
Learning Category-Level Manipulation Tasks from Point Clouds

with Dynamic Graph CNNs

Junchi Liang and Abdeslam Boularias1

AbstractÐ This paper presents a new technique for learn-
ing category-level manipulation from raw RGB-D videos of
task demonstrations, with no manual labels or annotations.
Category-level learning aims to acquire skills that can be
generalized to new objects, with geometries and textures
that are different from the ones of the objects used in the
demonstrations. We address this problem by first viewing both
grasping and manipulation as special cases of tool use, where
a tool object is moved to a sequence of key-poses defined in a
frame of reference of a target object. Tool and target objects,
along with their key-poses, are predicted using a dynamic
graph convolutional neural network that takes as input an
automatically segmented depth and color image of the entire
scene. Empirical results on object manipulation tasks with a
real robotic arm show that the proposed network can efficiently
learn from real visual demonstrations to perform the tasks
on novel objects within the same category, and outperforms
alternative approaches.

I. INTRODUCTION

Category-level learning is an increasingly popular ap-

proach to training robots to manipulate unknown objects in

real-world environments. A sequence of images showing how

to perform a certain manipulation task is provided to the

robot by a human demonstrator. The robot is then tasked

with learning a manipulation policy that can be tested on

objects other than those used in the demonstrations.

Prior works in category-level robot learning were mostly

focused on grasping problems [1]±[6]. While there are nu-

merous learning-based techniques that generalize grasping

skills to novel objects, only a few recent ones have been

shown capable of generalizing other types of manipulation

skills, such as placing, painting, or pouring, to novel ob-

jects [7]±[14]. However, most of these techniques rely on

annotated images wherein a human expert manually specifies

keypoints on training objects.

In this work, we propose a new technique for learning

category-level manipulation skills from unlabeled RGB-D

videos of demonstrations. The proposed system is fully au-

tonomous, and does not require any human feedback during

training or testing besides the raw demonstration videos. The

setup of the system includes a support surface wherein a

number of unknown objects are placed, which includes task-

irrelevant distractive objects. The system is composed of a

high-level policy that selects a tool and a target from the set

of objects in the scene at each step of the manipulation, an

intermediate-level policy that predicts desired 6D keyposes

for the robot’s wrist, and a low-level policy that moves the

1The authors are with the Department of Computer Science of
Rutgers University, Piscataway, New Jersey 08854, USA. {jl2068,
ab1544}@cs.rutgers.edu

Human Demonstrations

Robot Execution

Tr
ai

ni
ng

 D
at

a

High-level Policy

Intermediate-level Policy

Generalize to objects with 
different sizes and textures

Neural Network Model

Training

Execution

New Scene

Fig. 1: System overview and robotic setup used in the experiments.
In this example, the system is trained by unlabeled visual demon-
strations to pick up a paint-brush in a specific manner, and to place
it in a specific configuration relative to another object. The robot is
tasked with repeating the demonstrated behaviour on a new scene
containing novel objects with different sizes and texture.

wrist to the keyposes. The system employs a dynamic graph

convolutional neural network that receives as inputs partial

point clouds of the objects. A local frame of reference is

computed for each object based on the principal component

analysis of its point cloud. The 6D keyposes predicted by

the network are in the frame of the predicted target object.

The proposed system is tested on a real robot with demon-

strations of four tasks: two variants of stacking, pouring, and

painting. Pouring is performed with beads instead of liquid,

for the safety of the robot. The exact same architecture and

parameters are used for learning the four different tasks, the

only difference is the provided visual demonstrations.

The key novel contributions of this work are as follows.

(1) An efficient new architecture for learning category-level

manipulation tasks. A key feature of this architecture is

the capability to generate trajectories of the robot’s end-

effector according to the 3D shapes of the objects that are

present in the scene. The proposed architecture can thus

generalize to objects with significantly different sizes and

shapes. This is achieved through the use of a dynamic

version of graph neural networks, wherein the graph topology

is learned based on the demonstrated task. Moreover, the

proposed architecture can be used in scenes that contain an

arbitrary number of objects. This is in contrast with most

existing manipulation learning methods, which are limited

to objects of similar dimensions. (2) An empirical study

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2344 submitted to 2023 IEEE International Conference 
on Robotics and Automation (ICRA). Received September 15, 2022.



comparing various architectures for learning manipulation

tasks, using real objects and robot. The study shows that,

amongst the compared methods, a dynamic GNN provides

the most data-efficient architecture for learning such tasks.

