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Abstract Acquiring a precise model is a challenging task for many important
robotic tasks and systems - including in-hand manipulation using underactuated,
adaptive hands. Learning stochastic, data-driven models is a promising alternative
as they provide not only a way to propagate forward the system dynamics, but also
express the uncertainty present in the collected data. Therefore, such models en-
able planning in the space of state distributions, i.e., in the belief space. This paper
proposes a planning framework that employs stochastic, learned models, which ex-
press a distribution of states as a set of particles. The integration achieves anytime
behavior in terms of returning paths of increasing quality under constraints for the
probability of success to achieve a goal. The focus of this effort is on pushing the
efficiency of the overall methodology despite the notorious computational hardness
of belief-space planning. Experiments show that the proposed framework enables
reaching a desired goal with higher success rate compared to alternatives in sim-
ple benchmarks. This work also provides an application to the motivating domain
of in-hand manipulation with underactuated, adaptive hands, both in the case of
physically-simulated experiments as well as demonstrations with a real hand.

1 Introduction
Uncertainty during fabrication, underactuation, soft contacts and partial observ-

ability are frequent reasons that makex an analytical model infeasible for many im-
portant robotic tasks and systems. For example, 3D-printed, underactuated com-
pliant hands [24] differ in size, weight, inertia, stiffness and friction depending on
the manufacturing technique. Due to the resulting uncertainties, manually designing
precise models for these hands is a significant challenge on top of the difficulty in
modeling passively elastic joints [13, 36]. The lack of accurate analytical models
complicates the control and planning for such systems, especially for tasks that are
dynamic in nature, such as within-hand manipulation.

A popular solution to this limitation is to acquire a stochastic model based on
recorded transition data, such as through the application of a Gaussian Process (GP)
[33]. Given the current state and a desired action, the stochastic model provides a
distribution of the next state exhibiting the uncertainty in the data. Then, this allows
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a motion planner to use the stochastic model to propagate forward the system’s
dynamics. A naı̈ve approach would be to sample from the output distribution of the
stochastic model to acquire the next state. This, however, eliminates reasoning about
the current belief, i.e., the distribution of possible states. Therefore, the roll-out of
the plan has high likelihood of deviating from the desired path and fail.

Fig. 1 Physics engine simulation of the Model T42 adaptive hand in the Gazebo environment (left).
A visualization of the approximated workspace (based on data) of the hand, shown in yellow, along
with the initial belief distribution bo (right).

This paper proposes a belief-space planning framework, which utilizes stochas-
tic, data-driven models that represent beliefs as a collection of particles [29]. The
algorithm leverages the uncertainty expressed by the learned stochastic model to
find a path that guarantees a minimum probability of success given the model and
which can be optimized over time. The quality of a path can be measured by met-
rics, such as duration of execution, while the probability of success is influenced by
the potential interaction of a path with invalid regions, such as obstacles or dropping
an object during within hand manipulation, given the belief distribution.

Planning in belief space with learned models is equivalent to planning for sys-
tems with complex dynamics where there is no steering function and can only for-
ward propagate the dynamics. In prior work, we proposed one of the first sampling-
based planners, which achieves asymptotic optimality for systems with dynamics
[19, 20]. We then extended it to anytime belief space planning for a Non-Observable
Markov Decision Process (NOMDP) given particle set representations of beliefs,
where a critical choice is the distance function in the belief space [23].

The current work describes how to incorporate learned stochastic models in
sampling-based belief-space planning. This objective is to achieve increasingly bet-
ter paths as a function of computation time, which also guarantee a certain level of
robustness for challenging tasks that are difficult to model analytically. Furthermore,
the work improves the practical computational efficiency of the integrated frame-
work. The paper provides an evaluation through a set of simple systems followed
by an application on in-hand manipulation with underactuated adaptive hands, in-
cluding both in a physics-engine and demonstrations on the real hand. Two dif-
ferent stochastic data-driven models for adaptive hands were used in this process,
one based on prior recent work [36], which utilizes Gaussian processes, and a new
data-driven model based on Bayesian Neural Networks.
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2 Related Work
Belief Space Planning Interestingly, some promising efforts in belief-space

planning uses similar tools to those used in the deterministic case. In particular,
sampling a small set of representative beliefs and planning with respect to only this
small set of sampled beliefs. In fact, many methods (e.g., [2, 29, 32]) in belief-space
planning are extensions of sampling-based ones for the deterministic case, such as
PRM, RRT, PRM∗, and RRG [5, 15]. These methods typically restrict beliefs to be rep-
resented by Gaussian parameters or consider the maximum likelihood estimate of
the state.

