
Bootstrapping Apprenticeship Learning

Abdeslam Boularias
Department of Empirical Inference

Max-Planck Institute for Biological Cybernetics
72076 Tübingen, Germany

abdeslam.boularias@tuebingen.mpg.de

Brahim Chaib-Draa
Department of Computer Science

Laval University
Quebec G1V 0A6, Canada

chaib@damas.ift.ulaval.ca

Abstract

We consider the problem of apprenticeship learning where the examples, demon-
strated by an expert, cover only a small part of a large state space. Inverse Rein-
forcement Learning (IRL) provides an efficient tool for generalizing the demon-
stration, based on the assumption that the expert is maximizing a utility function
that is a linear combination of state-action features. Most IRL algorithms use a
simple Monte Carlo estimation to approximate the expected feature counts under
the expert’s policy. In this paper, we show that the quality of the learned policies
is highly sensitive to the error in estimating the feature counts. To reduce this
error, we introduce a novel approach for bootstrapping the demonstration by as-
suming that: (i), the expert is (near-)optimal, and (ii), the dynamics of the system
is known. Empirical results on gridworlds and car racing problems show that our
approach is able to learn good policies from a small number of demonstrations.

1 Introduction

Modern robots are designed to perform complicated planning and control tasks, such as manipulat-
ing objects, navigating in outdoor environments, and driving in urban settings. Unfortunately, man-
ually programming these tasks is almost infeasible in practice due to their high number of states.
Markov Decision Processes (MDPs) provide an efficient tool for handling such tasks with a little
help from an expert. The expert’s help consists in simply specifying a reward function. However, in
many practical problems, even specifying a reward function is not easy. In fact, it is often easier to
demonstrate examples of a desired behavior than to define a reward function (Ng & Russell, 2000).

Learning policies from demonstration, a.k.a. apprenticeship learning, is a technique that has been
widely used in robotics. An efficient approach to apprenticeship learning, known as Inverse Re-
inforcement Learning (IRL) (Ng & Russell, 2000; Abbeel & Ng, 2004), consists in recovering a
reward function under which the policy demonstrated by an expert is near-optimal, rather than di-
rectly mimicking the expert’s actions. The learned reward is then used for finding an optimal policy.
Consequently, the expert’s actions can be predicted in states that have not been encountered during
the demonstration. Unfortunately, as already pointed by Abbeel & Ng (2004), recovering a reward
function is an ill-posed problem. In fact, the expert’s policy can be optimal under an infinite number
of reward functions. Most of the work on apprenticeship learning via IRL focused on solving this
particular problem by using different types of regularization and loss cost functions (Ratliff et al.,
2006; Ramachandran & Amir, 2007; Syed & Schapire, 2008; Syed et al., 2008).

In this paper, we focus on another important problem occurring in IRL. IRL-based algorithms rely on
the assumption that the reward function is a linear combination of state-action features. Therefore,
the value function of any policy is a linear combination of the expected discounted frequency (count)
of encountering each state-action feature. In particular, the value function of the expert’s policy is
approximated by a linear combination of the empirical averages of the features, estimated from
the demonstration (the trajectories). In practice, this method works efficiently only if the number

1

of examples is sufficiently large to cover all the states, or the dynamics of the system is nearly
deterministic. For the tasks related to systems with a stochastic dynamics and a limited number of
available examples, we propose an alternative method for approximating the expected frequencies
of the features under the expert’s policy. Our approach takes advantage of the fact that the expert’s
partially demonstrated policy is near-optimal, and generalizes the expert’s policy beyond the states
that appeared in the demonstration. We show that this technique can be efficiently used to improve
the performance of two known IRL algorithms, namely Maximum Margin Planning (MMP) (Ratliff
et al., 2006), and Linear Programming Apprenticeship Learning (LPAL) (Syed et al., 2008).