Furthermore, the same hyper-parameter values can be used

to learn different tasks. (3) A new formulation of the problem

by representing states as lists of relative 6D poses of object

pairs. The proposed formulation also unifies the problems

of grasping and manipulation by treating the end-effector as

one of the objects in the scene, and viewing grasping as a

special type of tool-use. (4) A fully self-supervised learning

pipeline that does not require manual task decomposition, in

contrast with existing category-level techniques [7]±[15].

II. RELATED WORK

Category-Level Manipulation. Recently, several techniques

have been devised for learning to generalize robot manip-

ulation skills to new objects in the same category, such

as cups of different sizes, shapes and texture. Most of

these techniques use semantic 3D keypoints to represent

objects [15]. Keypoints were initially proposed as grasp

points for the manipulation of deformable objects [7], [8].

The technique presented in [9] consists in manually anno-

tating task-relevant keypoints on a large number of training

objects, and trains an integral neural network to align the

keypoints between intra-class object instances. The need

for tedious human annotation was removed in [10] through

the use of a robotic system that automatically re-arranges

objects. Contrastive learning was then employed to learn

feature descriptors of 2D image points [11]. Similar object-

centric dense descriptors were used for learning pick-and-

place tasks from demonstrations [12]. In [13], task-specific

keypoints are learned from self-supervised robot interactions

instead of human annotations. Semantic category-level 3D

keypoints were also trained in [14] using a combination of

self-supervised training and human annotations.

Category-Level Grasping. Most recent grasping techniques

focus on learning directly grasp success probabilities from

data [1]±[6], [16]±[21]. Recent proposed methods include

training a hierarchy of supervisors from demonstrations to

grasp objects in clutter [22], and convolutional neural net-

works, such as Dex-net [23], that are trained to detect grasp

6D poses in point clouds [24]. These data-driven techniques,

however, provide grasps that are valid only for picking up

objects, without taking into account the desired manipulation

task. In our proposed method, the robot learns from demon-

stration different types of grasps for different manipulation

tasks, such as pouring or stacking. Goal-conditioned grasping

was considered in recent works, such as [25]. A dataset

of 3D CAD models is required in [25] to learn grasps in

simulation. Our method requires instead only a small number

of demonstration videos without the need for CAD models.

III. PROPOSED APPROACH

A. Proposed Problem Formulation

A human demonstrates a grasping-and-manipulation task

that involves picking up a rigid tool object from a tabletop

that contains an arbitrary set of objects of various types, and

moving the object to a 6D pose with respect to a rigid target

object. Examples of such tasks include: stacking, where the

demonstrator picks up a box and puts it on top of a second

box; pouring, where the demonstrator picks up a cup or a

bottle and places it in a position and rotation relative to

another container so that liquid can flow between the two

objects. No priors or 3D models of the objects are given,

the objects are completely unknown. From only raw RGB-D

videos of the demonstrations, and without any labeling or

annotation, a robot is tasked with re-producing the tasks on

new scenes containing only new objects and not including

any of the objects that appeared in the demonstrations.

We denote the set of demonstrations by T = {τ1, . . . , τn},

wherein each demonstration τ i = (si0, s
i
1, . . . s

i
h) is a se-

quence (or trajectory) of recorded scene states sit at different

time-steps t ∈ {0, . . . , h}. Note that different demonstration

trajectories can have different lengths. A state is a tuple

sit = (< P i
0,t, I

i
0,t >,< P i

1,t, I
i
1,t >, . . . , < P i

m,t, I
i
0,t >),

wherein each element P i
j,t is a point cloud that corresponds

to an object j at time t, and Iij,t is its cropped RGB image.

The list of objects in the scene includes the hand of the

human demonstrator during training, and the robotic hand

during testing. These two are treated similarly to the other

objects, as we argue in this work that grasping is only a

special case of tool use, with the hand being the tool object.

In the first time-step t = 0 of a demonstration τ i, point

clouds {P i
j,0}

m
j=0 are obtained by segmenting the scene’s

depth image. Each point cloud is then tracked over time,

and updated based on the images received at time-steps

t ∈ {t, . . . , h}. The sets of objects used in the demonstrations

and during testing are denoted by Otraining and Otesting,

respectively, with Otraining ∩ Otesting = ∅. At the beginning

of each demonstration, objects are randomly drawn from

Otraining and placed on the support surface. Therefore, each

scene contains a number of ªdistractionº objects that are not

relevant to the demonstrated tasks. Presence of distraction

objects reflects how real-world manipulation tasks are per-

formed in uncontrolled environments.