Recent work, which has shown that one can achieve asymptotic optimality with-
out a steering function in the deterministic case [19, 22], has the potential to allow an
even more straightforward way to extend sampling-based planners to belief-space
planning. The similarity between deterministic planning without a steering function
and belief-space planning indicates that properties critical for deterministic motion
planning are likely to be critical for belief-space motion planning as well.

Similar to sampling-based methods for the deterministic case, many equivalent
approaches for belief-space planning rely on distances between beliefs to partially
guide their sampling and pruning operations [16, 17, 38]. Many distance functions
can be potentially used and they can have significantly different effects in belief-
space planning. Nevertheless, the effectiveness of the different distance functions
has not been studied in the related literature on belief-space planning.

Planning and Control with Learned Stochastic Models Planning and control
using data-driven transition models is becoming increasingly a popular alternative
to model-free methods [21], especially in low-dimensional problems where data ef-
ficiency is critical [27, 28, 18, 8, 21, 6], and to analytical models that are difficult
to accurately handcraft in practice. Prior works on trajectory search methods using
learned stochastic models often use a Gaussian Process [28, 8] or a Bayesian neural
network [27] to represent the transition function and learn it from data. The belief
state is approximated with a Gaussian by using the moment matching technique, and
propagated in time for forecasting future trajectories and optimizing a parameterized
controller. The Gaussian approximation is required for deriving a gradient-based op-
timization of the trajectory [8]. This requirement was relieved in other works where
the belief state is approximated by a set of particles [27]. One study [27] has shown
that moment matching is a crucial limitation, but did not present a planning or con-
trol method that utilizes the belief state particles. Another thorough study [6] also
clearly demonstrated the benefit of particles over moment matching. Trajectories in
[6] are however obtained from the generic black-box cross-entropy method (CEM),
which is computationally expensive [1]. Learned, stochastic, transition models are
also gaining in popularity in high-dimensional problems, as shown by the recent
works on deep visual foresight for planning robot motion [14, 9, 39, 35, 31]. Particle
propagation are the method of choice in these applications, although there has not
been any work on robust planning in these applications to the best of our knowledge.
This work differs from the aforementioned works mainly by considering robustness
constraints in a belief space planner to deal with uncertainties that are inherent to
data-driven models.
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3 Problem Definition
Let x ∈ X⊂ Rn be an observable state vector of a given system and u ∈ U be an

action taken from a set U of possible actions. The state space is decomposed into
a valid subsect Xvalid and an invalid one. Validity typically refers to the state being
collision-free but it can also consider other types of failure regions. The system is
governed by the unknown transition f : X×U→ X, such that a given state-action
pair (xt ,ut) at time t is mapped to the next state xt+1 according to xt+1 = f (xt ,ut).
Denote as bt the belief distribution over the state space X at time t. The initial
belief is assumed to be unimodal, for instance, distributed according to a Gaussian
bo ∼ N(µo,Σo).

This work considers a Non-Observable Markov Decision Process (NOMDP)
problem [23]. In this setup, observations are not available and planning is performed
solely based on the initial belief bo. The problem is to plan a path π , which reaches
a region G(xg) for the goal state xg with high probability, which involves the fol-
lowing two aspects:

a) the minimum probability of the path being valid should be above a threshold δ ,
i.e., Prob(π(t) ∈ Xvalid) > δ ∀ t ∈ [0 : T ], where π(t) is the state along the path
π of duration T at time t, and

b) the probability of successfully reaching the goal region G must be above a
threshold κ , Prob(π(T ) ∈G(xg))> k, where π(T ) is the final state along path π

of duration T .
Given these constraints, the path should be optimizing a cost function C, such as path
duration or length. The next section discusses the learning of a stochastic model,
followed by the planning framework addressing the problem defined here.

4 Learning a model
As discussed previously, a precise model of a system xt+1 = f (xt ,ut) is not al-

ways available. An approximate data-based model xt+1 = f̃ (xt ,ut) offers an alter-
native and can be used in model-based algorithms. This section briefly describes
stochastic data-based models that encapsulate both state uncertainty and uncertain-
ties in the training data. These models are applicable to the motivating domain of
within-hand manipulation and are used in the experimental section.