2 Preliminaries

Formally, a finite-state Markov Decision Process (MDP) is a tuple (S,A, {T a}, R, α, γ), where: S
is a set of states, A is a set of actions, T a is a transition matrix defined as ∀s, s′ ∈ S, a ∈ A :
T a(s, s′) = Pr(st+1 = s′|st = s, at = a), R is a reward function (R(s, a) is the reward associ-
ated with the execution of action a in state s), α is the initial state distribution, and γ is a discount
factor. We denote by MDP\R a Markov Decision Process without a reward function, i.e. a tuple
(S,A, {T a}, α, γ). We assume that the reward function R is given by a linear combination of k
feature vectors fi with weights wi: ∀s ∈ S,∀a ∈ A : R(s, a) =

∑k
i=0 wifi(s, a). A deterministic

policy π is a function that returns an action π(s) for each state s. A stochastic policy π is a probabil-
ity distribution on the action to be executed in each state, defined as π(s, a) = Pr(at = a|st = s).
The value V (π) of a policy π is the expected sum of rewards that will be received if policy π will
be followed, i.e. V (π) = E[

∑∞
t=0 γ

tR(st, at)|α, π, T]. An optimal policy π is one satisfying
π = arg maxπ V (π). The occupancy µπ of a policy π is the discounted state-action visit distri-
bution, defined as: µπ(s, a) = E[

∑∞
t=0 γ

tδst,sδat,a|α, π, T] where δ is the Kronecker delta. We
also use µπ(s) to denote

∑
a µπ(s, a). The following linear constraints, known as Bellman-flow

constraints, are necessary and sufficient for defining an occupancy measure of a policy:

{
(
µπ(s) = α(s) + γ

∑
s′∈S

∑
a∈A

µπ(s′, a)T a(s′, s)
)
,
(∑
a∈A

µπ(s, a) = µπ(s)
)
,
(
µπ(s, a) > 0

)
} (1)

A policy π is well-defined by its occupancy measure µπ , one can interchangeably use π and µπ
to denote a policy. The set of feasible occupancy measures is denoted by G. The frequency of a
feature fi for a policy π is given by vi,π = F (i, .)µπ , where F is a k by |S||A| feature matrix, such
that F (i, (s, a)) = fi(s, a). Using this definition, the value of a policy π can be written as a linear
function of the frequencies: V (π) = wTFµπ = wT vπ , where vπ is the vector of vi,π . Therefore,
the value of a policy is completely determined by the frequencies (or counts) of the features fi.

3 Apprenticeship Learning

3.1 Overview

The aim of apprenticeship learning is to find a policy π that is at least as good as a policy πE

demonstrated by an expert, i.e. V (π) > V (πE). The value functions of π and πE cannot be
directly compared, unless a reward function is provided. To solve this problem, Ng & Russell
(2000) proposed to first learn a reward function, assuming that the expert is optimal, and then use it
to recover the expert’s complete policy. However, the problem of learning a reward function given an
optimal policy is ill-posed (Abbeel & Ng, 2004). In fact, a large class of reward functions, including
all constant functions for instance, may lead to the same optimal policy. To overcome this problem,
Abbeel & Ng (2004) did not consider recovering a reward function, instead, their algorithm returns
a policy π with a bounded loss in the value function, i.e. ‖ V (π) − V (πE) ‖6 ε, where the value
is calculated by using the worst-case reward function. This property is derived from the fact that
when the frequencies of the features under two policies match, the cumulative rewards of the two
policies match as well, assuming that the reward is a linear function of these features. In the next two
subsections, we briefly describe two algorithms for apprenticeship learning via IRL. The first one,
known as Maximum Margin Planning (MMP) (Ratliff et al., 2006), is a robust algorithm based on
learning a reward function under which the expert’s demonstrated actions are optimal. The second
one, known as Linear Programming Apprenticeship Learning (LPAL) Syed et al. (2008), is a fast
algorithm that directly returns a policy with a bounded loss in the value.

