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Abstract— Optimal motion planning is a long-studied prob-
lem with a wide range of applications in robotics, from grasping
to navigation. While sampling-based motion planning methods
have made solving such problems significantly more feasible,
these methods still often struggle in high-dimensional spaces
wherein exploration is computationally costly. In this paper,
we propose a new motion planning algorithm that reduces the
computational burden of the exploration process. The proposed
algorithm utilizes a guidance policy acquired offline through
model-free reinforcement learning. The guidance policy is used
to bias the exploration process in motion planning and to guide
it toward promising regions of the state space. Moreover, we
show that the gradients of the corresponding learned value
function can be used to locally fine-tune the sampled states.
We empirically demonstrate that the proposed approach can
significantly reduce planning time and improve success rate and
path quality.

I. INTRODUCTION

Sampling-based optimal motion planning algorithms have
become a staple of robotics research due to their ability
to quickly find viable paths [1]–[3]. However, while these
methods may quickly find good paths in low-dimensional
problems, they still sometimes struggle to find good-quality
paths in high-dimensional spaces due to the exorbitant time it
would take to fully explore the state space. The popular plan-
ning algorithm Stable Sparse-RRT (SST) [3], for instance,
has a probabilistic worst-case time to find a near-optimal
path that is exponential in the dimension of the state space.

Model-free Reinforcement Learning (RL) has made sig-
nificant strides in recent years due to increased availability
of computing power, but suffers from a lack of robustness or
theoretical guarantees. Many reinforcement learning methods
used today, such as Deep Deterministic Policy Gradient
(DDPG), have no guarantee of convergence [4], while many
others, such as Hindsight Experience Replay (HER), are
known to be asymptotically biased [5]. This is especially
problematic in robotics where unsafe actions may damage
the robot, and we wish to have a guarantee that the robot will
solve the task, or at least not take a potentially dangerous
path. Additionally, model-free RL algorithms struggle to
deal with long-time horizons, sparse rewards, and environ-
ments requiring time-efficient exploration. These problems
frequently prevent the use of model-free RL for applications
where it would otherwise be useful. Finally, training a rein-
forcement learning agent to convergence may be extremely-
resource intensive even when the model does converge.
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We propose Policy-guided Stable Sparse-RRT (PSST), a
sampling-based kinodynamic planning algorithm that makes
use of RL-learned policies while retaining the desirable
properties of sampling-based planning algorithms such as
Stable-Sparse-RRT (SST) [3]. We do this by having the
planner sample actions from the policy some set fraction
of the time while exploring with random actions for the rest.
Additionally, we perform gradient descent on the sampled
states used for the tree extension in order to bias the tree
growth towards the goal. Importantly, our method does not
require that the learned agent is trained to convergence, and
benefits even when the RL agent’s performance is very poor.
This allows our method to be used when computational
resources are not sufficient to train an RL agent to conver-
gence. We find that the proposed method outperforms the
state-of-the-art planner SST, standard reinforcement learning
methods, and the hybrid method RL-RRT on a variety of
challenging kinodynamic tasks.

II. PROBLEM

Optimal motion planning attempts to solve the following
problem. Suppose we have a dynamics function that governs
the time evolution of a robotic system in a given environ-
ment, such that ẋ(t) = f(x(t), u(t)), where x(t) is a point
in the robot’s configuration space, u(t) is a point in a control
space, and ẋ(t) is the time derivative of x(t). Given an initial
state x(0) = s0 and a set of goal states G, and a cost function
C(x(t), u(t)), our goal is to find a control function u(t)
and interval [0, tterm] that minimizes

∫ tterm
0

C(x(t), u(t))dt
under the constraint that x(tterm) ∈ G. Intuitively, we want
to find a sequence of controls that puts our system in a goal
state and minimizes the total cost of the corresponding path,
assuming that the system is deterministic.