A training set is acquired by applying random actions to the system, while record-
ing the observable states. Consequently, the resulting data is a set of state-action
trajectories P = {x̄0, . . . , x̄k}, where x̄i = (xT

i , uT
i )

T . Later, the trajectories in P are
pre-processed to a set of training inputs x̄i and corresponding output labels of the
next state xi+1 to define the training set T= {(x̄i,xi+1)}N

i=1.
For each x̄i, we also label di = {success,fail} indicating whether the tran-

sition from xi with action ui resulted in a failure. In the context of within-hand
manipulation, a failure corresponds to the hand dropping the manipulated object. A
classifier, such as a neural network or a Support Vector Machine (SVM), is trained
from the labeled data in terms of failures. The classifier provides the failure proba-
bility Prob(xt+1 /∈ Xvalid) ∈ [0,1] for the state xt+1 that arises from the application
of action ut at a given state xt .
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4.1 Stochastic Data-based Models
Given the training data T, for any state-action pair x̄t we aim to learn the dis-

tribution of the next state p(xt+1|x̄t) = p( f̃ (xt)|x̄t). Next, we briefly discuss two
data-based methods for this stochastic regression problem. We demonstrate the use
of these methods in the evaluation section.

4.1.1 Gaussian Processes

A model can be learned by using a Gaussian Process (GP) [33], which is a non-
parametric regression method. Let k be a kernel function, k : Rn ×Rn → R, for
measuring the similarity between two states in Rn. Let XN =

(
x1,x2 . . . ,xN

)
be a

set of observable hand-object states, and let YN =
(
y1,y2 . . . ,yN

)
be the set of ob-

servable hand-object states resulting from applying a given action in the states in
XN , where yi = f (xi)+ εi and εi ∼ N(0,σ2) is independent white noise. The kernel
Gram matrix K is an N×N positive-definite matrix, defined as Ki j = k(xi,x j), for
i, j ∈ {1, . . . ,N}. Given XN and YN , the posterior distribution on the values of f in
any state x∗ is a Gaussian with mean vector µ(x∗) and covariance matrix Σ(x∗),

µ(x∗) = k(x∗)T
β , (1)

Σ(x∗) = k(x∗,x∗)−k(x∗)T (K +σ
2I)−1k(x∗), (2)

where β = (K +σ2I)−1YN , k(x∗) = k(XN ,x∗), and I is an identity matrix.
The computational bottleneck in evaluating the GP is computing the Cholesky

decomposition of the covariance function. Thus, the computational complexity
scales cubically O(N3) with the size of the dataset N, making often global regres-
sion infeasible [30]. Nearest-neighbor GP provides a scalable alternative by using
local information for regression [7]. Only data points in the proximity of the query
point are used to make a prediction [36]. For each query state-action pair, a set of
nearest-neighbors is searched and used for regression.

4.1.2 Bayesian Neural Networks

While a conventional Artificial Neural-Network (ANN) can provide global regres-
sion, its output is deterministic and cannot reason about confidence in the result.
That is, an ANN does not output model uncertainty. Bayesian Neural Networks
(BNN) [26], on the other hand, provide model uncertainty by incorporating pos-
terior distributions over the weights of the network. The use of dropouts in ANN
yields a Bayesian approximation of the uncertainty [10], similar to GP’s.

5 Robust Planning with Learned Models
In this section we describe the core components of the framework: propagating

the belief state and planning over belief space.

5.1 Belief-State Propagation
Given the current state xt and action ut , the learned models described in Section 4

are able to provide a distribution for the next state p(xt+1|x̄t). Uncertainty about the
current state would, however, requires integrating the predictive distribution over the
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current distribution. That is, given a distribution for the current state-action1 p(x̄t),
the distribution of the next state is given by the integration of

p(xt+1) =
∫

x̄t

p(x̄t)p(xt+1|x̄t)dx̄t . (3)