2

3.2 Maximum Margin Planning

Maximum Margin Planning (MMP) returns a vector of reward weights w, such that the value of the
expert’s policy wTFµπE is higher than the value of an alternative policy wTFµπ by a margin that
scales with the number of expert’s actions that are different from the actions of the alternative policy.
This criterion is explicitly specified in the cost function minimized by the algorithm:

cq(w) =
(

max
µ∈G

(wTF + l)µ− wTFµπE
)q

+
λ

2
‖ w‖2 (2)

where q ∈ {1, 2} defines the slack penalization, λ is a regularization parameter, and l is a deviation
cost vector, that can be defined as: l(s, a) = 1−πE(s, a). A policy maximizing the cost-augmented
reward vector (wTF + l) is almost completely different from πE , since an additional reward l(s, a)
is given for the actions that are different from those of the expert. This algorithm minimizes the
difference between the value divergence wTFµπE − wTFµ and the policy divergence lµ.

The cost function cq is convex, but nondifferentiable. Ratliff et al. (2006) showed that cq can be
minimized by using a subgradient method. For a given reward w, a subgradient gqw is given by:

gqw = q
(

(wTF + l)µ+ − wTFµπE
)q−1

F∆wµπE + λw (3)

where µ+ = arg maxµ∈G(wTF + l)µ, and ∆wµπE = µ+ − µπE .

3.3 Linear Programming Apprenticeship Learning

Linear Programming Apprenticeship Learning (LPAL) is based on the following observation: if the
reward weights are positive and sum to 1, then V (π) > V (πE) + mini[vi,π − vi,πE], for any policy
π. LPAL consists in finding a policy that maximizes the margin mini[vi,π − vi,πE]. The maximal
margin is found by solving the following linear program:

max
v,µπ

v

subject to

∀i ∈ {0, . . . , k − 1} : v 6
∑
s∈S

∑
a∈A

µπ(s, a)fi(s, a)︸ ︷︷ ︸
vi,π

−
∑
s∈S

∑
a∈A

µπE (s, a)fi(s, a)︸ ︷︷ ︸
vi,πE

(4)

µπ(s) = α(s) + γ
∑
s′∈S

∑
a∈A

µπ(s′, a)T (s′, a, s),
∑
a∈A

µπ(s, a) = µπ(s), µπ(s, a) > 0

The last three constraints in this linear program correspond to the Bellman-flow constraints (Equa-
tion (1)) defining G, the feasible set of µπ . The learned policy π is given by:

π(s, a) =
µπ(s, a)∑

a′∈A µπ(s, a′)

3.4 Approximating feature frequencies

Notice that both MMP and LPAL require the knowledge of the frequencies vi,ππE
def
= F (i, .)µπE .

These frequencies can be analytically calculated (using Bellman-flow constraints) only if πE is com-
pletely specified. Given a sequence of M demonstrated trajectories tm = (sm1 , a

m
1 , . . . , s

m
H , a

m
H ,),

the frequencies vi,πE are estimated as:

v̂i,πE =
1
M

M∑
m=1

H∑
t=1

γtfi(smt , a
m
t) (5)

There are nevertheless many problems related to this approximation. First, the estimated frequencies
v̂i,πE can be very different from the true ones when the demonstration trajectories are scarce. Sec-
ond, the frequencies v̂i,πE are estimated for a finite horizon H , whereas the frequencies vi,π used in
the objective function (Equations (2) and (4)), are calculated for an infinite horizon (Equation (1)).
In practice, these two values are too different and cannot be compared as done in these cost func-
tions. Finally, the frequencies vi,πE are a function of both a policy and the transition probabilities,
the empirical estimation of vi,πE does not take advantage of the known transition probabilities.

3

4 Reward loss in Maximum Margin Planning

ŵ wE

vπE

v̂πE

Vl

Vl − vπE
Vl − v̂πE

V

Figure 1: Reward loss in MMP with approximate frequen-
cies v̂πE . We indicate by vπE (resp. v̂πE) the linear function
defined by the vector vπE (resp. v̂πE).