In a scene st = (< P0,t, I0,t >, . . . , < Pm,t, I0,t >), each

point cloud Pi,t is assigned an intrinsic frame of reference

Xi,t = (ci,t, x⃗i,t, y⃗i,t, z⃗i,t), wherein ci,t is the 3D centroid

of the point cloud, and x⃗i,t, y⃗i,t and z⃗i,t are the principal,

secondary and tertiary axes of the 3D point cloud of object

j at time t, all expressed in the camera’s coordinates system.

The intrinsic frames of reference are computed automatically

by performing a PCA on Pi,t. A high-level policy, denoted

by πh, is used to select a pair of (tool, target) objects from

the set of objects present in the scene. This policy receives

as input state st and returns otool ∈ {0, . . . ,m} and otarget ∈
{0, . . . ,m}. A intermediate-level policy, denoted by πm, is

used to select a desired keypose K ∈ R
3 × SO(3) of the

robotic arm’s wrist. The intermediate-level policy takes as

input state st as well as the (tool, target) objects returned

by the high-level policy. Finally, we denote by πl a low-

level policy. The policy receives as inputs the current robot

configuration in a world coordinates frame, denoted by ct ∈

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2344 submitted to 2023 IEEE International Conference 
on Robotics and Automation (ICRA). Received September 15, 2022.



(

R
3×SO(3)

)J
, where J is the number of joints of the robot

arm/hand, in addition to a desired keypose K of the robotic

arm’s wrist. The policy returns changes ∆ct to apply on ct
to move the robot’s wrist to keypose K.

B. System Overview

The proposed system receives as input at each step an

RGB-D image of the scene containing an end-effector and

a number of unknown objects. The system returns a pair

of tool and target objects, and a 6D key-pose that indicates

where the tool’s frame of reference should be displaced to

relative to the target’s frame. The system also returns a

sequence of low-level actions that move the robot’s joints

so that the tool is placed in the returned key-pose. At the

beginning of a task, the system always selects the robotic

hand as the tool object. The robotic gripper is initially open,

and closes once it reaches the 6D keypose generated by

the system. In a pouring task for example, the first target

selected by the system is a bottle that the robot needs to

grasp. In a small-on-large stacking task, the first target would

be the second-largest box. Once an object is grasped, which

is detected by the system from the point cloud input, the

system returns a different pair of (tool, target) objects. In

our pouring example, the grasped bottle becomes now the

new tool object, and a second object (a cup, for example)

is returned by the system as the new target object. In the

small-on-large stacking example, the grasped box becomes

the tool and the largest box becomes the target object. This

process is repeated until the task is performed.

C. Dynamic Graph CNNs

At the heart of the proposed system lies a Dynamic Graph

Convolutional Neural Network (DGCNN) [26]. DGCNN is

trained to extract task-relevant shape features of an object.

An object is given as a partial point cloud P = {p0, . . . , pl}
wherein pi ∈ R

3 are the coordinates of a point in the camera

frame. Each point is connected to its k-nearest neighbors

in P . The points in P and their connections form a graph

structure, which is given as input to the DGCNN. The first

layer of the network performs an edge convolution on the

object and returns a set of feature vectors X = {x0, . . . , xl},

one for each point pi ∈ P . A feature vector xi ∈ X is

computed as xi = maxpj∈kNN(pi) hΘ(pi, pj) where hΘ is

a function parameterized by Θ = (θ, ϕ) and defined as

hΘ(pi, pj) = ReLU
(

θ.(pi − pj) − ϕ.pi
)

. Set X of feature

vectors returned from the first layer is used to form a new

graph that is given to the second layer, wherein the same

operations are repeated using different values for weights Θ.

And so on, this process is repeated for a number of layers,

followed by fully connected layers that return a feature

descriptor of the entire object. In each layer of the network,

the structure of the graph is dynamically re-defined by

connecting each point x ∈ X to its k-nearest neighbors from

X . This is different from standard graph CNNs, where the

graph structure is defined in the input and kept fixed inside

the network. The resulting architecture is more expressive

Fast-RCNN
DGCNN

Fast-RCNN
DGCNN

Fast-RCNN
DGCNN

Fast-RCNN
DGCNN

Fast-RCNN
DGCNNInput: RGB-D Image

… …

so
ftm

ax

Repeat for all pairs

Object o1

…

Object o2

Object o3

Object o4

Object o5

Fig. 2: High-level policy

than regular GCNNs, as points from distant parts of an object

can become neighbors in later layers, depending on the task.

