
Article

The International Journal of

Robotics Research

1–22

� The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0278364919846551

journals.sagepub.com/home/ijr

Physics-based scene-level reasoning for
object pose estimation in clutter

Chaitanya Mitash , Abdeslam Boularias and Kostas Bekris

Abstract

This paper focuses on vision-based pose estimation for multiple rigid objects placed in clutter, especially in cases involv-

ing occlusions and objects resting on each other. Progress has been achieved recently in object recognition given

advancements in deep learning. Nevertheless, such tools typically require a large amount of training data and significant

manual effort to label objects. This limits their applicability in robotics, where solutions must scale to a large number of

objects and variety of conditions. Moreover, the combinatorial nature of the scenes that could arise from the placement of

multiple objects is difficult to capture in the training dataset. Thus, the learned models might not produce the desired level

of precision required for tasks, such as robotic manipulation. This work proposes an autonomous process for pose estima-

tion that spans from data generation to scene-level reasoning and self-learning. In particular, the proposed framework

first generates a labeled dataset for training a convolutional neural network (CNN) for object detection in clutter. These

detections are used to guide a scene-level optimization process, which considers the interactions between the different

objects present in the clutter to output pose estimates of high precision. Furthermore, confident estimates are used to label

online real images from multiple views and re-train the process in a self-learning pipeline. Experimental results indicate

that this process is quickly able to identify in cluttered scenes physically consistent object poses that are more precise than

those found by reasoning over individual instances of objects. Furthermore, the quality of pose estimates increases over

time given the self-learning process.

Keywords

Object detection, 6D pose estimation, robot perception, convolutional neural networks, Monte Carlo tree search,
lifelong learning

1. Introduction

A critical capability of a robot is to be able to identify the

six-degree-of-freedom (6-DoF) poses of objects in their

surroundings so as to be able to manipulate them. Many

environments, however, contain cluttered scenes, where

objects are placed in complex arrangements, and can only

be partially observed from the robot’s viewpoint due to

occlusions. An example of such a setup exists in current

day warehouses, where robots are being deployed for tasks

such as picking from bins, packing, and sorting. Recently,

deep learning methods, such as those employing convolu-

tional neural networks (CNNs), have become popular for

object detection (Redmon et al., 2016; Ren et al., 2015)

and pose estimation (Kehl et al., 2017; Xiang et al., 2018),

outperforming alternatives in object recognition bench-

marks. These desirable results are typically obtained by

training CNNs using datasets that involve a very large num-

ber of labeled images. However, these datasets need to be

collected in a way that captures the intricacies of the

environment the robot is deployed in, such as lighting con-

ditions, occlusions, and self-occlusions, in clutter.

The recent Amazon Picking Challenge (APC) (Correll

et al., 2016) has reinforced this realization and has led into

the development of datasets specifically for the detection of

objects inside cluttered shelving units (Rennie et al., 2016;

Singh et al., 2014; Zeng et al., 2017). These datasets are

created either with human annotation or by incrementally

placing one object in the scene and using foreground mask-

ing. An increasingly popular approach to avoid manual

labeling is to use synthetic datasets generated by rendering

3D CAD models of objects with different viewpoints.

Synthetic datasets have been used to train CNNs for object

Computer Science Department, Rutgers University, Piscataway, NJ, USA

Corresponding author:

Chaitanya Mitash, Computer Science Department, Rutgers University, 617

Bowser Road, Piscataway, NJ 08854, USA.

Email: cm1074@rutgers.edu

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0278364919846551
journals.sagepub.com/home/ijr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364919846551&domain=pdf&date_stamp=2019-05-08

detection (Peng et al., 2015) and viewpoint estimation (Su

et al., 2015). One major challenge in using synthetic data is

the inherent difference between virtual training examples

and real testing data. For this reason, there is considerable

interest in studying the impact of texture, lighting, and

shape to address this disparity (Sun and Saenko, 2014).

Another issue with synthetic images generated from render-

ing engines is that they display objects in poses that are not

necessarily physically realistic. Moreover, occlusions are

usually treated in a rather naive manner, i.e., by applying

cropping, or pasting rectangular patches, which again

results in unrealistic scenes (Movshovitz-Attias et al., 2016;

Peng et al., 2015; Su et al., 2015).