Distribution p(xt+1|x̄t) is given by the posterior distribution and is a non-linear
function. Therefore, the belief for the next state p(xt+1) is not Gaussian and its inte-
gral is analytically intractable [12]. For that matter, we approximate the distribution
of the next state by propagating particles through the model. Particles propagation
was proposed in [29] to propagate uncertainty. A set of particles is stored in each
node to represent the corresponding distribution. Then, propagation from a node
is performed by simulating each particle along with a desired action, to acquire a
new set of particles that approximates the distribution of the next node. Similarly, in
[12], a Monte-Carlo method was used to approximate a Gaussian for the propagated
belief. Samples from the current belief are propagated through a GP yielding a new
set of propagated samples. The mean and variance can then be taken to represent the
next belief state. In this work, we combine these two notions to approximate belief
states through a stochastic data-based model with Particles Propagation (PP). A set
of M particles Bt from distribution bt ∼ p(x̄t) is propagated through the model to
acquire a new set Bt+1. We denote this mapping as

bt+1 = Γ (bt ,ut) (4)

(or Bt+1 = Γ (Bt ,ut)). Prior to propagation, all particles are checked for validity
through the classifier, using ps (for each xi

t ∈Bt ). The invalid particles are counted in
M f . To preserve constant number of particles, failed ones are omitted and replaced
by duplicating survived particles in Bt . Furthermore, the probability of bt+1 ≈ Bt+1
being valid is

pvalid(bt+1) =

(
1−

M f

M

)
(5)

The process of propagating a set of particles is described in Algorithm 1.
Note that in the case of a GP model, GP(Bt ,ut) is a batch particles propagation

(BPP) version of (1)-(2) where the states of all particles in Bt are concatenated be-
fore applied, providing a much faster computation than applying (1)-(2) for each
particle individually. We note that an analytical solution exists that provides a Gaus-
sian approximation of (3) using exact moments [8, 12]. However, the computational
efficiency of the method was tested to be rather low compared to the BPP with GP
and did not prove to be better in accuracy. Thus, we do not include the method in
this paper.

1 Although actions are certain in some of our test cases, for simplicity and generality, we denote
actions as uncertain along with the state.
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Algorithm 1: PP (Bt ,ut)

1 Initialize empty set Bt+1;
2 Init M f ← 0;
3 foreach xi

t ∈ Bt do
4 if random([0,1])> ps(xi

t ,ui
t) then

5 Remove xi
t from Bt ;

6 M f ←M f +1;
7 end
8 end
9 pvalid(bt+1)←

(
1− M f

|Bt |

)
;

10 Sample M f points from Bt and add to Bt ; // Duplicates valid particles to keep

|Bt | consistent
11 Bt+1← Γ (Bt ,ut);
12 return Bt+1, pvalid(bt+1);

Fig. 2 The uncertainty of the system is captured using a particle distribution over the system’s
state. Using the black-box propagation model, each particle is propagated to obtain the next state’s
distribution (left). In order for the new node to be added to the tree, two robustness constraints
are checked. First, the ratio of valid particles over the total must exceed the threshold δ (middle).
Validity can refer to constraints such as being collision-free, or other criteria, depending on the
system. Second, the most dense cluster of particles is computed through mean-shift, and the goal
region is transposed to this center (right). The ratio of particles that lie within this transposed region
must exceed the threshold κ .

5.2 Belief-Space Planning
The objective of the planner is to a compute a sequence of controls u∗ for a

system affected by noise, in the state and/or control space, such that the trajecto-
ries rolled out from these controls have a high likelihood of reaching the goal and
remaining valid. There are two main components necessary to perform such kin-
odynamic motion planning - state validity and state transition. Related work has
proposed using learned models built from collecting data from the adaptive hand
to generate a classification of the valid state space [4] and a state transition model
[36]. Given as input the belief of the current state bt , and the desired control to apply
ut , the transition model (4) provides the belief of the next state, while the validity
model provides the probability of being valid Pvalid(bt+1).

For deterministic planning, the probability of success can be treated in a binary
fashion (i.e. setting a strict threshold of 50%), allowing for a classification of the
invalid portion of the state space. Equipped with these tools, it is possible to apply
a standard search-tree method (e.g. an A*-like) attempting to solve this problem.
There are several issues, however, which make such a search process intractable.
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Namely, the high dimensionality of the system prevents easy discretization of the
state space. Additionally, recall that an A* will expand the states of all neighbors
first, thereby requiring several calls to the transition model at each iteration. How-
ever, the propagation time of a set of particles is non-trivial, so avoiding this as much
as possible can greatly speed up the search.