D. Architecture

High-level policy. The high-level policy receives as input

a state st and a candidate pair of objects (i, j) and returns

πh(i, j), the probability that (i, j) is indeed the pair of tool

and target objects needed for performing the manipulation

task that the system was trained on. This operation is

repeated on all pairs of objects in the scene, and the pair

that receives the highest probability πh(i, j) is selected and

forwarded to the intermediate policy. To compute πh, we start

by extracting features of each pair (i, j) of the objects present

in the scene. For object j paired with object i, we extract a

descriptor vector Φj→i of size 1548 from its point cloud Pj

and corresponding cropped RGB image Ij . The descriptor

vector is defined as Φj→i = [ΦI(Ij),ΦP (Pj), Tj→i]. The

first component ΦI(Ij) is a vector of size 1024 obtained from

Fast-RCNN [27] for the RGB features. The second compo-

nent ΦP (Pj) is a vector of size 512 returned by the DGCNN

module, as explained in Sec. III-C, for the shape features.

The last component Tj→i is a vector of size 12 that represents

the transformation (translation and rotation) of Xj to Xi,

wherein Xj and Xi are respectively the intrinsic frames of

reference of objects j and i, computed after performing a

PCA on each of their point clouds (Sec. III-A). Instead of

keeping the camera’s coordinates system, we take advantage

of our pairing input structure, and express an object’s PCA

pose in the coordinates system of its counterpart, object i.

With this input, the network can avoid irrelevant influences

from different camera poses and focus on motions between

the target and the tool objects.

The backbone of the high-level policy is a class-agnostic

network that takes as inputs Φj→i and Φi→j and returns a

score Fθ(Φj→i,Φi→j) ∈ R for every candidate pair (i, j),
wherein θ are the network’s parameters. From these out-

puts, we define πh(i, j) = softmax(i′,j′)Fθ(Φj′→i′ ,Φi′→j′)
by normalizing over all pairs in the scene, and we set

(otool, otarget) = argmax(i,j) πh(i, j).
Because the policy’s probabilities πh(i, j) are obtained

by normalizing the network’s outputs over all pairs in the

scene, the size of the network is decoupled from the number

of objects and their order. In contrast, an ordinary classifier

requires a fixed number and ordering of output classes. So

our model is more scalable and compact. The backbone Fθ

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2344 submitted to 2023 IEEE International Conference 
on Robotics and Automation (ICRA). Received September 15, 2022.



Fast-RCNN
DGCNN

Fast-RCNN
DGCNN

Target object

Tool object 

Key pose

Predict

Fig. 3: Intermediate-level policy

Target Object Tool Object

Predicted Keypose

Grasped Tool Robot Gripper

Grasping Pose

Initial Frame Final Frame

Descriptor Vector Target Keypose

Low-level Policy

Fig. 4: Learned low-level policy. Note how the generated 6D

keyposes and trajectories depend on the size of the target cup.

is composed of encoders consisting of fully connected layers

for tool candidate descriptor, Φj→i, and target candidate

descriptor, Φi→j , separately. The two branches return two

encoding vectors, one for the tool and another for the target.

The two encoding vectors are concatenated and provided as

input to hidden fully connected layers, which finally output

a scalar. In this design, Fθ receives only features for target

and tool candidates and has no class-specific architecture or

parameters, so it does not require predefined categories and it

can generalize to objects with similar shape and appearance

without manual labeling. It can also handle scenes with an

arbitrary number of objects.

Intermediate-level policy. The pair of objects otarget and

otool, received from high-level policy πh, is provided as input

to an intermediate-level policy πm, which is a second neural

network with a structure identical to Fθ, except for the

last layer that returns a 6D keypose K instead of a scalar.

Returned keypose K is the desired pose of the tool in the

target object’s coordinates system. For stacking, for example,

desired keypose puts the tool object right on the surface of

the target object. For painting, the keypose of a brush places

the tip of the brush on the surface of another object that

needs painting, and keeps the brush orthogonal to the target’s

surface. Keyposes are defined here as relative placements of

objects with respect to each other, which are more consistent

than the ones expressed in the camera coordinates system.

Additionally, as only relative poses between objects are used

here, one can easily use a different calibrated camera during

robot execution (i.e. testing) without the need for an align-

ment with the camera pose used during the demonstrations.

We use rotation matrices in input features Φ and a quater-

nion for the orientation in output K, because transformations

with homogeneous matrices can be easily represented in

linear operations inside neural networks, while the quaternion

is a better output format as it requires less constraints.

Similar to high-level policy πh, πm is also class-agnostic, and

keypose computation can be shared among similar-shaped

objects, which facilitates the training.