This motivates the development of a synthetic dataset

that could capture the known parameters of the environment

and generate data accordingly. It should also be able to

avoid overfitting to the unknown parameters. The first key

idea presented in this work is the use of a physics engine in

a synthetic dataset generation pipeline. The physics engine

defines environmental constraints on object placement,

which naturally capture in the training set, the distribution

of object poses that can realistically appear during testing.

Furthermore, a physics engine is a very convenient tool to

parameterize the unknown scene features, such as illumina-

tion. Randomization over such parameters is very effective

in avoiding overfitting to synthetic textures of objects.

Even after detecting all the objects in a given image

using a trained CNN, the problem of estimating the 6-DoF

poses of the objects in the 3D workspace involves geo-

metric reasoning regarding the position and orientation of

the detected objects. Very recently end-to-end learning for

6-DoF pose estimation was proposed by Kehl et al. (2017)

and Xiang et al. (2018). These methods predict the approx-

imate 6-DoF poses and are often followed by an online

local optimization process in the form of iterative closest

points (ICP) (Besl and McKay, 1992). Other solutions that

have been developed use a CNN for object segmentation

(Hernandez et al., 2016; Zeng et al., 2017) followed by a

3D model alignment step using point cloud registration

techniques (Besl and McKay, 1992; Mellado et al., 2014).

The quality of the pose estimate, however, can still suffer

due to over-reliance on the learned models.

The second key observation of this work is to treat

individual object predictions with some level of uncertainty

and perform a global, scene-level optimization process that

takes object interactions into account. This information

arises from physical properties, such as respecting gravity

and friction as well as the requirement that objects do not

penetrate one another. Through this physical reasoning,

which is achieved by incorporating physics simulations,

the resulting pose estimates for the objects are of improved

accuracy and by default consistent. In this way, they can be

directly used in the context of manipulation planning

framework.

Once the system has access to an object detector and a

pose estimation process, it could already be deployed for

the desired application. However, as the system performs

its task, it gets access to data in the operation domain which

it did not have access to initially. This data could be very

useful in further improving the performance of the system.

Nevertheless, this data is not labeled. This motivates the

need for automatically labeling real images and adding

them to the existing synthetic dataset.

Overall, the current work has two contributions.

Algorithmically, this work proposes a Monte Carlo tree

search (MCTS) based optimization process for scene-level

reasoning with physics-based priors. The MCTS-based

algorithm searches over the cartesian product of individual

object pose candidates to find the optimal scene hypothesis

with respect to a score defined in terms of similarity of ren-

dered hypothesized scenes with the input data. The search

performs constrained local optimization for each of these

candidate object poses via physics correction and ICP. This

helps in pruning a large search space and, thus, quickly

achieving accurate pose estimates. Second, this work pro-

vides a complete pipeline for 6-DoF pose estimation of

objects placed in clutter. The main components of the pro-

posed pipeline include the following.

� A physics simulation tool, which uses scene informa-

tion, such as the placement of a resting surface (e.g.,

tabletop, shelf, etc.), object models, and camera calibra-

tion to set up an environment for generating training

data. The tool performs physics simulation to place

objects at realistic configurations and renders images of

scenes to automatically generate a synthetic dataset to

train an object detector. This tool exploits the known

environmental constraints and randomizes the unknown

parameters to generate a dataset, which captures, to a

good extent, the properties of clutter.
� A self-learning process, which employs a robotic

manipulator to autonomously collect multi-view images

of real scenes and to label them automatically using the

object detector trained with the above physics-based

Fig. 1. Top: A physically-realistic dataset is generated and is

used to train a CNN for object detection. Bottom: In the online

phase, pose estimation is performed via a Monte Carlo tree

search process, which performs scene-level reasoning to output

physically realistic pose estimates of higher accuracy.

2 The International Journal of Robotics Research 00(0)

simulation tool. The key insight behind this system is

the fact that the robot can often find a good viewing

angle that allows the detector to accurately label the

object and estimate its pose. The object’s predicted pose

is then used to label images of the same scene taken

from more difficult and occluded views. The transfor-

mations between different views are known because

they are obtained by moving the robotic manipulator.

The proposed pipeline is evaluated over four challenging

datasets, namely, the Shelf&Tote dataset (Zeng et al., 2017),

Linemod (Hinterstoisser et al., 2012), Linemod-Occluded

(Brachmann et al., 2014), and the Extended Rutgers RGBD

dataset, which was collected by the authors and labeled to

test the applicability of the physics-based scene-level rea-

soning process.