Algorithm 2: ROBUST (bo,G(xg),κ,δ ,dte)
1 Initialize probabilities: pvalid(bo), psuccess(bo)← 1.0;
2 Initialize belief-space tree: T←{bo, pvalid(bo), psuccess(bo)};
3 Initialize candidate action set: Ucand(bnew)← NULL;
4 while t ≤ dte do
5 if bt−1 6= /0 and h(bt−1)< h(bt−2) then
6 bsel ← bt−1 ; // bias selecting node which improved heuristic

7 else
8 bsel ← SearchSelection() ; // sample state space to select node

9 Ucand(bsel)← GenerateCandidateActions(bsel ,δ );
10 ubest ← argmin

u∈Ucand

h(bsel ,u) ; // select action with best predicted heuristic

11 Ucand(bsel)← Ucand(bsel)\ubest ; // remove selected action from action set

12 bt , pvalid ← PP(bsel ,ubest) ; // Alg. 1 generates next belief

13 cost(bt)← cost(bsel)+ cost(ubest) ; // compute the cost of executing ubest
14 pvalid(bt)←min(pvalid(bsel), pvalid); // retain the minimum pvalid
15 psuccess← ComputeOverlap(bt ,G(xg)) ; // compute success probability

16 psuccess(bt)←min(psuccess(bsel), psuccess); // retain the minimum psuccess
17 if cost(bt)> cost(u∗) or pvalid(bt)< δ or psuccess(bt)< κ then
18 bt ← /0 ; // prune node which does not meet the constraints

19 if bt 6= /0 then
20 T,u∗← AddEdge(bsel → bt , pvalid(bt), psuccess(bt)) ; // add new edge to tree

21 Ucand(bt)← NULL;

22 return u∗ ; // the best found action sequence within the time limit

The high level-algorithm for the planing process is presented in Alg. 2, which
is inspired by a search strategy capable of using heuristics [3, 22]. Given an initial
belief bo, a desired goal region G(xg) (defined as hyper-ball around xg), the validity
constraint threshold κ , the success constraint threshold δ , and the planning time
limit dte, the planner must return a solution action sequence u∗ which optimizes
some cost function (i.e. path length). This planning process ensures the following
robustness constraints on trajectories rolled out using u∗. First, the probability of
the trajectory remaining valid throughout its execution is above the threshold δ .
This is computed by evaluating the ratio of particles which are valid at each step
of the trajectory. Second, the probability of the trajectory reaching the goal region
is above the threshold κ . This is maintained by following the uncertainty pruning
condition, and the final goal check verifies that the ratio of particles within the goal
region is above the threshold (Fig. 2 right).
Selecting Nodes for Expansion: Each iteration of the algorithm starts by selecting
a node of the belief-space tree so as to expand it (lines 5-8). If a node was added
during the previous iteration, and its heuristic value is better than its parent on the
tree, then the newly added node is selected for expansion (line 5-6). The heuristic



Belief-Space Planning using Learned Stochastic Models 9

value h(b) of a belief-state corresponds to an optimistic estimate of the cost to reach
G(xg). Otherwise, if there was no progress made in the previous iteration towards
reaching G(xg), the SearchSelection subroutine (line 8) instead uses a proba-
bilistic selection process, where the probability of selecting a node depends on the
node’s corresponding sum of cost from the root and heuristic cost to reach the goal.
All nodes are guaranteed to have a non-zero probability of being selected; however,
nodes with better costs and heuristic sum have a greater probability.
Ordering Candidate Actions: ROBUST iterates over the generated actions, which
are prioritized in terms of the lowest h, and the best action ubest is considered for
addition at each iteration (line 11). The standard approach to ordering the candidate
action set Ucand for a given search tree node is to prioritize actions with better heuris-
tic. Doing so allows for promising actions to be executed first, reducing the need
to spend expensive propagation steps on every action out of the node. The choice
of heuristic could significantly improve the performance of the planner. However,
since this is not the focus of this paper, we have elected to instead use the standard
Euclidean distance in state space as the heuristic in each benchmark.
Particle Propagation: Once a node and action is selected, the algorithm propagates
to find the next belief state (line 12), the total cost incurred (line 13), and probabil-
ity of being valid (line 14). Rather than keep track of cumulative probabilities, our
method imposes that the bottle-neck (i.e. minimum) probability is constrained. Oth-
erwise, for longer sequences of controls, these probabilities can quickly approach
an infinitesimal number.
Pruning Conditions: The probability of successfully reaching the goal (lines 15-
16) is also computed, which is accomplished by applying mean-shift to the belief
distribution of the current state, computing the highest density region of particles
(Figure 2 (right)). Because of the NOMDP nature of the problem, the uncertainty of
state (i.e. its variance) can only increase over time. Hence, the psuccess can be treated
as a pruning condition. A node is pruned from the tree if: a) it’s cost incurred is
greater than the best solution cost found; b) the pvalid < δ ; or c) the psuccess < κ .
If the node bt passes these checks (line 17), then it is added to the tree T (line 20).
Furthermore, if a better path to the goal is discovered with the addition of bt , it is
recorded as u∗ (line 20).