III. RELATED WORK

Anytime sampling-based motion planners such as PRM
[6], RRT [1], RRT∗ [2], and SST [3] have become popular
in recent years due to their efficient exploration and relatively
good performance in higher dimensions. These methods con-
struct a search tree by randomly sampling nodes, expanding
them with random controls, and removing nodes from the
tree that have been obsoleted by new paths. These methods
are capable of quickly finding solutions to difficult planning
problems and can be extended to high-dimensional planning
problems. Additionally, SST in particular comes with a
number of theoretical guarantees, such as asymptotic δ-
robust completeness and asymptotic δ-robust near-optimality.
However, its performance deteriorates in higher dimensions,



as its worst-case performance is exponential in both the
dimensionality of the state-space and the action space.

Sampling-based planning methods often attempt to mini-
mize their search time through the use of heuristics. Several
methods, such as Informed RRT* [7], BIT* [8], and RABIT*
[9] use heuristics to select where points in the space should
be sampled from, in order to reduce the size of the search
space. However, this type of selective sampling is not always
possible for problems with more complex dynamics. The
geometric bound used by these methods (sampling only
within the ellipse where it is possible for the optimal path
to lie) is only usable when there is a known lower bound
on the cost between two points, which is a constant multiple
of Euclidean distance. This bound may form only a loose
bound, and may not be known for arbitrary dynamics.

Another common approach to solving optimal motion
problems is model-free reinforcement learning. Reinforce-
ment learning can solve many planning problems in robotics,
such as grasping [5], [10]–[18] and navigation [19]. These
methods often scale well to very high-dimensional problems
such as Atari [20] and Go [21]. A number of recent methods
have also explored methods that attempt to integrate model-
free RL with model-based planning methods [22]. For
example, Temporal Difference Models (TDMs) [23] predict
the displacement vector from the goal state after t steps, and
train a policy to minimize the norm of that displacement
vector. Universal Planning Networks (UPNs) [24] learn a
dynamics model for planning in a latent space, then optimize
actions directly with gradient descent in the latent space.

Several methods have been proposed that use machine
learning to augment sampling-based motion planning. Arslan
and Tsiotras [25] use an adaptive approach to predict if
a given sample is collision-free and whether it is likely to
improve on the current best path. They use this method
to reduce the number of collision checks needed during
planning and focus the search on promising regions of
the state space. Ichter, Harrison, and Pavone [26] learn a
conditional variational autoencoder to generate samples that
are likely to lie near the optimal path. They find that their
sampling method is able to significantly reduce the number
of samples needed by focusing the search to regions of state
space where near-optimal paths are likely to occur.

BELT [27] proposes a planning method for using using
learned policies to form plans over multiple sequential tasks.
This approach uses an imitation-learned goal-conditioned
policy together with a classifier that predicts if the point is
efficiently reachable. They propose a sampling-based plan-
ning algorithm which is similar to performing RRT in a space
of task manipulations. The BELT algorithm differs from our
proposed method in a number of ways, but most significantly
in that BELT uses human demonstrations to train its policy,
as opposed to learning them from scratch.

RL-RRT [28] is likely the work most closely related
to our approach. It attempts to improve the performance
of the sampling-based motion planning algorithm RRT by
biasing the sampled control sequences toward ones that avoid
collisions. It does this by first training an obstacle-aware

policy and a time-to-reach function that is used to estimate
whether a given sampled point is reachable. The algorithm
then samples points until it finds one that is reachable by
the policy, and uses the policy to sample a control sequence
that reaches that point. The authors demonstrate that this
approach significantly improves both the planning time and
path quality of discovered paths compared to SST on several
2D environments.

IV. PROPOSED ALGORITHM

The proposed Policy-guided SST (PSST), explained in Al-
gorithm 1, is a kinodynamic motion planning algorithm that
leverages reinforcement learning to improve convergence of
the original SST algorithm [3]. The SST algorithm iteratively
builds a nearest-neighbor graph G that sparsely covers the
state space, while taking into account the dynamics transition
function f and the presence of obstacles when connecting
neighbors together. Due to space constraints, we omit here
details related to the original algorithm [3] and focus only
on our main contribution, which is related to how states and
actions are sampled in the first place. We show in Section V
that learning-driven samples lead to dramatic improvements
over the original SST.