To show the effect of the error in the
estimated feature frequencies on the
quality of the learned rewards, we
present an analysis of the distance be-
tween the vector of reward weights
ŵ returned by MMP with estimated
frequencies v̂πE = Fµ̂πE , calculated
from the examples by using Equa-
tion (5), and the vector wE returned
by MMP with accurate frequencies
vπE = FµπE , calculated by using
Equations (1) with the full policy πE .
We adopt the following notations:
∆vπ = v̂πE − vπE , ∆w = ŵ − wE ,
and Vl(w) = maxµ∈G(wTF + l)µ,
and we consider q = 1. The fol-
lowing proposition shows how the re-
ward error ∆w is related to the fre-
quency error ∆vπ . Due to the fact
that the cost function of MMP is piecewise defined, one cannot find a closed-form relation be-
tween ∆w and ∆vπ . However, we show that for any ŵ ∈ Rk, there is a monotonically decreasing
function f such that for any ε ∈ R+, if ‖ ∆vπ ‖2< f(ε) then ‖ ∆w ‖26 ε.

Proposition 1 Let ε ∈ R+, if ∀w ∈ Rk, such that ‖ w − ŵ ‖2= ε, if the following condition is
verified:

‖ ∆vπ ‖2<
Vl(w)− Vl(ŵ) + (ŵ − w)T v̂πE + λ

2 (‖ w ‖2 − ‖ ŵ ‖2)
ε

then ‖ ∆w ‖26 ε.

Proof The condition stated in the proposition implies:

‖ ŵ − w ‖2‖ ∆vπ ‖2< Vl(w)− Vl(ŵ) + (ŵ − w)T v̂πE +
λ(‖ w ‖2 − ‖ ŵ ‖2)

2

⇒ (ŵ − w)T∆vπ < Vl(w)− Vl(ŵ) + (ŵ − w)T v̂πE +
λ(‖ w ‖2 − ‖ ŵ ‖2)

2
(Hölder)

⇒ Vl(ŵ)−
(
ŵT vπE −

λ

2
‖ ŵ ‖2

)
< Vl(w)−

(
wT vπE −

λ

2
‖ w ‖2

)
In other terms, the point (ŵT vπE − λ

2 ‖ ŵ ‖2) is closer to the surface Vl than any other point
(wT vπE − λ

2 ‖ w ‖2), where w is a point on the sphere centered around ŵ with a radius of ε.

Since the function Vl is convex and (wET vπE − λ
2 ‖ w

E ‖2) is by definition the closest point to
the surface Vl, then wE should be inside the ball centered around ŵ with a radius of ε. Therefore,
‖ wE − ŵ ‖26 ε and thus ‖ ∆w ‖26 ε. �

Consequently, the reward loss ‖ ∆w ‖2 approaches zero as the error of the estimated feature fre-
quencies ‖ ∆vπ ‖2 approaches zero. A simpler bound can be easily derived given admissible
heuristics of Vl.

Corollary: Let Vl and Vl be respectively a lower and an upper bound on Vl, then Proposition (1)
holds if Vl(w)− Vl(ŵ) is replaced by Vl(w)− Vl(ŵ).

Figure (1) illustrates the divergence from the optimal reward weight wE when approximate fre-
quencies are used. The error is not a continuous function of ∆vπ when the cost function is not
regularized, because the vector returned by MMP is always a fringe point. Informally, the error is
proportional to the maximum subgradient of the function Vl − vπE at the fringe point wE .

4

5 Bootstrapping Maximum Margin Planning

The feature frequency error ∆vπ can be significantly reduced by using the known transition func-
tion for calculating v̂πE and solving the flow Equations (1), instead of the Monte Carlo estimator
(Equation (5)). However, this cannot be done unless the complete expert’s policy πE is provided.