6 Experimental Evaluation
We evaluate the proposed method over a variety of noisy systems. Initially, the

framework is evaluated independently of the data-driven learned models, to show
the efficacy of the proposed planner. Next, we build either a GP or a BNN over a
point system, a physics-engine simulated adaptive hand, and the real adaptive hand.
Experiments are comprised of a planning phase, which computes a trajectory to
execute, and a rollout phase, which executes the trajectory several times.

6.1 Planning results
We experimentally evaluate the validity of the proposed approach, as well as

several comparison points, across multiple different systems, both in simulation and
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on the real robot. Unless otherwise specified in the experiment, the following algo-
rithms, experiment setup, and metrics were used in the evaluation.

Algorithms: ROBUST is the proposed belief-space planning approach, MEAN-ONLY
is similar to the proposed approach but reinitializes all particles to be the mean at
each time-step, and STANDARD is a deterministic approach (i.e. no particles). All
methods make use of a learned stochastic transition model and a failure classifier
(both obtained from data), as discussed in Section 4.

Setup: All methods were evaluated on a single Intel Xeon E5-4650 processor
with 8 GB of RAM. First, for the 2D Point System, Simulated Hand, and Real
Hand, data was collected to generate the transition model and classifier. Next, the
planning approaches were given these models and tasked with computing a solution
for reaching a goal region within a specified time limit. Solutions that were found
within this time limit were subsequently rolled out multiple times.

Metrics: In each experiment (unless otherwise stated), we evaluate each planning
approach in terms of initial solution and planning solved rate (solution returned
within a specified time limit). Since the planner is asymptotically-optimal, we report
both the initial and final solution path lengths (cumulative state space distance).
Solutions found within the time limit are rolled out several times, and we report
both the ratio of paths that reached the goal (reached goal rate) and the ratio of paths
that remained valid (validity rate).

6.1.1 Noisy Control Space Example

This experiment evaluates the proposed planning framework for a 2-link acrobot,
which is passive-active [37] and has a 4 dimensional state space. The system is
controlled through torque on the second joint. Although the system is low dimen-
sional, it is highly non-linear. Additionally, we introduce noise into the controls
in the following fashion: torques which are within 50% of the control limits have
zero noise, while torques above this threshold have Gaussian noise added to it. The
system is tasked with reaching an upright balancing position with near-zero veloc-
ity while avoiding obstacles, including self collisions. Actions for the system are
generated by sampling in the continuous control space. The heuristic is the dis-
tance between the given state and the upright goal in task space. We evaluate both
STANDARD and ROBUST, with a planning time limit of 5 minutes, and constraint
thresholds {δ := 0.8,κ := 0.7}. Figure 3 shows an example of a planned path and
multiple rollouts for each algorithm. Quantitative results are reported in Table 1.
Table 1 Results for the Noisy Acrobot system averaged over 25 different trials.

Acrobot Experiment
STANDARD ROBUST

Initial Solution Time [s] 221.5 312.5
Initial Solution Path Length 52.4 72.7
Final Solution Path Length 47.8 59.3

Planning Solved Rate 0.68 0.64
Reached Goal Success Rate 0.00 0.72

Validity Rate 0.16 0.84
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Fig. 3 Example rollouts for the acrobot showing the planned path (yellow) vs. multiple rollouts
(red) for the STANDARD(left) and ROBUST(right) algorithms. Paths which collide are marked with a
blue dot at the collision point.