Low-level policy. The last component of our decomposed

policy is the low-level policy πl that moves object otool

to its next desired keypose K in the intrinsic frame of

reference of object otarget, after receiving otool, otarget and

K from the previous components. To be specific, πl =
P (∆Ttool→target|Φtool→target,K; η) where η are the low-level

neural network’s parameters. To facilitate the training, we

also include (K − Ttool→target) in the input of this low-level

policy network, which has an inner structure that resembles

the intermediate-level policy (Fig. 3). ∆Ttool→target describes

the change of tool’s pose in each time step. After applying

this change, a new state is sent to the policy, and the policy

returns the next pose change. This process repeats until the

end of the episode or reaching the predicted final keypose

K. The robot’s motion is performed by computing a change

∆ct from ∆Ttool→target to apply on the robot’s configuration

ct, using an inverse kinematics model of the robot, and the

pose of the tool in the robot’s frame. If otool selected by the

high-level policy happens to be the robot’s hand, then the

low-level policy automatically closes the hand once otool is

placed in keypose K, which results in grasping the object.

E. Learning from Demonstrations

During training, the system receives as inputs sequences of

RGB-D images showing a human demonstrating a grasping-

and-manipulation task on unknown objects. The system first

automatically segments the images into individual point

clouds, one per object, by removing the background. The

objects include the human hand, for learning task-appropriate

grasp poses. After segmenting the frames, an RGB-based

tracker [28] is applied to match segments across consecutive

frames. The segment with the most significant motion is

labeled as otool unless that object is the hand of the demon-

strator, in which case it is considered as the tool only if no

object is being grasped. The object closest to the tool object

in the end of the demonstration is labeled as otarget, and the

transformation Totool→otarget
in the end of the demonstration is

considered as the final keypose K. This entire process is fully

automated and does not require any human input other than

performing the demonstration. Given these labels, we train

the high-level policy network to maximize the likelihood of

πh(otool, otarget). Intermediate-level and low-level policies are

trained to minimize the mean squared errors.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2344 submitted to 2023 IEEE International Conference 
on Robotics and Automation (ICRA). Received September 15, 2022.



H
um

an
 D

em
on

st
ra

tio
n

R
ob

ot
 E

xe
cu

tio
n

(A) Stacking: small-on-large

H
um

an
 D

em
on

st
ra

tio
n

R
ob

ot
 E

xe
cu

tio
n

(B) Stacking: large-on-small

H
um

an
 D

em
on

st
ra

tio
n

R
ob

ot
 E

xe
cu

tio
n

(C) Pouring

H
um

an
 D

em
on

st
ra

tio
n

R
ob

ot
 E

xe
cu

tio
n

(D) Painting

Fig. 5: Examples of demonstration videos used for training (top rows) in each of the four manipulation tasks, and examples

of the resulting robot executions on novel scenes (bottom rows).

IV. EXPERIMENTS

We evaluate the proposed method on four manipulation

tasks, listed in Fig. 5, and compare it with several alternative

architectures on the same tasks. For each task, we record 80
demonstration videos for training. The trained system is then

tested on 20 different scenes per task. More details about

these experiments are included in the long version of this

paper available at https://tinyurl.com/ynavw363

along with videos of the robot experiments.

We compare the proposed approach with several network

architectures and imitation learning techniques. The first

three are average pooling, max pooling, and attention,

which aggregate shape (from DGCNN) and appearance

(from Fast-RCNN) descriptors of all the objects that are

present in the scene into one large vector, and use that as

an input to a neural network that returns a predicted target

object, tool object and keypose. In the next two methods, we

compare the proposed feature extractor with ResNet [29] and

Dense Object Nets [10], which was specifically proposed

for learning from demonstrations. Additionally, we compare

against an End-to-End architecture based on ResNet [29],

where the input is identical to our method’s input, but the

output is a low-level action that corresponds to moving the

end-effector or grasping. We also compare with the Genera-

tive Adversarial Imitation Learning (GAIL) algorithm [30],

with an architecture similar to ours, except that it directly

predicts grasps and changes of hand poses in lieu of the

proposed hierarchical decomposition.

The following tasks are used to evaluate the different

learning methods. In Small-on-large box stacking (A), the

robot is tasked with finding the smallest box in the scene and

stacking it on top of the largest one. A predicted keypose is

considered accurate if it is within 3cm from the ground-truth.

The order of the boxes in the stack is reversed in the large-

on-small stacking task (B). In the pouring task (C), the

robot is trained to find a bottle, grasp it from the side, move

it close to a cup, and rotate it to point toward the cup in

order to transfer its content to the cup without spilling. In

the painting task (C), the robot is trained to locate a brush,

grasp it from the side, and use it to draw a short straight

line on a canvas. In all four tasks, we evaluate the methods

based on their: (1) accuracy in predicting target-tool pairs, (2)

accuracy in predicting keyposes, and (3) overall task success

rate, which combines together the two previous criteria.