Offline, we use goal-conditioned reinforcement learning
to learn two sub-optimal policies, π and π̃, one to move
to arbitrarily chosen states, and one to move to arbitrary
goals. The only difference between these two policies is
that π is trained to navigate to a point in the original state
space (e.g, position and orientation), whereas π̃ is trained to
navigate to goals defined in a subspace (e.g, position only).
This distinction is important for applications such as object
manipulation, where a task may be defined as “Move the
object to location x”, and the goal specifies nothing about
the position of the robotic arm. Although these policies
may be learned by any model-free reinforcement learning
algorithm, we opt to train both policies using Soft Actor
Critic [29] with Hindsight Experience Replay [5]. Unlike
the standard implementation of SAC, we do not set the
policy to be deterministic at runtime in order to encourage
exploration in the planner. We then use these policies to
modify the SST algorithm in two ways. Instead of using
purely random actions, during each expansion we randomly
select a policy from π, π̃, and a uniform random policy to
draw actions from (function RLProp, called in line 7 of
Algorithm 1). Additionally, when sampling points to guide
the growth of the tree, we perform gradient descent on the
sampled points in order to bias the tree towards the goal
region (function Gradient Descent Sampling, called
in line 5 of Algorithm 1). We will show in Section V that the
proposed algorithm finds near-optimal solutions in several
robotic domains even when the guidance policies π and π̃
are significantly sub-optimal due to limited training time.
Thanks to the use of the state transition function f in the
online planning process, we also show that π and π̃ can be
trained offline in a domain that is substantially different from
the test domain.



The algorithm for expanding the search tree then works as
follows; We randomly sample a point S in the state space.
We then perform a random number of gradient descent steps
on S with respect to −Q(S, π̃(S), g) to find a new point
S′, where g is the goal, Q is the value function of a pre-
trained agent, and π̃ is the policy of a pre-trained agent.

Fig. 1. PSST Algorithm

We select from the
nearest-neighbor graph
the lowest cost node x
within a radius δ of S′. If
there are no nodes within
δ, we instead take the
nearest neighbor as x.
We then randomly select
one of three policies
to expand x; a random
state-conditioned policy
π(·, S′) that attempts
to reach S′, and goal-
conditioned policy π̃(·, g)
that attempts to reach the
goal, and a purely random
policy that just selects
a random action from a
uniform distribution. We
expand x by rolling out
the policy for a random
number of steps in the
range (0, tmax) to obtain

a new state xnew. The new node is then added to the
planning tree using the same algorithm for adding new
nodes and deleting old ones described in SST [3]. The
described algorithm is layed out in Figure 1

A. Action Sampling

We replace SST’s uniform random control sampling with
sampling from a mixture of these policies, using random con-
trols, the goal-conditioned policy π̃, and the state-conditioned
policy π. Like RL-RRT, the state-conditioned policy attempts
to reach the sampled point to which the current node is a
nearest neighbor, while the goal-conditioned policy always
tries to reach the goal region, defined as a point in a subspace
of the original state space. Note that the goal is an input of
policy π̃, which is trained offline with HER [5] to aim for
any given goal region, even though π̃ is sub-optimal.

The motivation for the use of two distinct policies is to
guarantee a certain density of both efficient exploration and
efficient exploitation. RL-RRT demonstrated that learning to
navigate towards random points is an effective exploration
strategy. However, we were concerned that in high dimen-
sions the probability of sampling a point near a goal state
decays exponentially to zero, and in some tasks it is not
trivial to sample the goal state directly (e.g. grasping). Thus,
the purpose of the goal-conditioned policy is to navigate
directly to the goal once the goal becomes reachable from
the tree. Figure 2 visualizes the different kinds of expansions
used by the proposed method. In the case where the goal

space and state space are the same, the same neural network
may be used for both π and π̃, saving training time.

Fig. 2. The three kinds of node expansions in PSST – Goal seeking (left),
random-state-seeking (center), and random (right). The task is to navigate
from start (red) to goal (green). The blue path denotes the expansion of the
current node using the selected policy. Sampling from a mixture of policies
allows PSST to efficiently trade off between exploration and exploitation.
Random-state-seeking expansions utilize a Voronoi bias to efficiently reach
new regions of state space while avoiding obstacles, while goal-seeking
expansions encourage the tree to grow towards the goal.