On the Shelf&Tote dataset, the proposed pipeline, which

bootstraps pose estimation with a synthetic dataset outper-

forms state-of-the-art systems that have access to labeled

real images. Extended Rutgers RGBD dataset was collected

to reflect different levels of physical dependencies between

objects. Evaluation over this dataset shows that the MCTS-

based reasoning could quickly identify physically realistic

accurate poses for complex setups where approaches that

consider individual object instances fail to provide a good

solution. Finally, the entire pipeline was evaluated on

Linemod and Linemod-Occluded according to a recently

published benchmark on pose estimation (Hodan et al.,

2018) and the proposed approach outperforms several

state-of-the-art techniques on this task.

This paper is an integration of two conference articles by

the same authors into a complete framework for object pose

estimation (Mitash et al., 2017, 2018). It expands upon the

technical details provided in the aforementioned articles

and provides additional examples as well as evaluations. In

particular, it contributes a comprehensive process for object

pose estimation, which starts with the generation of training

data in physics-based simulation, followed by the steps of

congruent set matching to generate object pose hypothesis,

pose clustering to reduce the cardinality of the hypothesis

set, and a scene-level optimization process to get accurate

pose estimates. It also discusses how the obtained pose esti-

mates can be used in a self-learning process to reduce the

domain gap that might exist between the simulated training

data and real test scenes. The dataset and code for the entire

pipeline have been made publicly available (at http://
www.physimpose.com).

2. Related work

This section discusses the different methodologies for object

pose estimation and their relation to the current work.

2.1. Local point descriptors

One popular approach to pose estimation is to match feature

points between textured 3D models and images (Collet

et al., 2011; Lowe, 1999; Rothganger et al., 2006). This

requires, however, textured objects and good lighting condi-

tions, which has instead motivated the use of range data.

Some range-based techniques compute correspondences

between local point descriptors on the observed scene and

on the object CAD models. Once correspondences are estab-

lished, robust detectors such as generalized Hough transform

(Ballard, 1981) or random sample consensus (RANSAC)

(Fischler and Bolles, 1981a) are used to compute the rigid

transform that is consistent with the majority of correspon-

dences. Several local descriptors are available (Aldoma

et al., 2012a), such as signature of histograms of orientations

(SHOT) (Tombari et al., 2010), fast point feature histogram

(FPFH) (Rusu et al., 2009), and Spin Images (Johnson and

Hebert, 1999). There has also been work on improving the

efficiency of RANSAC and Hough transform (Papazov and

Burschka, 2010; Tombari and Di Stefano, 2010). Feature-

based approaches can be extended to multi-view object rec-

ognition (Pillai and Leonard, 2015) and pose estimation

(Erkent et al., 2016) so as to increase accuracy relative to

single frame estimates. This family of methods depends on

local surface information, which is sensitive to the resolution

and quality of sensor and model data. The features are often

parameterized by the area of influence, which is not trivial

to decide. Smaller area could lead to less discriminative fea-

tures between different surfaces on the object, while a larger

area could result in sensitivity to occlusion and noise.

2.2. Oriented point pair features

One proposed way to counter these limitations is to use

oriented point pair features (Drost et al., 2010) so as to cre-

ate a global object model in the form of a map that stores

the model points that exhibit each feature. This map can

then be used to match the features in the scene and to obtain

the object pose through a fast voting scheme. This idea was

later extended to incorporate color (Choi and Christensen,

2012), geometric edge information (Drost and Ilic, 2012),

and visibility context (Kim and Medioni, 2011). Recently,

point pair features were used for segmenting the scene into

several clusters, where each cluster generates a separate

pose hypothesis (Birdal and Ilic, 2015). The votes are

weighted based on the probability of visibility of model

points. Recent work (Hinterstoisser et al., 2016) used a

sampling strategy for scene points by reasoning about the

size of the object model. The approach modifies the voting

scheme to accommodate sensor noise by also voting in the

neighboring bins. Point pair features have been criticized in

some occasions for performance loss in the presence of

background clutter, sensor noise, and also due to their

quadratic computational complexity.