Success / Trial Task A Task B Task C Task D

Proposed 5/5 5/5 4/5 4/5
Average Pooling 0/5 0/5 0/5 0/5

Max Pooling 2/5 1/5 1/5 0/5
Attention 1/5 1/5 1/5 1/5

ResNet [29] 0/5 1/5 1/5 0/5
End-to-End ResNet [29] 0/5 1/5 0/5 0/5

GAIL [30] 0/5 0/5 0/5 0/5
Dense Object Nets [10] 1/5 0/5 0/5 0/5

TABLE I: Real robot test success rates

Small-on-large box stacking (A), and large-on-small box

stacking (B). Results in the top two rows of Fig.6 show the

advantage of the proposed method in not only overall success

rate but also in selecting tool-target pairs and generating key-

poses. Furthermore, ResNet and Dense Object Nets baselines

reach higher accuracy on target and tool object prediction

than other baselines with other aggregation mechanisms. The

advantage of DGCNN features is clearly shown through the

decline in keypose prediction accuracy when the proposed

method is used with ResNet or Dense Object Nets.

(C) Pouring. We can see from the third row of Fig. 6 a more

pronounced advantage of the proposed method over other

methods in keypose predictions, due to the more complex

nature of the intermediate and low level policies in this task.

The ground-truth keyposes depend on the initial relative pose

of the bottle with respect to the cup because the demonstrator

used the same (left or right) side for grasping and for pouring.

The learned intermediate-policy extracts this information

from the pairs of 6D poses of objects relative to each other.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2344 submitted to 2023 IEEE International Conference 
on Robotics and Automation (ICRA). Received September 15, 2022.



0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

Ov
er

al
l S

uc
ce

ss
 R

at
e

Task (A) Stacking: small-on-large
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

Ta
rg

et
 O

bj
ec

t P
re

di
ct

io
n 

Ac
cu

ra
cy

Task (A) Stacking: small-on-large
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

To
ol

 O
bj

ec
t P

re
di

ct
io

n 
Ac

cu
ra

cy

Task (A) Stacking: small-on-large
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.1

0.2

0.3

0.4

0.5

L2
 E

rro
r o

f P
re

di
ct

ed
 K

ey
-p

os
es

Task (A) Stacking: small-on-large
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

Ov
er

al
l S

uc
ce

ss
 R

at
e

Task (B) Stacking: large on small
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8
Ta

rg
et

 O
bj

ec
t P

re
di

ct
io

n 
Ac

cu
ra

cy

Task (B) Stacking: large on small
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

1.0

To
ol

 O
bj

ec
t P

re
di

ct
io

n 
Ac

cu
ra

cy

Task (B) Stacking: large on small
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.1

0.2

0.3

0.4

0.5

L2
 E

rro
r o

f P
re

di
ct

ed
 K

ey
-p

os
es

Task (B) Stacking: large on small
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

Ov
er

al
l S

uc
ce

ss
 R

at
e

Task (C) Pouring
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
 O

bj
ec

t P
re

di
ct

io
n 

Ac
cu

ra
cy

Task (C) Pouring
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

To
ol

 O
bj

ec
t P

re
di

ct
io

n 
Ac

cu
ra

cy

Task (C) Pouring
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L2
 E

rro
r o

f P
re

di
ct

ed
 K

ey
-p

os
es

Task (C) Pouring
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

Ov
er

al
l S

uc
ce

ss
 R

at
e

Task (D) Painting
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
 O

bj
ec

t P
re

di
ct

io
n 

Ac
cu

ra
cy

Task (D) Painting
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

1.0

To
ol

 O
bj

ec
t P

re
di

ct
io

n 
Ac

cu
ra

cy

Task (D) Painting
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

0 10 20 30 40 50 60 70 80
Number of training trajectories

0.0

0.1

0.2

0.3

0.4

0.5

L2
 E

rro
r o

f P
re

di
ct

ed
 K

ey
-p

os
es

Task (D) Painting
Proposed
ResNet[33]
End-to-End ResNet[33]
Dense Object Nets[10]
GAIL[34]
Average Pooling
Max Pooling
Attention

Fig. 6: Results of experiments on predicting tool-target pairs and keyposes in real novel static scenes, as a function of the

number of videos used for training. The results are averaged over five independent trials.

(D) Painting. Results in the last row of Fig. 6 clearly show

the advantage of the proposed method. But we can see that in

this case, max pooling and attention achieve good accuracy

in target object prediction. We hypothesize that the reason is

that brushes have much different shapes than other objects

present in the scene, and hence, the tool object is easier to

be distinguished when DGCNN features are provided.