B. State Sampling with Gradient Descent

Secondly, we propose drawing samples from the uniform
random distribution over the state space, and then performing
gradient descent on the sampled points before connecting
them to their nearest neighbors in the search graph. The
motivation for this is that many interesting problems have
no simple way of sampling from the set of reachable goal
states. By sampling random states and then moving them
closer to the goal by performing gradient descent on an RL-
learned value function, we can bias the growth of the search
tree towards goal states without an explicit goal-sampler.

Since the policy and value functions are both neural
networks, it is simple to calculate the gradient of the value
∇sQ(s, π(s), g) with respect to the state s with backpropa-
gation. We sample the number of gradient descent steps to
take from a geometric distribution with stopping probability
θ and subtract one (n ∼ Geom(θ) − 1). This ensures that
we always retain at least a θ chance of taking 0 gradient
descent steps. Thus a portion θ of the samples are drawn
from the uniform random distribution, which means we
retain all the asymptotic-sampling properties of SST. It also
ensures that for any sampled point, we have a lower-bounded
chance of converging to within ε of the local minimum
for any ε. If the minimum of the learned value function is
in a goal state (which is very likely as these are terminal
states with maximum reward), then we have a lower-bounded
chance of sampling arbitrarily close to the goal state. We
expect this approach to be most useful in high-dimensions,
where the proportion of goal-states to the total volume may
become extremely small. As we can see from Figure 3,
performing gradient descent on the value with respect to
the state increases the density of sampled points near the
goal. The more gradient descent steps are performed, the
greater the likelihood that the search tree will expand the
node closest to the goal. Thus we can see the average number
of gradient descent steps acts as a greediness parameter, in
that it determines how aggressively the search will focus on
points near the goal.



Fig. 3. Distribution of sample points after 0 (left) and 3 (right) gradient
descent steps. Sampled points (blue dots) move towards the goal (green
circle) as more gradient descent steps are performed, focusing the search
on the goal region

Gradient descent on the sampled states is performed by
using the Q-value function of policy π̃ learned offline through
HER. Using the standard notation for goal-conditioned re-
inforcement learning, we represent Q(s, a, g) as a neural
network that takes as inputs a starting state s, an action
a, and a goal state g and returns a Q-value. By using
the back-propagation algorithm, the gradient ∇sQ(s, a, g)
is computed analytically and used to push sampled states s
toward the goal (s← s+α∇sQ(s, a, g)). Here again, learned
function Q and its gradient ∇sQ(s, a, g) are generally in-
accurate due to limited training time, and yet significantly
improve SST by pointing to the direction of the goal state.

Function RL Prop(xselected, xtarget, f, g, π, π̃, tmax, εrand,
εpolicy):

tprop = SampleUniform(0, tmax)
Randomly select policy to use as πsample.
P (πsample = π(., xtarget)) = εpolicy.
P (πsample = random) = εrand.
P (πsample = π̃(., g)) = 1− (εpolicy + εrand).
return xnew = xselected +∑tprop

t=0 f(x(t), πsample(x(t)))δt

Function Gradient Descent Sampling(g, Q,α,θ):
n = SampleGeometric(θ)− 1
s = SampleRandomState()
for i = 0; i < n; i = i+ 1 do

s← s+ α∇sQ(s, a, g) ; // Perform gradient

descent on the (negative) value function
return s

V. EXPERIMENTAL RESULTS

We evaluate our method on a variety of challenging
tasks, including two 2D kinodynamic planning problems and
four tasks with the Fetch Robot arm simulated in MuJoCo.
We also test on a modified version of each of the 2D
environments, aimed at showing that the RL agent continues
to be useful to the planner even when distributional shift
causes the agent’s performance to suffer.