2.3. Template matching and coordinate

regression

Another category of methods for pose estimation is based

on template matching, such as Linemod (Hinterstoisser

Mitash et al. 3

et al., 2012) and variants such as Hodaň et al. (2015). This

method is based on viewpoint sampling around a 3D CAD

model and building templates for each viewpoint based on

color gradient and surface normals, which are later matched

to compute object pose. GPU-based implementations help

to speed-up computation (Cao et al., 2016). Other popular

approaches (Brachmann et al., 2014; Krull et al., 2015;

Tejani et al., 2014) are based on learning to predict 3D

object coordinates in the local model frame. A recent effort

(Michel et al., 2017) performed geometric validation on

these predictions using a conditional random field. The per-

formance of these approaches can be highly dependent on

the predictions of three-dimensional object coordinates

from the random forest, which are not trivial to train.

Template matching approaches, on the other hand, often fail

to reason about occlusions.

2.4. Deep learning

The success of deep learning on problems related to object

detection and semantic segmentation (Long et al., 2015;

Ren et al., 2015) has motivated their use for aspects of pose

estimation or for the development of direct pipelines for

pose estimation (Xiang et al., 2018). Inspired by the applic-

ability of CNNs for descriptor learning of RGB-D views

(Wohlhart and Lepetit, 2015), recent work (Kehl et al.,

2016) has demonstrated deep learning of descriptive fea-

tures from local RGB-D patches used to create 6D pose

hypotheses. Similarly, CNNs have been used to detect

semantic keypoints to estimate the 6- DoF pose consistent

with the keypoints (Pavlakos et al., 2017). Deep learning

has also been integrated in a principled way with a global

search for the discovery of 3- DoF poses of multiple

objects (Narayanan and Likhachev, 2016). There are also

other data-driven approaches for identifying features for

object recognition (Bo et al., 2014). The success of these

approaches often depends on representative labeled training

data. In addition, these methods are often followed by a

local optimization process, such as ICP, which is not

always sufficient for fixing the errors and ambiguities in

predictions. The current work leverages the success of deep

learning in the task of object segmentation. It considers,

however, the uncertainties in individual object predictions

to guide a global optimization process to estimate poses.

2.5. Registration methods

Many recent pose estimation techniques (Hernandez et al.,

2016; Mitash et al., 2018; Zeng et al., 2017) integrate

CNNs for segmentation with pointset registration tech-

niques (Mellado et al., 2014). Popular local registration

approaches are Iterative Closest Points (ICP) (Besl and

McKay, 1992) and its variants (Bouazix et al., 2013; Mitra

et al., 2004; Rusinkiewicz and Levoy, 2001; Segal et al.,

2009; Srivatsan et al., 2017), which typically require a

good initialization. Otherwise, registration requires finding

the best aligning rigid transform over the 6-DoF space of

all possible transforms, which are uniquely determined by

three pairs of (non-degenerate) corresponding points. A

popular strategy is to invoke RANSAC to find aligned tri-

plets of point pairs (Irani and Raghavan, 1996) but suffers

from a frequently observable worst case O(n3) complexity

in the number n of data samples, which has motivated

many extensions (Cheng et al., 2013; Gelfand et al., 2005).

The 4PCS algorithm (Aiger et al., 2008) achieved O(n2)
output-sensitive complexity using four congruent point

basis instead of three. This method was extended to

Super4PCS (Mellado et al., 2014), which achieves O(n)
output-sensitive complexity. The accuracy of these meth-

ods, however, highly depends on the predictions from the

object detector.

2.6. SLAM

SLAM (Durrant-Whyte and Bailey, 2006; Thrun et al.,

2005) is a popular problem in robotics which deals with

constructing the map of an unknown environment with a

sensor mounted on a robot while simultaneously keeping

track of the location of the robot in the world frame.

Recently, a popular strategy in this field is object-based

SLAM (McCormac et al., 2018; Salas-Moreno et al.,

2013), which performs object pose estimation and tracking

using a depth sensor and uses the relative configurations of

the objects to reason about the location of the camera.

Several such approaches also make use of synthetic data-

sets with simulated camera trajectories to learn semantic

information for indoor scenes (McCormac et al., 2017).

There have also been efforts (Stein and Roy, 2018) at brid-

ging the domain gap between these synthetic scenes and

sensor-acquired images for semantic labeling via image

translation techniques such as CycleGAN (Zhu et al.,

2017). Although these work have a notion of using syn-

thetic dataset for learning semantic scene segmentation and

of applying scene-level constraints, this problem space is

quite different from that of object pose estimation in clut-

tered scenarios.