IoU Task (A) Task (B) Task (C)

Proposed 84.1% 82.6% 74.6%
Without DGCNN 77.3% 78.1% 56.8%

TABLE II: IoU between generated and ground-truth trajectories

To assess DGCNN features on the low-level policy alone

(without the tool/target and keypose selection), we also

evaluate the Intersection over Union (IoU) between trajec-

tories generated by the policy and ground-truth trajectories.

Two poses from different trajectories are considered as an

intersection if (1) they are within 2cm (2) the cosine between

their rotation axes is higher than 0.9, and (3) the difference

between their rotation angles is less than 20◦. The higher IoU

from Table II suggests that DGCNN features help low-level

motion generation. The improvement is more significant in

pouring than in stacking because the size of the tool/target

objects plays a more important role in pouring trajectories.

V. CONCLUSION

We presented a novel robot imitation learning framework

for performing manipulation tasks in scenes that contain

multiple unknown objects. The proposed model takes fea-

tures from images and point clouds as input, and predicts

a pair of target and tool objects, and a desired keypose for

placing the tool relative to the target. The proposed system

does not require any predefined class-specific priors, and can

generalize to new objects of different shapes within the same

category. Extensive experiments using real demonstration

videos and a real robot show that the proposed model

significantly outperforms state-of-the-art methods.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2344 submitted to 2023 IEEE International Conference 
on Robotics and Automation (ICRA). Received September 15, 2022.



REFERENCES

[1] A. Boularias, O. Kroemer, and J. Peters, ªLearning robot grasping
from 3-d images with markov random fields,º in 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS

2011, San Francisco, CA, USA, September 25-30, 2011, 2011, pp.
1548±1553. [Online]. Available: http://dx.doi.org/10.1109/IROS.2011.
6094888

[2] R. Detry, C. H. Ek, M. Madry, and D. Kragic, ªLearning a dictionary
of prototypical grasp-predicting parts from grasping experience,º 05
2013.

[3] I. Lenz, H. Lee, and A. Saxena, ªDeep learning for detecting robotic
grasps,º International Journal of Robotics Research, vol. 34, 01 2013.

[4] D. Kappler, J. Bohg, and S. Schaal, ªLeveraging big data for grasp
planning,º in 2015 IEEE International Conference on Robotics and

Automation (ICRA), 2015, pp. 4304±4311.

[5] X. Yan, J. Hsu, M. Khansari, Y. Bai, A. Pathak, A. Gupta, J. David-
son, and H. Lee, ªLearning 6-dof grasping interaction via deep 3d
geometry-aware representations,º in Proceedings of IEEE Interna-

tional Conference on Robotics and Automation (ICRA 2018), May
2018.

[6] A. Mousavian, C. Eppner, and D. Fox, ª6-dof graspnet: Variational
grasp generation for object manipulation,º in 2019 IEEE/CVF

International Conference on Computer Vision, ICCV 2019, Seoul,

Korea (South), October 27 - November 2, 2019. IEEE, 2019, pp.
2901±2910. [Online]. Available: https://doi.org/10.1109/ICCV.2019.
00299

[7] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, ªCloth
grasp point detection based on multiple-view geometric cues with
application to robotic towel folding,º in 2010 IEEE International

Conference on Robotics and Automation, 2010, pp. 2308±2315.

[8] D. Seita, N. Jamali, M. Laskey, A. K. Tanwani, R. Berenstein,
P. Baskaran, S. Iba, J. Canny, and K. Goldberg, ªDeep transfer learning
of pick points on fabric for robot bed-making,º 2019.

[9] L. Manuelli, W. Gao, P. R. Florence, and R. Tedrake, ªkpam: Key-
point affordances for category-level robotic manipulation,º ArXiv, vol.
abs/1903.06684, 2019.

[10] P. R. Florence, L. Manuelli, and R. Tedrake, ªDense object
nets: Learning dense visual object descriptors by and for robotic
manipulation,º in 2nd Annual Conference on Robot Learning, CoRL

2018, ZÈurich, Switzerland, 29-31 October 2018, Proceedings, ser.
Proceedings of Machine Learning Research, vol. 87. PMLR, 2018,
pp. 373±385. [Online]. Available: http://proceedings.mlr.press/v87/
florence18a.html

[11] S. Yang, W. Zhang, R. Song, J. Cheng, and Y. Li, ªLearning multi-
object dense descriptor for autonomous goal-conditioned grasping,º
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 4109±4116,
2021.