Remarks: As shown in Table 1, STANDARD had the smallest computation time and
consequently the highest planning solved rate. Given that STANDARD does not main-
tain a belief-state during planning, these results are expected. STANDARD also had
the shortest initial and final solution path lengths, indicating that it was using high-
torque controls to quickly steer the system to the goal state. However, rolling out
these actions showed that the STANDARD solutions were incapable of reaching the
goal (0% reached the goal) and often collided (only 16% were collision-free and
valid). In contrast, ROBUST had longer computation time (via the particle propaga-
tion) and consequently a lower planning solved rate. Furthermore, both the initial
and final solution paths from ROBUST were longer. However, rolling out the ROBUST
solutions resulted in 72% of the paths reaching the goal region, and 84% of paths
remained valid. These results indicate that the proposed planning framework is suc-
cessfully satisfying the imposed robustness constraints.

6.1.2 Noisy State Space Experiment

This experiment evaluates the proposed planning framework for a 2D Point sys-
tem with a data-based learned model, and where noise is introduced into different
regions of the state space. Each “corridor” in the state space corresponds to a spe-
cific combination of state space noise and probability of being valid pvalid . Refer-
ring to Figure 4, these scenarios are (from bottom corridor to top): {high noise,
low pvalid},{high noise, high pvalid},{low noise, low pvalid}, and {low noise, high
pvalid}. For this setup, approximately 500,000 transition points were collected while
applying random discrete actions corresponding to the eight cardinal directions.
With the collected data, we trained a GP local regressor of 100 nearest neighbors.
Remarks: As shown in Table 2, STANDARD again has the smallest computation
time. Both STANDARD and MEAN-ONLY were unable to avoid the {high noise, high
pvalid} corridor in the state space, and consequently the rollouts of their solutions
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Fig. 4 Experimental results for the point-system showing plots of the planned path vs. multiple
rollouts for the STANDARD (left), MEAN-ONLY (middle), and ROBUST (right) algorithms.
Table 2 Results for the 2D Point System averaged over 25 different trials.

2D Point Experiment
STANDARD MEAN-ONLY ROBUST

Initial Solution Time [s] 2.9 25.1 61.7
Initial Solution Path Length [mm] 29.2 28.8 61.2
Final Solution Path Length [mm] 28.2 27.5 54.0

Planning Solved Rate 1.0 1.0 1.0
Reached Goal Success Rate 0.04 0.08 .96

Validity Rate 0.24 0.2 .96

resulted in low reached goal rates and validity rates. Although ROBUST again took
the longest amount of computation time, it nevertheless produced solutions whose
rollouts were nearly all successful. These results indicate that the proposed plan-
ning framework can incorporate a learned transition model successfully, while also
satisfying the imposed robustness constraints.

6.2 Underactuated Adaptive Hand Experiments
In this section, we evaluate the algorithm for in-hand manipulation of underactu-

ated adaptive hands. First, we study planning for a physics engine simulation of the
hand following a real-hand demonstration.

We consider a two-finger adaptive hand fabricated through 3D printing [25]. The
fingers are opposed to each other such that the hand achieves planar manipulation.
Each finger has two compliant joints with springs. In addition, two actuators provide
flexion to the fingers through tendons running along the length of each finger. The
fingers also have high friction pads to avoid slipping. In [36], the position of the
manipulated object and the actuators load were shown to be sufficient to describe the
state of a real hand under a quasi-static motion assumption. Thus, in the following
in-hand manipulation test cases, the state of the system is composed of the position
and loads. In addition and for simplification, the experiments consider eight possible
actions. An action is, in practice, unit changes to the angles of the actuators at each
time step. That is, an action moves the two actuators with an angle vector of λ (γ1,γ2)
where λ is a predefined unit angle and γi is equal to either 1, -1 or 0 (yielding eight
possible actions while excluding (0,0)).
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6.2.1 Physics-Engine Experiments

We first evaluate the proposed planning algorithm on physics engine simulation of
the Model T-42 adaptive hand [25] in Gazebo environment as seen in Figure 1.
The compliance of the hand was modeled as proposed in [34]. Then, approximately
2,400,000 transition points were recorded in 2.5 Hz while manipulating a cylinder
with 19.2 mm mm diameter. Using the collected data, we have trained a Rectified
Linear Unit (ReLU) BNN with two hidden layers and 200 neurons each. We also
approximated the initial distribution bo when grasping the object with a Gaussian.