2.7. Global scene-level reasoning

A popular approach to resolve conflicts arising from local

reasoning is to generate object pose candidates and perform

a hypothesis verification (HV) step (Akizuki and

Hashimoto, 2016; Aldoma et al., 2012b, 2013). The

hypotheses generation in most cases occurs using a variant

of RANSAC (Fischler and Bolles, 1981b; Mellado et al.,

2014). One of this method’s drawbacks is that the gener-

ated hypotheses might already be conflicted due to errors

in object segmentation and thus performing an optimiza-

tion over this might not be very useful. A recently proposed

method reasons globally about the hypotheses generation

process (Michel et al., 2017). Nevertheless, this requires

explicit training for pixel-wise predictions. Another

approach to counter these drawbacks corresponds to an

exhaustive but informed search to find the best scene

4 The International Journal of Robotics Research 00(0)

hypothesis over a discrete set of object placement config-

urations (Narayanan and Likhachev, 2016). A tree search

formulation as described above was defined to effectively

search in 3-DoF space. It is not easy, however, to apply the

method for 6-DoF pose estimation due to scalability and

resolution issues.

This work shows that by training an object detector with

an autonomous clutter-aware process, it is possible to gen-

erate a set of object candidate poses by a fast global point

cloud registration method, which only has local geometric

conflicts. Generating candidate poses in this manner and

then applying a search process, which constrains each

object expansion to other object placements, leads to sig-

nificant improvements in the final pose estimation results.

3. Problem setup

This work considers the problem of estimating the 6D poses

of N known objects fO1, . . . ,ONg in a scene, captured by

an RGB-D camera. Knowledge of the following elements is

assumed.

� Geometric models are given as textured triangular

meshes fM1, . . . ,MNg for all objects present in the

scene. Mass of objects are kept constant across all

objects and friction, and linear and angular damping

coefficients for objects are set to maximum within the

simulator.
� Triangular mesh and pose Trs for the resting surface of

the objects, such as a shelf or a table in a global refer-

ence frame.
� The intrinsic and extrinsic parameters K, Tcam for the

camera.

The estimated poses are returned as a set of rigid-body

transformations fT1, . . . , TNg, where each Ti = (ti,Ri) cap-

tures the translation ti 2 R3 and rotation Ri 2 SO(3) of

object model Mi in a globally defined reference frame.

4. Approach

This section presents the proposed approach for object rec-

ognition and pose estimation. It first describes how a data-

set of labeled images could be generated autonomously to

train a CNN for object detection. It then outlines how the

detection output of CNNs is used in a search process to

obtain 6-DoF pose estimates of multiple objects present in

the scene. Finally, it describes a self-learning pipeline that

uses the pose estimation output to label real images from

multiple views and re-train the detector to improve its

performance.

4.1. Generating the training dataset

The first component of the proposed framework physically

simulates scenes containing target objects and generates

images of the corresponding scenes using the parameters of

a known camera. This is used to generate a synthetic

dataset for training a CNN -based object detector. The pipe-

line for this process is depicted in Figure 2.

The dataset generation process mimics a real-world

setup involving a sensing system for robotic manipulation,

where a camera is mounted on a robotic arm. The robot is

placed in front of a surface for object placement (resting

surface), such as a shelf-bin or table-top, which contains

the objects. In such a setup, forward kinematics can be

used to provide the 6-DoF pose Tcam of the camera.

Furthermore, a camera calibration process provides the

intrinsic parameters of the camera K. The pose of the rest-

ing surface Trs relative to the robot is determined by a

RANSAC-based estimation process (Fischler and Bolles,

1981b). For instance, for the shelf depicted in Figure 2,

such a pose estimation process was implemented by com-

puting the edges and planes on the retrieved depth data and

matching them against the known geometry of the shelf.

Given the above information as input, the method aims

to render and automatically label several images in simula-

tion as discussed in Algorithm 1.