Assuming that the expert’s policy πE is optimal and deterministic, the value wTFµπE in Equa-
tion (2) can be replaced by maxµ∈GπE w

TFµ, the value of the optimal policy, according to the
current reward weight w, that selects the same actions as the expert in all the states that occurred in
the demonstration. The cost function of the bootstrapped Maximum Margin Planning becomes:

cq(w) =
(

max
µ1∈G

(wTF + l)µ1 − max
µ2∈GπE

wTFµ2

)q
+
λ

2
‖ w‖2 (6)

where GπE is the set of vectors µπ , subject to the following modified Bellman-flow constraints:

µπ(s) = α(s) + γ
∑
s′∈Se

µπ(s′)
∑
a∈A

πE(s′, a)T a(s′, s) + γ
∑

s′∈S\Se

∑
a∈A

µπ(s′, a)T a(s′, s)

∑
a∈A

µπ(s, a) = µπ(s), µπ(s, a) > 0 (7)

Se is the set of states encountered in the demonstrations, where the expert’s policy is known.

Unfortunately, the new cost function (Equation (6)) is not necessarily convex. In fact, it corre-
sponds to a margin between two convex functions: the value of the bootstrapped expert’s policy
maxµ∈GπE w

TFµ and the value of the best alternative policy maxµ∈G(wTF + l)µ. Yet, a local
optimal solution of this modified cost function can be found by using the same subgradient as in
Equation (3), and replacing µπE by arg maxµ∈GπE w

TFµ. In practice, as we will show in the ex-
perimental analysis, the solution returned by the bootstrapped MMP outperforms the solution of
MMP where the expert’s frequency is calculated without taking into account the known transition
probabilities. This improvement is particularly pronounced in highly stochastic environments. The
computational cost of minimizing this modified cost function is twice the one of MMP, since two
optimal policies are found at each iteration.

In the remainder of this section, we provide a theoretical analysis of the cost function given by
Equation (6). For the sake of simplicity, we consider q = 1 and λ = 0.

Proposition 2 The cost function defined by Equation (6), has at most |A|
|S|

|A||Se| different local minima.

Proof If q = 1 and λ = 0, then the cost cq(w) corresponds to a distance between the convex
and piecewise linear functions maxµ∈G(wTF + l)µ and maxµ∈GπE w

TFµ. Therefore, for any
vector µ′ ∈ GπE , the function cq is monotone in the interval of w where µ′ is optimal, i.e. where
wTFµ′ = maxµ∈GπE w

TFµ. Consequently, the number of local minima of the function cq is at
most equal to the number of optimal vectors µ in GπE , which is upper bounded by the number of
deterministic policies defined on S\Se, i.e. by |A||S|−|Se|. �

Consequently, the number of different local minima of the function cq decreases as the number of
states covered by the demonstration increases. Ultimately, the function cq becomes convex when the
demonstration covers all the possible states.

Theorem 1 If there exists a reward weight vector w∗ ∈ Rk, such that the expert’s policy πE is the
only optimal policy with w∗, i.e. arg maxµ∈G w∗TFµ = {µπE}, then there exists α > 0 such that:
(i), the expert’s policy πE is the only optimal policy with αw∗, and (ii), cq(αw∗) is a local minimum
of the function cq , defined in Equation (6).

Proof The set of subgradients of function cq at a point w ∈ Rk, denoted by ∇wcq(w), corre-
sponds to vectors Fµ′−Fµ′′, with µ′ ∈ arg maxµ∈G(wTF + l)µ and µ′′ ∈ arg maxµ∈GπE w

TFµ.
In order that cq(w) will be a local minimum, it suffices to ensure that ~0 ∈ ∇wcq(w), i.e.
∃µ′ ∈ arg maxµ∈G(wTF + l)µ,∃µ′′ ∈ arg maxµ∈GπE w

TFµ such that Fµ′ = Fµ′′. Let w∗ ∈ Rk

5

be a reward weight vector such that πE is the only optimal policy, and let ε = w∗TFµπE −w∗TFµ′
where µ′ ∈ arg maxµ∈G−{µπE } w