We defined six goals within the workspace of the hand and positioned obstacles
in the region. For each goal, a path was planned using ROBUST, MEAN-ONLY and
STANDARD from bo to the goal region. For each planned path, 10 rollouts of the
action sequence were executed. The success rate and tracking errors are presented
in Table 3. The scenarios, planned paths and rollouts are illustrated in Figure 5.

Fig. 5 Physics engine simulation results for manipulating the underactuated hand between obsta-
cles (in gray). The black curves are the planned paths to the goal region (magenta circle). The blue
and red curves are successful and failed paths, respectively. The yellow region is the approximated
workspace of the hand. Black cells indicate that a solution was not found.
Table 3 Results for the Gazebo Adaptive Hand experiments averaged over 6 goals run twice each
(12 trials).

Gazebo Adaptive Hand Experiments
STANDARD MEAN-ONLY ROBUST

Initial Solution Time [s] 15.6 550.6 615.9
Initial Solution Path Length [mm] 51.28 55.98 67.01
Final Solution Path Length [mm] 49.73 50.12 65.42

Planning Solved Rate 83.3 58.3 91.7
Reached Goal Success Rate 0.04 0.25 .62

Validity Rate 0.06 .78 .73

Remarks: As shown in Table 3, STANDARD expectedly has the smallest computa-
tion time. Without any robustness constraints, STANDARD also produced the shortest
solution paths. However, these paths typically approached the obstacles very closely.
Consequently, as was shown in the prior experiments as well, the reached goal and
validity rates of the STANDARD solutions were very low (4% and 6% respectively).
Although MEAN-ONLY solutions improved these metrics (25% reached the goal and
78% were valid), this approach had the lowest planning solved rate with a much
higher average computation time. The ROBUST method took the longest amount of
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time, and also produced the longest solution paths. However, as also seen in the
prior experiments, the ROBUST solutions had the highest rates of reaching the goal
and remaining valid. Interestingly, ROBUST also had the highest planning solved rate,
which seems to indicate that the robust constraints assist the exploration of the state
space to reach the goal quicker and more efficiently.

6.2.2 Real Hand Demonstration

For a real hand demonstration, we have built an autonomous data collection system
(seen in the supplementary video) to collect a sufficient amount of data. A three-
finger Model-O underactuated hand [25], modified to use only two opposing fin-
gers, was mounted on an arm of a Motoman DA20 Dual arm robot. It manipulated
a cylinder with 45 mm diameter. To estimate the position of the cylinder during ma-
nipulation, ArUco fiducial markers [11] were attached to the hand and object such
that, during in-hand manipulation, the position of the object relative to the hand is
recorded. At each episode, the object is grasped, and manipulated with random ac-
tions while recording the state until dropped. After each drop of the object, a wire
running through the object is stretched using the second arm of the Motoman to
reposition it between the fingers toward regrasp. Approximately 400,000 transition
points were recorded in 10 Hz and used to train a GP local regressor of 100 near-
est neighbors. A peg-in-a-hole problem is demonstrated where the hand is tasked to
drop the cylinder into a 45 mm diameter hole. Planned paths from the STANDARD

and ROBUST algorithms were rolled-out and snapshots are seen in Figure 6.

Fig. 6 Demonstration of STANDARD and ROBUST plans on the three-finger Model-O underactuated
hand [25] for a peg-in-the-hole task.

7 Discussion
This paper proposes a belief-space planning framework, which utilizes data-

based models. We combined the notion of particle propagation to consider distri-
bution of states along with stochastic models that reason about uncertainty in the
data. This combination was embedded in a sampling-based motion planning algo-
rithm. We imposed constraints on the particles along the path such that the minimum
predicted probability of success is above a predefined threshold. We also included a
pruning condition, a cost-to-go heuristic and prioritized actions with better heuris-
tics, all to improve the overall performance. A varying set of experiments, including
an application for in-hand manipulation with underactuated hands, demonstrate that
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the proposed algorithm showcase significant improvement in success rate relative
to alternatives that do not reason about the underlying uncertainty. The key limi-
tation is the higher computation time due to the need to propagate a large set of
particles. In future work we will put effort in reducing the computation time for a
batch of particles by utiling both systems-based approaches (e.g., parallelization) as
well as algorithmic tools. We will also consider the expansion of the algorithm to
path tracking, which can enable tasks such as writing characters using within-hand
manipulation.
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