames
selected from the testing videos, as neighboring frames in
the 30 FPS videos are very similar. The testing frames are
selected from videos that are different from the training ones.
C. Baseline Methods

A set of baseline methods are considered for compari-
son. A. DeepLabV3+ [32] is a widely-used segmentation
model for RGB images. This baseline is trained with su-
pervision given ground-truth labels, which is considered as
an upperbound. Note that the proposed method also uses

DeepLabV3+ as a backbone network for pixel-wise feature
extraction. B & C. UOIS [21] is an RGB-D segmentation
method designed for unseen tabletop objects. RICE [22] is
a follow-up work over UOIS, which refines segmentation
results. For these methods, instead of training from scratch
given unlabeled videos, they are trained on a large amount of
synthetic data with ground-truth labels. They cannot finetune
on new datasets without annotations, and weights provided
by the authors are directly used for testing. D. LCCP [2]
performs segmentation on the object point cloud converted
from each depth image and back-project to 2D segmentation.
E. SD-MaskRCNN [23] is a method for unknown object
segmentation similar to UOIS. It is also trained with large
simulated data with ground truth but only takes depth images
as input. F. PiCIE [33] is a state-of-the-art unsupervised
semantic segmentation method. G. DeepCluster [34] was
originally designed for image classification but modified by
the author of PiCIE for image segmentation as a baseline.
These two methods are trained with foreground RGB images
and the background pixels are set to zero. The proposed
method, E, and F are trained from scratch, and tested using
3-fold cross-validation on the unlabeled videos.

Real Dataset Synthetic Dataset
Method Prec. Recall IoU Prec. Recall IoU
A. [2] 0.946 0.920 0.883 0.977 0.932 0.915
B. [21] 0.816 0.727 0.671 0.953 0.867 0.838

C. [21]+[22] 0.869 0.750 0.709 0.961 0.844 0.828
D. [2] 0.893 0.754 0.715 0.992 0.806 0.800
E. [23] 0.782 0.773 0.662 0.812 0.751 0.663
F. [33] 0.549 0.525 0.367 0.556 0.614 0.412
G. [34] 0.444 0.477 0.299 0.502 0.526 0.337

Ours 0.925 0.911 0.870 0.938 0.925 0.880
TABLE I: Segmentation results for different methods. Method A is a
supervised solution provided as an upper bound of efficiency. Best results
among unsupervised methods in bold.

D. Quantitative Results

Quantitative results of the proposed and baseline methods
are shown in Table I. The proposed method works well
on both the real and synthetic dataset. It outperforms all
the baseline methods except A, which was trained with
supervision using ground truth labels. Although it may be
unfair to compare with methods like B, C and E given that
they are designed for unknown object segmentation and are
only trained in simulation, it does show that those methods
may not work well on arbitrary scenes, especially when the
testing objects are out of the training distribution. This work
argues that unsupervised learning is useful and necessary
on previously seen objects when deploying a robot in real
environments. It is a little surprising that the clustering based
unsupervised segmentation methods F, G performed poorly
on this task.

E. Intermediate Point Cloud Segmentation Results

To assess the advantage of using graph matching for object
pseudo-label generation, intermediate point cloud segmenta-
tion results are provided. The proposed method is compared
against LCCP [2] and SymSeg [3] on the reconstructed
object point cloud of each video. Intermediate quantitative
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Fig. 6: Intermediate Qualitative Results of Point Cloud Segmentation.
(a) Reconstructed object point clouds in their original color. (b) Segmen-
tation results from LCCP + SymSeg. (c) Object pseudo labels after graph
matching and pruning given over-segmentation results as inputs. A failure
case of over-segmentation is shown in the last row, where part of the
”pitcher” and ”cup” are not separated and the ”cup” is segmented into
inconsistent pieces. This cannot be addressed during graph matching.

and qualitative point cloud segmentation results are provided
in Table II and Fig. 6 respectively. The benefits of combining
LCCP with SymSeg are not entirely shown in numbers, as
SymSeg sometimes also introduces errors, such as over-
segmenting a round cup and its handle. Nevertheless, it
makes the 3D segments more consistent for certain cases
like in Fig. 3. The incorrectly over-segmented objects, how-
ever, can be recovered by the graph matching algorithm.
The improvement brought by graph matching is even more
pronounced over the more challenging, irregular and non-
convex geometries present in the synthetic dataset.