All experiments (including both model training and plan-
ning) were performed on an Alienware Aurora-R9, with 8
i7 CPU cores. The GPU was not used for model training,
as CPU parallelization proved to be more efficient. All RL
agents were trained with SAC, using a 4-layer network with
hidden width of 256 for both policy and critic networks, a
learning rate of .001, and an entropy regularization term of

Algorithm 1: Policy-Guided SST (PSST)
Inputs : x0, the initial state; g, a goal state; ε, a success

threshold; Q(s, a, g), a value function; α, a
step-size for the gradient descent; θ: a stopping
probability for a geometric distribution over the
number of gradient-descent steps; f , a state
transition function; π, a goal-conditioned policy;
π̃, a goal-conditioned policy in the subspace of
the goal constraints; tmax, maximum expansion
length; εrand, probability of random expansions;
εpolicy , probability of π-guided expansions;

Output: (x∗0, µ
∗
0, . . . , x

∗
tterm , µ

∗
tterm) a path of

states-actions that satisfies ‖x∗tterm − g‖ ≤ ε;
1 Vactive ← x0, Vinactive ← ∅, V ←

(Vactive ∪ Vinactive) E ← ∅, G = {V,E}
s0 ← x0, s0.rep = x0, S ← {s0};

2 for N iterations do
3 ssample ←Gradient Descent Sampling

(g,Q,α,θ)
4 xselected ← Best Near(Vactive, ssample, δBN )
5 xnew ← RL Prop(xselected, ssample, f, g,
6 π, π̃, tmax, εrand, εpolicy)
7 if CollisionFree(xselected → xnew) then
8 if

Is Node Locally the Best(xnew, S, δs)
then

9 Vactive ← Vactive ∪ {xnew};
10 E ← E ∪ { ¯xnearest → xnew};
11 Prune Dominated Nodes

(xnew, Vactive, Vinactive, E)
12 Return the path with the minimum cost from x0 to g

in constructed graph G;

0.01. 50 trials were run on all environments. As one of our
main objectives is demonstrating that the proposed method
PSST works well with suboptimal policies, we do not train
all policies to convergence.

We compare our method to two baselines. Since our
method requires some degree of training before planning
begins, we decided it would be unfair to compare to SST
directly. Instead, as a baseline we run both SST and the
pre-trained goal-conditioned RL policy and take the better
solution. We can therefore take improvements over this
baseline to be a result of our method, and not a result of
the RL policy alone outperforming SST. We also compare
to RL-RRT [28]. In all experiments, the RL-RRT policy is
trained for the same amount of time PSST’s policy is.

We aim to answer two main questions about the pro-
posed method. Firstly, does it outperform SST and pure
reinforcement learning methods on challenging tasks? We
test on an obstacle-based navigation problem and several
difficult object-manipulation problems to measure the pro-
posed method’s effectiveness. Secondly, how good does the
learned policy need to be in order for our method to see
noticeable improvement over SST and pure reinforcement
learning methods? We evaluate by examining how PSST’s
performance changes as the reinforcement learning agent



is trained, as well as its performance when the policy is
trained on one environment, and then transferred to a similar
environment.

A. Obstacle Maze task

Similar to the RL-RRT test environments [28], we train
agents to navigate a two-dimensional area and reach a goal
without colliding with obstacles. Each agent observes its
position and 16 laser rangefinder sensors that inform it of the
locations of obstacles. This environment is a modification of
the Limited-Range-2D environment in gym-extensions [30].
1000 iterations are allowed for planning.

Fig. 4. Success rates and path cost on 2D obstacle environment. SST is
competitive with PSST on success rate, but PSST outperforms it on path
cost

We find from Figure 4 that while PSST only slightly
outperforms the better of SST and pure RL in terms of
success rate, it reduces the average path cost by nearly 20%.

B. Fetch Robot tasks

Lastly, we test our algorithm on a series of challenging
object manipulation tasks with a simulated Fetch robot arm.
The tasks are as follows:

FetchPush: Use a robotic arm to push a block to a desired
location. FetchPickAndPlace: Use a robotic arm to pick up
an object from a table and move it to a desired point in space.
FetchSlide: Use a robotic arm to slide an object across a
table so that it stops at the desired point

Fig. 5. Success rates on Fetch robot arm environments. The proposed
method PSST performs best on all tasks

We find that in all Fetch tasks, PSST (proposed) outper-
forms both RL-RRT and the better of SST and the baseline

RL agent. Additionally we find that PSST delivers paths of
comparable or better quality than the other methods. We
hypothesize that this improvement is due in part to the
improved exploration ability of PSST. PSST benefits from
the Voronoi bias of SST, however the policy’s tendency
to select actions that move towards the goal (even when
imperfectly) and the similar tendency of gradient descent
sampling helps to focus the search on the region of space
that is likely to contain good paths. We attribute the gap
in performance between RL-RRT and PSST primarily to
the difference in the dimensionality of the goal space. RL-
RRT’s goal sampling attempts to reach a specific point in a
high-dimensional (here, 30+ dimensions) state space, while
PSST’s goal sampling attempts to reach a 3 dimensional goal,
which is much easier to achieve.