The algorithm simulates a scene by first selecting ran-

domly a set of objects O from the list of available object

models M1:N (line 3). The initial pose of an object is pro-

vided by function INITIAL_RANDOM_POSES (line 4), which

samples uniformly at random along the x and y axes from

the range (�dimi

2
, dimi

2
), where dimi is the dimension of the

resting surface along the ith axis. The initial position along

the z axis is fixed and can be adjusted to either simulate

dropping or placing. The initial orientation is sampled

appropriately in SO(3). Then, function PHYSICS_SIM is

called (line 5), which physically simulates the objects and

allows them to fall due to gravity, bounce, and collide with

each other as well as with the resting surface. Any inter-

penetrations among objects or with the surface are treated

by the physics engine. The final poses of the objects PO
final,

when they stabilize, resemble real-world poses. Gravity,

friction coefficients, and mass parameters are set at similar

values globally and damping parameters are set to the max-

imum to promote fast stabilization.

The environment lighting and point light sources are

varied with respect to location, intensity, and color for each

rendering (line 6). Simulating various indoor lighting

sources helps to avoid over-fitting, which makes the train-

ing set more robust to different testing scenarios. Once

lighting conditions are chosen, the simulated scene is ren-

dered from multiple views using the pre-defined camera

poses (line 6). The rendering function RENDER requires the

set of stabilized object poses TO
final, the camera viewpoint as

well as the selected lighting conditions and intrinsic camera

parameters (line 7). Finally, perspective projection is

applied to obtain 2D bounding box labels for each object

in the scene with function PROJECT (line 8). The overlapping

portion of the bounding boxes for the object that is further

away from the camera is pruned.

The generated synthetic dataset is used to train an object

detector based on Faster-RCNN (Ren et al., 2015), which

utilizes a deep VGG network architecture (Simonyan and

Mitash et al. 5

Zisserman, 2015). The dataset generation module has

been implemented using the Blender API, which

internally uses the Bullet physics engine and has been pub-

licly shared (https://github.com/cmitash/
physim-dataset-generator).

A critical requirement for learning with synthetic data

as discussed above is the need for modeling the domain in

the simulation. The precision with which the geometry and

texture of the objects and support surface need to be mod-

eled depends on the set of objects to be detected. If the

objects have very different geometries, a noisy modeling of

the shape using surface reconstruction technique such as

KinectFusion (Izadi et al., 2011) is good enough for the

recognition task, such as in the Linemod dataset

(Hinterstoisser et al., 2012). If there are multiple objects

with similar geometry, accuracy in modeling the texture

and color is more critical to achieving a good performance,

for example in the Shelf&Tote dataset (Zeng et al., 2017).

Other physical properties such as mass and friction coeffi-

cients of objects have been kept as constant over all

objects for the scope of this work while object material

properties and parameters corresponding to the illumina-

tion of the environment have been randomized within a

wide domain.

Fig. 2. Pipeline for physics aware simulation. The 3D CAD models are generated and loaded in a calibrated environment on the

simulator. A subset of the objects is chosen for generating a scene. Objects are physically simulated until they settle on the resting

surface under the effect of gravity. The scenes are rendered from known camera poses. Perspective projection is used to compute 2D

bounding boxes for each object. The labeled scenes are used to train a Faster-RCNN object detector (Ren et al., 2015), which is tested

on a real-world setup.

Algorithm 1: PHYSIM_CNN(Tcam,Trs,K,M1:N)

//Tcam: set of camera poses for rendering
//Trs: pose of the resting surface
//K: intrinsic camera parameters
//M1:N : mesh models for all N objects

1. dataset ;
2. while (jdatasetj\ desired size) do
3. O a random subset of objects from M1:N ;
4. TO

init INITIAL_RANDOM_POSES(O);
//random initial pose within a specified domain is assigned to each object in O

5. TO
final PHYSICS_SIM(TO

init, Trs, O);
//physics simulation is performed to obtain the final, physically consistent object pose
for objects in O

6. Light PICK_LIGHTING_CONDITIONS();
7. foreach (view 2 Tcam) do
8. image RENDER(TO

final, view, K, Light);
9. {labels, bboxs} PROJECT(TO

final, view);
//set of object poses TO

final is used to generate bounding-boxes in all views
10. dataset dataset [(image, labels, bboxs);
11. Train FASTER-RCNN with the generated dataset;

6 The International Journal of Robotics Research 00(0)

4.2. Pose estimation

The next component of the system is a method for 6-DoF

pose estimation. It proceeds by:

1. generating a set of pose hypotheses based on the detec-

tions from the previously trained detector for each

object present in the scene; and

2. searching efficiently over the set of joint hypotheses

for the most globally consistent solution.

