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Objectives
•Robust robotic manipulation of novel objects
through the use of stochastic friction and
mass models of objects

•Building upon prior models instead of
starting from scratch with each new object

•Correcting the prior models on the fly
•Efficient use of physics engines for
black-box model identification and correction

•Lifelong online learning

Examples
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Figure 1: To grasp the pair of pliers from the tabletop, the robot
needs to push the object to the table’s edge and grab it easily
from there. To avoid dropping the pliers, a good model of the
mass and friction properties of the clippers need to be learned
on the fly. The learned model is used in a physics engine to
simulate the motion of the clippers.

Figure 2: Planar Pushing Dataset [1] (MCUBE lab, MIT). The
data consist of recorded poses of a planar object being pushed
by a robot. The goal is to identify the unknown friction factors
and mass of the object in order to predict its motion.

Notations

• θ is a d-dimensional vector corresponding to the
unknown mass and static and kinetic friction
coefficients of each subpart of a given object..

•Pt is a probability distribution of θ a time-step t.
•xt is the observed 6D pose (position and
orientation) of the manipulated object at time t.

•µt is a vector describing a force applied by the
robot’s fingertip on the object at time t.

•Applying a force µt results in changing the
object’s pose from xt to xt+1.

• f is the transition function of a physics engine,
such that f (xt, µt, θ) = x̂t+1.

Problem

•Given P0, a prior of model θ before starting to
interact with the object, and a sequence of
actions and observed poses
(x0, µ0, x1, µ1, . . . , xt−1, µt−1, xt),

•Calculate Pt, the probability distribution of θ.

Method

•Empirical error on observed data:

E(θ) def=
∑
t
‖xt+1 − f (xt, µt, θ)‖2

•Best model that explains observed data:
θ∗ = arg min

θ
E(θ)

•We do not know the analytical form of error
function E because E(θ) is obtained from
simulation with a physics engine.

•Use black-box Bayesian optimization [2, 3] to find
Pt, the probability distribution of θ∗.

•Following the entropy search technique [4] ,
Pt(θ) def= P

(
θ = arg min

θi∈Θ
E(θi)

)
=

∫
E:Rd→R

p(E)Πθi∈Θ−{θ}H
(
E(θi)− E(θ)

)
dE,

where H is the Heaviside step, i.e.
H
(
E(θi)− E(θ)

)
= 1 if E(θi) ≥ E(θ) and

H
(
E(θi)− E(θ)

)
= 0 else, and p(E) is the

probability of error function E.
• p(E) is a Gaussian Process, and Pt(θ) is
evaluated by Monte Carlo samples from p(E).

• p(E) is computed by evaluating E from several
simulations with different hypothesized models θ
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Figure 3: Overview of the proposed approach for learning object models with a physics engine

Greedy Entropy Search
•Physics engine calls, needed to compute the
error distribution p(E), are computationally
expensive.

•To minimize the number of calls to the physics
engine, we choose the model θ that has the
highest contribution to the current entropy of
Pt, i.e. the one with the highest

−Pt(θ) log
(
Pt(θ)

)
,

as the next model to evaluate in simulation.

Preliminary Results
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Figure 4: Error in predicting poses of pushed planar objects as
a function of simulation time. Bayesian optimization refers to
the greedy entropy search approach.
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Figure 5: Pose prediction error as a function of the number of
training samples with three different objects.
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