Real Dataset Synthetic Dataset
Prec. Recall IoU Prec. Recall IoU

[2] 0.969 0.858 0.831 0.984 0.771 0.761
[2] & [3] 0.967 0.861 0.833 0.987 0.768 0.758

Ours 0.957 0.964 0.923 0.978 0.966 0.950

TABLE II: Point Cloud Segmentation Results. ”Ours” here corresponds to
the object segmentation results achieved after graph matching given the
input of over-segmentation from [2] & [3]. Best results in bold.

F. Ablation Study

The results of an ablation study are shown in Ta-
ble III. All the alternatives use the same feature extractor
(DeepLabV3+ [32]) and clustering method (MeanShift [7]).
The ablations use different object pseudo-labels for training,
and are tested given ground truth foreground masks similar
to Table I. V1. The first one is pretrained on the COCO
dataset [35]. Its final prediction layer is removed and 256-
dim pixel features are used for clustering. It has the lowest

performance. V2. The second one is trained using the output
of LCCP [2] without graph matching. Its performance is
similar to that of LCCP-based 3D segmentation as expected.
V3. The third one is trained using pseudo-labels with graph
matching, but without pruning. The performance is better
than not using graph matching but not as good as the
proposed approach since nodes can be incorrectly merged
resulting in erroneous object pseudo-labels. V4. The last
alternative tries to exhaustively register point clouds of con-
nected components without using the candidates from graph
matching. If the precision, recall and feature cosine similarity
of two registered nodes are greater than 0.9, then these two
nodes are considered as a match. This takes significantly
more time to find object patterns (∼1.5hr compared to
∼10mins of the proposed method for 36 scenes). And since
point cloud registration are more likely to fail due to clutter
of objects, it underperforms the proposed method.

Real Dataset Synthetic Dataset
Ablation Prec. Recall IoU Prec. Recall IoU

V1. 0.716 0.665 0.547 0.806 0.775 0.665
V2. 0.915 0.815 0.776 0.935 0.746 0.711
V3. 0.904 0.832 0.790 0.934 0.800 0.762
V4. 0.915 0.883 0.842 0.931 0.823 0.782
Ours 0.925 0.911 0.870 0.938 0.925 0.880

TABLE III: Ablation results. Best results in bold.

G. Running Time

Binary linear programming (BLP) is an NP-hard problem,
but in practice solutions can be acquired very fast given
advanced solvers, such as Gurobi [36], which is used in the
companion implementation. The processes of graph matching
(Sec.V-D) and pruning (Sec.V-E) on 36 videos can be
performed within 10mins on a AMD Ryzen 5900 CPU.

VII. LIMITATIONS AND CONCLUSION

This work proposes a self-supervised learning pipeline
given unlabeled RGB-D videos captured with a moving
camera observing static scenes, which is a common scenario
for household mobile robots. A graph-matching algorithm is
adapted to find object patterns across videos and generate
object pseudo-labels for learning. One limitation of the
proposed approach is that it relies on the initial object over-
segmentation to be consistent across different scenes. This
may not always be achieved due to noise despite using the
the synergy of LCCP and SymSeg. This can, however, be ad-
dressed with more data that cover multiple over-segmentation
patterns, or future improvements on the matching algorithm
to consider node split and merge operations. Another limita-
tion is that the proposed method cannot handle deformable
objects in general, since it requires matched objects to be
identical in both texture and geometry. An aspect that the
current effort has not explored is the sensitivity of this
approach to vastly different lighting conditions, which may
be of concern given that the learned object features are RGB-
based. The video data were collected in the same environ-
ment under slightly differing lighting conditions. A potential
avenue for addressing this issue is data augmentation (e.g.,
randomizing brightness, color jittering, etc.) during training.
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