Global consistency is quantitatively evaluated by a score

function. The score function measures the similarity

between the actual observed depth image and a rendering

of the objects in simulation using their hypothesized poses.

The hypothesized poses are adapted during the search pro-

cess, so as to correspond to poses where the objects are

placed in a physically realistic and stable configuration

according to a physics engine that simulates rigid object

dynamics.

4.2.1. Hypothesis generation. Some of the desired proper-

ties for a set of 6D pose hypotheses are as follows:

� informed and diverse enough such that the optimal

solution is either already contained in the set or a close

enough hypothesis exists so that a local optimization

process can fine-tune it and return a good result;
� limited in size, as evaluating the dependencies among

the hypotheses set for different objects can lead to a

combinatorial explosion of possible joint poses and sig-

nificantly affect the computational efficiency;
� does not require extensive training.

This work considers all of these properties while gener-

ating the hypothesis set. The pseudocode for hypothesis

generation is presented in Algorithm 2.

The detector trained with the autonomous training pro-

cess proposed in the previous section is used to extract

bounding-box (bboxO) for each object O in the scene.

Fig. 3. The process of hypotheses generation for objects present in the scene. The process starts with extracting object segments S1:3

using Faster-RCNN, followed by a congruent set matching process to compute a set of possible model transformations (T1:3) that

correspond to the respective segments. These transformations are then clustered to produce object- specific hypotheses sets (H1:3).

Algorithm 2: GEN_HYPOTHESIS(RGB,depth,M1:N)

//Given an RGB-D image and a set of object models M1:N , GEN_HYPOTHESIS generates pose candidates hO

for each object O.
1. H fhO = ;,8O 2 M1:Ng;
2. foreach object O in the scene do
3. bboxO RCNN_DETECT(RGB, O);

//bounding box is detected for object O using the trained Faster-RCNN detector.
4. PO GET_3DPOINTS(bboxO, depth);

//3D point cloud of object O is extracted from the depth image according to bbox
5. TO CONGRUENT_SET_MATCHING(MO,PO);

//a set of pose candidates is generated as illustrated in Figure 4
6. fclustertr, centertrg KMEANStr(TO);

//candidate poses are clustered according to their translation vectors using the KMeans
algorithm.

7. foreach cluster C in clustertrdo
8. fclusterrot, centerrotg K-KMEANStr(C);

//candidate poses within cluster C are further clustered according to their Euler angles
using Kernel-KMeans.

9. hO hO [(centertr, centerrot);
10. H H [hO;
11. return H;

Mitash et al. 7

This, in turn, gives a segment PO of the 3D point cloud.

Segment PO is a subset of the point cloud of the scene and

contains points from the visible part of the object O.

Segment PO frequently contains some points from nearby

objects because the bounding box does not perfectly match

the shape of the object.

The received point set PO is then matched to the object

model MO in the subroutine CONGRUENT_SET_

MATCHING in Algorithm 2 to generate pose candidates for

the object. This module, inspired by the Super4PCS

(Mellado et al., 2014) algorithm, iteratively samples a set

of four co-planar points from PO called the base and finds

sets of four points on the model which are congruent under

rigid transformation to the base. Each pair of congruent

sets gives a pose hypothesis. The matching process is

depicted in Figure 4. The fact that the distances, angles,

and ratios of the intersection of line segments are main-

tained over a rigid transform is used to come up with an

efficient linear time algorithm for finding the congruent

sets. The time complexity of this process is O(n + m + k),
where n is the number of points on the sampled object

model, m is the number of point pairs on the model which

are at the same distance as a point pair on the sampled

base, and k is the number of the congruent sets found cor-

responding to the sampled base. As opposed to RANSAC

(Fischler and Bolles, 1981b), which has a time complexity

of O(n3) for matching a set of three points to all triplets of

points on the model, this process better exploits the geo-

metric constraints from rigid transformations and effi-

ciently produces a relatively small set of pose candidates.

Nevertheless, Super4PCS evaluates each of these trans-

formations to find the one that achieves the best alignment

according to the largest common pointset (LCP) metric.

This returned transformation, however, is not necessarily

the optimal object pose as the point cloud segment

extracted via the detection process could include parts of

other objects or due to lack of visible surface might not be

informative enough to compute the correct solution. This

motivates the consideration of other possible transforma-

tions for the objects, which can be evaluated in terms of

scene-level consistency.