∗TFµ. Then, αw∗TFµπE − αw∗TFµ′ = 2|Se|
1−γ , where

α = 2|Se|
ε(1−γ) . Notice that by multiplying w∗ by α > 0, πE remains the only optimal policy,

i.e. arg maxµ∈G αw∗TFµ = {µπE}, and µ′ ∈ arg maxµ∈G−{µπE } αw
∗TFµ. Therefore, it suf-

fices to show that µπE ∈ arg maxµ∈G(αw∗TF + l)µ. Indeed, maxµ∈G−{πE}(αw∗
TF + l)µ 6

maxµ∈G−{πE} αw∗
TFµ+maxµ∈G−{πE} lµ 6

(
αw∗TFµπE− 2|Se|

1−γ
)
+ |Se|1−γ 6 αw

∗TFµπE− |Se|1−γ ,
therefore, µπE ∈ arg maxµ∈G(αw∗TF + l)µ.�

6 Bootstrapping Linear Programming Apprenticeship Learning

As with MMP, the feature frequencies in LPAL can be analytically calculated only when a complete
policy πE of the expert is provided. Alternatively, the same error bound V (π) > V (πE) + v can be
guaranteed by setting v = mini=0,...,k−1 minπ′∈ΠE [vi,π−vi,π′], where ΠE denotes the set of all the
policies that select the same actions as the expert in all the states that occurred in the demonstration,
assuming πE is deterministic (In LPAL, πE is not necessarily an optimal policy). Instead of enumer-
ating all the policies of the set ΠE in the constraints, note that v = mini=0,...,k−1[vi,π − vEi], where

vEi
def
= maxπ′∈ΠE vi,π′ for each feature i. Therefore, LPAL can be reformulated as maximizing the

margin mini=0,...,k−1[vi,π − vEi].

The maximal margin is found by solving the following linear program:

max
v,µπ

v

subject to

∀i ∈ {0, . . . , k − 1} : v 6
∑
s∈S

∑
a∈A

µπ(s, a)fi(s, a)︸ ︷︷ ︸
vi,π

−
∑
s∈S

∑
a∈A

µi,π′(s, a)fi(s, a)︸ ︷︷ ︸
vEi

µπ(s) = α(s) + γ
∑
s′∈S

∑
a∈A

µπ(s′, a)T (s′, a, s),
∑
a∈A

µπ(s, a) = µπ(s), µπ(s, a) > 0

where the values vEi are found by solving k separate optimization problems (k is the number of
features). For each feature i, vEi is the value of the optimal policy in the set ΠE under the reward
weights w defined as: wi = 1 and wj = 0,∀j 6= i.

7 Experimental Results

To validate our approach, we experimented on two simulated navigation problems: a gridworld and
two racetrack domains, taken from (Boularias & Chaib-draa, 2010). While these are not meant to be
challenging tasks, they allow us to compare our approach to other methods of apprenticeship learn-
ing, namely MMP and LPAL with Monte Carlo estimation, and a simple classification algorithm
where the action in a given state is selected by performing a majority vote on the k-nearest neighbor
states where the expert’s action is known. For each state, the distance k is gradually increased until
at least one known state is encountered. The distance between two states corresponds to the shortest
path between them with a positive probability.

7.1 Gridworld

We consider 16× 16 and 24× 24 gridworlds. The state corresponds to the location of the agent on
the grid. The agent has four actions for moving in one of the four directions of the compass. The
actions succeed with probability 0.9. The gridworld is divided into non-overlapping regions, and
the reward varies depending on the region in which the agent is located. For each region i, there is a
feature fi, where fi(s) indicates whether state s is in region i. The expert’s policy πE corresponds
to the optimal deterministic policy found by value iteration. In all our experiments on gridworlds,
we used only 10 demonstration trajectories, which is a significantly small number compared to other
methods (Neu & Szepesvri (2007) for example). The duration of the trajectories is 50 time-steps.