C. 2D Environments

We examine two 2D kinodynamic planning problems.
Simple 2D: This environment is a simple two-dimensional

double-integrator control problem with no friction. The state
is 4-dimensional, including the agents position and velocity.
The robot controls its acceleration vector directly, and is
attempting to reach a given position. 500 iterations are
allowed for planning.

Asteroids: This problem is similar to the Atari game
“Asteroids”. The state is 5-dimensional, including position,
velocity, and rotation. The robot controls its rotation and
forward/backward acceleration to reach a given position. It
experiences drag proportional to its velocity. 500 iterations
are allowed for planning.

Since all three compared methods are able to solve this
problem with close to a 100% success rate, we focus on the
solution quality instead, measured in the number of steps
required to reach the target.

Fig. 6. Performance on 2D environments. RL finds the optimal solution
for these problems

As we can see, the reinforcement learning policy is able to
produce a near-optimal solution that is difficult to outperform
with a planner. Next, we explore how the the proposed
method PSST behaves when this the optimal solution is
changed due to distribution shift.

D. 2D Environments under distribution shift

Here, we introduce two changes to the 2D environments.
Controls become less responsive as the agents move away
from the center of the work space, to a minimum of .05
times the original control vector. Additionally, controls are
biased slightly off-center by 1/10th of the maximum control,



causing the agents to drift unless this effect is compensated
for. The RL agent is not retrained on an environment with
these changes. These modifications are introduced to test the
planner’s ability to make use of a sub-optimal policy.

Fig. 7. Performance on 2D environments after distributional shift. RL
is suboptimal on the new environments, but PSST is still able to use the
suboptimal policies to find a near-optimal solution

We find that while the RL agent’s performance suffers
slightly due to these changes, PSST is able to adapt while
still making use of the agent’s bias towards actions that
performed well on the previous environments, leading it to
outperform both SST and the learned agent. This implies
that PSST is able to make use of the agent’s bias towards
certain actions to narrow the search space, even when those
actions may be suboptimal. This behavior illustrates one of
the key benefits of this approach – that the planner is able
to provide robustness when the RL agent is an incomplete
solution to the problem, due to any number of reasons such
as incomplete convergence, instability, or distribution shift.

E. Impact of policy quality on performance

One question posed by this method is how good the policy
has to be in order to see noticable improvements. We attempt
to answer this question by running the FetchPush experiment
multiple times with policies that have been trained for
varying lengths of time.

Fig. 8. PSST (proposed) success rates as a function of training time. PSST
improves over SST even with minimally trained policies, and benefits from
additional training even more than the base policy

Surprisingly, we find that the proposed method PSST
shows improvement from training earlier and faster than the
policy itself – the proposed method PSST shows noticeable
improvement between epochs 2 and 4, while the pure RL
agent does not see noticeable improvement until epoch 6.
This is possibly because the policy learns to move in the
right general direction before it learns to reliably reach the
goal. While “the right general direction” will not lead to a

non-trivial number of successes for the agent until its control
improves further, it can be a useful heuristic for PSST.
Thus we see the surprising result that the policy benefits
PSST enough to outperform SST before the policy even
appears to be improving by the “reward-per-episode” metric.
Interestingly, PSST also seems to derive benefit from training
at a faster rate than the baseline policy. The gap between
PSST and the baseline policy grows as the policy receives
more training, until PSST begins to approach a 100% success
rate.