[12] C. Chai, K. Hsu, and S.-L. Tsao, ªMulti-step pick-and-place tasks
using object-centric dense correspondences,º in 2019 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, IROS 2019,
ser. IEEE International Conference on Intelligent Robots and Sys-
tems. United States: Institute of Electrical and Electronics Engineers
Inc., Nov. 2019, pp. 4004±4011, null ; Conference date: 03-11-2019
Through 08-11-2019.

[13] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese, ªKETO:
learning keypoint representations for tool manipulation,º CoRR, vol.
abs/1910.11977, 2019. [Online]. Available: http://arxiv.org/abs/1910.
11977

[14] M. Vecerik, J.-B. Regli, O. Sushkov, D. Barker, R. Pevceviciute,
T. RothÈorl, C. Schuster, R. Hadsell, L. Agapito, and J. Scholz, ªS3k:
Self-supervised semantic keypoints for robotic manipulation via multi-
view consistency,º 2020.

[15] T. Schmidt, R. A. Newcombe, and D. Fox, ªSelf-supervised visual
descriptor learning for dense correspondence,º IEEE Robotics Autom.

Lett., vol. 2, no. 2, pp. 420±427, 2017. [Online]. Available:
https://doi.org/10.1109/LRA.2016.2634089

[16] A. Boularias, J. A. Bagnell, and A. Stentz, ªEfficient optimization for
autonomous robotic manipulation of natural objects,º in Proceedings

of the Twenty-Eighth AAAI Conference on Artificial Intelligence,

July 27 -31, 2014, QuÂebec City, QuÂebec, Canada., 2014, pp.
2520±2526. [Online]. Available: http://www.aaai.org/ocs/index.php/
AAAI/AAAI14/paper/view/8414

[17] A. T. Pas and R. Platt, ªUsing geometry to detect grasp poses in 3d
point clouds,º in ISRR, 2015.

[18] L. Pinto and A. Gupta, ªSupersizing self-supervision: Learning
to grasp from 50k tries and 700 robot hours,º in 2016 IEEE

International Conference on Robotics and Automation, ICRA 2016,

Stockholm, Sweden, May 16-21, 2016, D. Kragic, A. Bicchi, and
A. D. Luca, Eds. IEEE, 2016, pp. 3406±3413. [Online]. Available:
https://doi.org/10.1109/ICRA.2016.7487517

[19] J. Mahler and K. Goldberg, ªLearning deep policies for robot bin
picking by simulating robust grasping sequences,º ser. Proceedings of
Machine Learning Research, S. Levine, V. Vanhoucke, and K. Gold-
berg, Eds., vol. 78. PMLR, 13±15 Nov 2017, pp. 515±524.

[20] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, ªDex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,º 2017.

[21] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
ªQt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,º 2018.

[22] M. Laskey, J. Lee, C. Chuck, D. Gealy, W. Hsieh, F. T. Pokorny,
A. D. Dragan, and K. Goldberg, ªRobot grasping in clutter: Using
a hierarchy of supervisors for learning from demonstrations,º in
2016 IEEE International Conference on Automation Science and

Engineering (CASE), 2016, pp. 827±834.
[23] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,

and K. Goldberg, ªLearning ambidextrous robot grasping policies,º
Science Robotics, vol. 4, no. 26, p. eaau4984, 2019.

[24] A. ten Pas, M. Gualtieri, K. Saenko, and R. P. Jr., ªGrasp
pose detection in point clouds,º CoRR, vol. abs/1706.09911, 2017.
[Online]. Available: http://arxiv.org/abs/1706.09911

[25] B. Wen, W. Lian, K. E. Bekris, and S. Schaal, ªCatgrasp:
Learning category-level task-relevant grasping in clutter from
simulation,º CoRR, vol. abs/2109.09163, 2021. [Online]. Available:
https://arxiv.org/abs/2109.09163

[26] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon, ªDynamic graph CNN for learning on point
clouds,º CoRR, vol. abs/1801.07829, 2018. [Online]. Available:
http://arxiv.org/abs/1801.07829

[27] R. Girshick, ªFast r-cnn,º in Proceedings of the IEEE International

Conference on Computer Vision (ICCV), December 2015.
[28] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, ªHigh performance visual

tracking with siamese region proposal network,º in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018.
[29] K. He, X. Zhang, S. Ren, and J. Sun, ªDeep residual learning for image

recognition,º in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 770±778.
[30] J. Ho and S. Ermon, ªGenerative adversarial imitation learning,º

Advances in neural information processing systems, vol. 29, pp. 4565±
4573, 2016.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2344 submitted to 2023 IEEE International Conference 
on Robotics and Automation (ICRA). Received September 15, 2022.