6

Size Features Expert k-NN MMP + MC MMP + Bootstrap LPAL + MC LPAL + Bootstrap

16× 16 16 0.4672 0.4635 0.0000 0.4678 0.0380 0.1572
16× 16 64 0.5281 0.5198 0.0000 0.5252 0.0255 0.4351
16× 16 256 0.3988 0.4062 0.0537 0.3828 0.0555 0.1706

24× 24 64 0.5210 0.6334 0.0000 0.5217 0.0149 0.2767
24× 24 144 0.5916 0.5876 0.0122 0.5252 0.0400 0.4432
24× 24 576 0.3102 0.2814 0.0974 0.0514 0.0439 0.0349

Table 1: Gridworld average reward results

Table 1 shows the average reward per step of the learned policy, averaged over 103 independent trials
of the same duration as the demonstration trajectories. Our first observation is that Bootstrapped
MMP learned policies just as good as the expert’s policy, while both MMP and LPAL using Monte
Carlo (MC) estimator remarkably failed to collect any reward. This is due to the fact that we used a
very small number of demonstrations (10× 50 time-steps) compared to the size of these problems.
Note that this problem is not specific to MMP or LPAL. In fact, any other algorithm using the same
approximation method would produce similar results. The second observation is that the values of
the policies learned by bootstrapped LPAL were between the values of LPAL with Monte Carlo
and the optimal ones. In fact, the policy learned by the bootstrapped LPAL is one that minimizes
the difference between the expected frequency of a feature using this policy and the maximal one
among all the policies that resemble to the expert’s policy. Therefore, the learned policy maximizes
the frequency of a feature that is not necessary a good one (with a high reward weight). We also
notice that the performance of all the tested algorithms was low when 576 features were used. In
this case, every feature takes a non null weight in one state only. Therefore, the demonstrations did
not provide enough information about the rewards of the states that were not visited by the expert.
Finally, we remark that k-NN performed as an expert in this experiment. In fact, since there are no
obstacles on the grid, neighboring states often have similar optimal actions.

7.2 Racetrack

We implemented a simplified car race simulator, a detailed description of the corresponding race-
tracks was provided in (Boularias & Chaib-draa, 2010). The states correspond to the position of the
car on the racetrack and its velocity. For racetrack (1), the car always starts from the same initial
position, and the duration of each demonstration trajectory is 20 time-steps. For racetrack (2), the
car starts at a random position, and the length of each trajectory is 40 time-steps. A high reward
is given for reaching the finish line, a low cost is associated to each movement, and high cost is
associated to driving off-road (or hitting an obstacle). Figure 2 (a-f) shows the average reward per
step of the learned policies, the average proportion of off-road steps, and the average number of
steps before reaching the finish line, as a function of the number of trajectories in the demonstra-
tion. We first notice that k-NN performed poorly, this is principally caused by the effect of driving
off-road on both the cumulated reward and the velocity of the car. In this context, neighbor states
do not necessarily share the same optimal action. Contrary to the gridworld experiments, MMP
with Monte Carlo achieved good performances on racetrack (1). In fact, by fixing the initial state,
the demonstration covers most of the reachable states, and the feature frequencies are accurately
estimated from the demonstration. On racetrack (2) however, MMP with MC was unable to learn a
good policy because all the states were reachable from the initial distribution. Similarly, LPAL with
both MC and bootstrapping failed to achieve good results on racetracks (1) and (2). This is due to
the fact that LPAL tries to maximize the frequency of features that are not necessary associated to
a high reward, such as hitting obstacles. Finally, we notice the nearly optimal performance of the
bootstrapped MMP, on both racetracks (1) and (2).