F. Sample Solutions to Double Integrator Problem

Fig. 9. Sample solution for double integrator problem. Task: Navigate from
start (red) to goal (green). Gray: Paths in the search tree. Blue: Final path
returned by the method Left: SST, Center: RL, Right: PSST (Proposed)

The focusing effect of the proposed PSST algorithm can be
seen in Figure 9, which demonstrates its search for a solution
to a double integrator problem. SST has no way of biasing
the search towards the goal, so it explores fully randomly,
finding a poor path that does not attempt to seek the goal
directly. The RL agent successfully aims for the target, but
misses it due to non-convergence and is forced to loop back
to hit the target. PSST’s solution also aims for the target,
but is able to locate a near-optimal path more easily due to
the bias from the policy and gradient descent sampling. Note
that PSST’s explored paths (grey) tend to focus around the
goal state more than SST’s

VI. CONCLUSION

In this work, we proposed PSST, a sampling-based kinody-
namic planning algorithm that leverages trained RL agents
to narrow its search and improve efficiency. Our approach
trains two RL agents, one for efficient exploration, and one
for goal-seeking, and samples from agents’ policies and a
purely random policy in order to efficiently explore the space.
Additionally, our approach optimizes the value function of
sampled points by gradient descent in order to bias the
growth of the search tree towards the goal. We evaluated this
approach on a number of tasks, including several challenging
object-manipulation tasks using a simulated robot arm. On all
tasks, we demonstrated a significant increase in performance
against both pure reinforcement learning and the state-of-
the-art planning algorithm SST.

In the future, we plan to expand this work by using
the planner as a supervisor to train the policies and the
value functions from scratch, hopefully allowing us to make
stronger convergence guarantees than other common rein-
forcement learning algorithms offer. Finally, we plan to
demonstrate the returned paths on real robotic systems in
the context of object grasping and manipulation in cluttered
environments.



REFERENCES

[1] S. LaValle, “Rapidly-exploring random trees : a new tool for path
planning,” The annual research report, 1998.

[2] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for
Optimal Motion Planning,” arXiv:1105.1186 [cs], May 2011, arXiv:
1105.1186. [Online]. Available: http://arxiv.org/abs/1105.1186

[3] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically Optimal
Sampling-based Kinodynamic Planning,” arXiv:1407.2896 [cs], Feb.
2016, arXiv: 1407.2896. [Online]. Available: http://arxiv.org/abs/1407.
2896

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with
deep reinforcement learning.” in ICLR, Y. Bengio and Y. LeCun,
Eds., 2016. [Online]. Available: http://dblp.uni-trier.de/db/conf/iclr/
iclr2016.html#LillicrapHPHETS15

[5] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong,
P. Welinder, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba,
“Hindsight Experience Replay,” arXiv:1707.01495 [cs], Feb. 2018,
arXiv: 1707.01495 version: 3. [Online]. Available: http://arxiv.org/
abs/1707.01495

[6] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, Aug. 1996. [Online]. Available:
http://ieeexplore.ieee.org/document/508439/

[7] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed
RRT*: Optimal Sampling-based Path Planning Focused via Direct
Sampling of an Admissible Ellipsoidal Heuristic,” 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp.
2997–3004, Sept. 2014, arXiv: 1404.2334. [Online]. Available:
http://arxiv.org/abs/1404.2334

[8] ——, “Batch Informed Trees (BIT*): Sampling-based Optimal
Planning via the Heuristically Guided Search of Implicit Random
Geometric Graphs,” 2015 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3067–3074, May 2015, arXiv: 1405.5848.
[Online]. Available: http://arxiv.org/abs/1405.5848

[9] S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and
S. Scherer, “Regionally accelerated batch informed trees (RABIT*): A
framework to integrate local information into optimal path planning,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA), May 2016, pp. 4207–4214.

[10] A. Boularias, J. A. Bagnell, and A. Stentz, “Learning to manipulate
unknown objects in clutter by reinforcement,” in Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., 2015, pp. 1336–
1342. [Online]. Available: http://www.aaai.org/ocs/index.php/AAAI/
AAAI15/paper/view/9360

[11] J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation
skills with online dynamics adaptation and neural network priors,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct 2016, pp. 4019–4026.