8 Conclusion and Future Work

The main question of apprenticeship learning is how to generalize the expert’s policy to states that
have not been encountered during the demonstration. Inverse Reinforcement Learning (IRL) pro-
vides an efficient answer which consists in first learning a reward function that explains the observed
behavior, and then using it for the generalization. A strong assumption considered in IRL-based al-

7

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12

A
ve

ra
ge

 r
ew

ar
d

pe
r

st
ep

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

(a) Average reward in racetrack 1

 20

 22

 24

 26

 28

 30

 32

 34

 2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

(b) Average number of steps in racetrack 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r

of
 h

itt
ed

 o
bs

ta
cl

es
 p

er
 s

te
p

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

(c) Average number of off-roads, racetrack 1

 0

 5

 10

 15

 20

 2 4 6 8 10 12

A
ve

ra
ge

 r
ew

ar
d

pe
r

st
ep

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

(d) Average reward in racetrack 2

 20

 30

 40

 50

 60

 2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

(e) Average number of steps in racetrack 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r

of
 h

itt
ed

 o
bs

ta
cl

es
 p

er
 s

te
p

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

(f) Average number of off-roads, racetrack 2

Figure 2: Racetrack results

gorithms is that the reward is a linear function of state-action features, and the frequencies of these
features can be estimated from a few demonstrations even if these demonstrations cover only a small
part of the state space. In this paper, we showed that this assumption does not hold in highly stochas-
tic systems. We also showed that this problem can be solved by modifying the cost function so that
the value of the learned policy is compared to the exact value of a generalized expert’s policy. We
also provided theoretical insights on the modified cost function, showing that it admits the expert’s
true reward as a locally optimal solution, under mild conditions. The empirical analysis confirmed
the outperformance of Bootstrapped MMP in particular. These promising results push us to further
investigate the theoretical properties of the modified cost function.

As a future work, we mainly target to compare this approach with the one proposed by Ratliff et al.
(2007), where the base features are boosted by using a classifier.

8

References
Abbeel, Pieter and Ng, Andrew Y. Apprenticeship Learning via Inverse Reinforcement Learning. In

Proceedings of the Twenty-first International Conference on Machine Learning (ICML’04), pp.
1–8, 2004.

Boularias, Abdeslam and Chaib-draa, Brahim. Apprenticeship Learning via Soft Local Homomor-
phisms. In Proceedings of 2010 IEEE International Conference on Robotics and Automation
(ICRA’10), pp. 2971–2976, 2010.

Neu, Gergely and Szepesvri, Csaba. Apprenticeship Learning using Inverse Reinforcement Learning
and Gradient Methods. In Conference on Uncertainty in Artificial Intelligence (UAI’07), pp. 295–
302, 2007.

Ng, Andrew and Russell, Stuart. Algorithms for Inverse Reinforcement Learning. In Proceedings of
the Seventeenth International Conference on Machine Learning (ICML’00), pp. 663–670, 2000.

Ramachandran, Deepak and Amir, Eyal. Bayesian Inverse Reinforcement Learning. In Proceedings
of The twentieth International Joint Conference on Artificial Intelligence (IJCAI’07), pp. 2586–
2591, 2007.

Ratliff, N., Bagnell, J., and Zinkevich, M. Maximum Margin Planning. In Proceedings of the
Twenty-third International Conference on Machine Learning (ICML’06), pp. 729–736, 2006.

Ratliff, Nathan, Bradley, David, Bagnell, J. Andrew, and Chestnutt, Joel. Boosting Structured
Prediction for Imitation Learning. In Advances in Neural Information Processing Systems 19
(NIPS’07), pp. 1153–1160, 2007.

Syed, Umar and Schapire, Robert. A Game-Theoretic Approach to Apprenticeship Learning. In
Advances in Neural Information Processing Systems 20 (NIPS’08), pp. 1449–1456, 2008.

Syed, Umar, Bowling, Michael, and Schapire, Robert E. Apprenticeship Learning using Linear
Programming. In Proceedings of the Twenty-fifth International Conference on Machine Learning
(ICML’08), pp. 1032–1039, 2008.

9