[12] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based
and data-efficient approach to policy search,” in Proceedings of
the 28th International Conference on International Conference on
Machine Learning, ser. ICML’11. USA: Omnipress, 2011, pp. 465–
472. [Online]. Available: http://dl.acm.org/citation.cfm?id=3104482.
3104541

[13] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich ma-
nipulation skills with guided policy search,” in IEEE International
Conference on Robotics and Automation, May 2015, pp. 156–163.

[14] P. Falco, A. Attawia, M. Saveriano, and D. Lee, “On policy learning
robust to irreversible events: An application to robotic in-hand ma-
nipulation,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.
1482–1489, July 2018.

[15] J. A. Bagnell and J. G. Schneider, “Autonomous helicopter control
using reinforcement learning policy search methods,” in IEEE Int.
Conf. on Rob. and Aut., vol. 2, May 2001, pp. 1615–1620.

[16] A. S. Polydoros and L. Nalpantidis, “Survey of model-based rein-
forcement learning: Applications on robotics,” J. of Intel. & Rob. Sys.,
vol. 86, no. 2, pp. 153–173, May 2017.

[17] J. Ko, D. J. Klein, D. Fox, and D. Haehnel, “Gaussian processes and
reinforcement learning for identification and control of an autonomous
blimp,” in IEEE Int. Conf. on Rob. and Aut., April 2007, pp. 742–747.

[18] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox, “Multi-task policy
search for robotics,” in IEEE Int. Conf. on Rob. and Aut., May 2014,
pp. 3876–3881.

[19] H. Surmann, C. Jestel, R. Marchel, F. Musberg, H. Elhadj, and
M. Ardani, “Deep Reinforcement learning for real autonomous
mobile robot navigation in indoor environments,” arXiv:2005.13857
[cs], May 2020, arXiv: 2005.13857. [Online]. Available: http:
//arxiv.org/abs/2005.13857

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with Deep
Reinforcement Learning,” arXiv:1312.5602 [cs], Dec. 2013, arXiv:
1312.5602. [Online]. Available: http://arxiv.org/abs/1312.5602

[21] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen,
T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis, “Mastering the game of Go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017. [Online].
Available: http://www.nature.com/articles/nature24270

[22] B. Amos, I. D. J. Rodriguez, J. Sacks, B. Boots, and J. Z.
Kolter, “Differentiable MPC for End-to-end Planning and Control,”
arXiv:1810.13400 [cs, math, stat], Oct. 2019, arXiv: 1810.13400.
[Online]. Available: http://arxiv.org/abs/1810.13400

[23] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal
Difference Models: Model-Free Deep RL for Model-Based Control,”
arXiv:1802.09081 [cs], Feb. 2020, arXiv: 1802.09081. [Online].
Available: http://arxiv.org/abs/1802.09081

[24] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal
Planning Networks,” arXiv:1804.00645 [cs, stat], Apr. 2018, arXiv:
1804.00645. [Online]. Available: http://arxiv.org/abs/1804.00645

[25] O. Arslan and P. Tsiotras, “Machine learning guided exploration
for sampling-based motion planning algorithms,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 2646–2652.

[26] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), 2018, pp. 7087–7094.

[27] B. Ichter, P. Sermanet, and C. Lynch, “Broadly-exploring, local-policy
trees for long-horizon task planning,” 2020.

[28] H.-T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “RL-RRT:
Kinodynamic Motion Planning via Learning Reachability Estimators
from RL Policies,” arXiv:1907.04799 [cs], July 2019, arXiv:
1907.04799. [Online]. Available: http://arxiv.org/abs/1907.04799

[29] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proceedings of the 35th International Conference
on Machine Learning, ser. Proceedings of Machine Learning
Research, J. Dy and A. Krause, Eds., vol. 80. PMLR, 10–15
Jul 2018, pp. 1861–1870. [Online]. Available: http://proceedings.mlr.
press/v80/haarnoja18b.html

[30] P. Henderson, W.-D. Chang, F. Shkurti, J. Hansen, D. Meger, and
G. Dudek, “Benchmark environments for multitask learning in con-
tinuous domains,” ICML Lifelong Learning: A Reinforcement Learning
Approach Workshop, 2017.