Thus, the proposed process retains a set of possible

transformations TO computed using congruent set matching

within a given time budget to. It is interesting to consider

the quality of the hypotheses set returned by the above pro-

cess by measuring the error between the returned pose

hypotheses and the ground truth. For this purpose, a valida-

tion dataset containing 90 object poses was used.

Specifically, in each hypothesis set, the pose hypothesis

that has the minimum error in terms of rotation is selected

as well as the one with the minimum translation error. The

mean errors for these candidates over the dataset are listed

in Table 1. The results positively indicate the presence of

hypotheses close to the true solution. Specifically, the can-

didate with the minimum rotation error seems almost per-

fect in the rotation and not very far even with respect to

translation. Nevertheless, this hypothesis set contained

approximately 20,000 elements. It is intractable to evaluate

scene-level dependencies for that many hypotheses per

object as the combined hypotheses set over multiple objects

grows exponentially in size.

4.2.2. Clustering of hypotheses. To reduce the cardinality

of the hypotheses sets returned by the subroutine

CONGRUENT_SET_MATCHING in Algorithm 2, this work pro-

poses to cluster the 6D poses in each set TO, given a dis-

tance metric. Computing distances between object poses,

which are defined in SE(3), in a computationally efficient

Table 1. Evaluating the quality of the hypotheses set returned by Super4CPS with respect to different metrics.

Metric for selection Mean Rotation error Mean Translation error

[All hypotheses] max. LCP score 11.16� 1.5 cm
[All hypotheses] min. rotation error from ground truth 2.11� 2.2 cm
[All hypotheses] min. translation error from ground truth 16.33� 0.4 cm
[Clustered hypotheses] min. rotation error from ground truth 5.67� 2.5 cm
[Clustered hypotheses] min. translation error from ground truth 20.95� 1.7 cm

Fig. 4. The congruent-set-matching process which

finds sets of four points on the scene and on the object model

that are congruent under rigid transformation. All the point pairs

on the model M with distances similar to jp1 � p3j and jp2 � p4j
on the sampled base, can be found in linear time using an

efficient technique as described in Mellado et al. (2014). Then

four-point congruent sets are found by evaluating these point

pairs based on other invariances such as ratios and angles.

8 The International Journal of Robotics Research 00(0)

manner is not trivial (Zhang et al., 2007). This challenge is

further complicated if one would like to consider the sym-

metry of the geometric models, so that two different poses

that result in the same occupied volume given the object’s

symmetry would get a distance of zero.

To address this issue, a two-level hierarchical clustering

approach is followed. The first level involves computing

clusters of the pose set in the space of translations (i.e., the

clustering occurs in R
3 by using the Euclidean distance

and ignoring the object orientations) using a K-means pro-

cess (Arthur and Vassilvitskii, 2007) to obtain a smaller set

of cluster representatives clustertr. In the second level, the

poses that are assigned to the same clusters are further clus-

tered based on a distance computed in the SO(3) space that

is specific to the object model, i.e., by considering only the

orientation of the corresponding pose. The second cluster-

ing step uses a kernel K-means approach (Dhillon et al.,

2004), where the cluster representative is found by mini-

mizing the sum of kernel distances to every other point in

the cluster. This process can be computationally expensive

but returns cluster centers that nicely represent the accuracy

of the hypotheses set. By using this clustering method, the

size of the hypotheses set can be reduced down from

20,000 rigid transforms in TO to 25 object pose hypotheses

in hO for each object in the scene. The two bottom rows of

Table 1 evaluate the quality of the cluster representatives in

the hypotheses set. This evaluation indicates that the clus-

tering process returns hypotheses as cluster representatives

that are still close to the true solution. In this way, it pro-

vides an effective way of reducing the size of the hypoth-

eses set without sacrificing its diversity.

4.2.3. Search. Once the hypotheses set is built for each

object in the scene, the task reduces to finding the object

poses that lie in the physically consistent neighborhood of

the pose candidates and best explain the overall observed

scene. In particular, given:

� the observed depth image ID;
� the number of objects in the scene N;
� a set of 3D mesh models for these objects M1:N ;
� and the sets of 6D transformation hypotheses for the

objects h1:N (output of Algorithm 2);

the problem is to search in the hypotheses sets for an N-

tuple of poses T1:N so that Ti 2 f (hi), i.e., one pose per

object. The set T1:N should maximize a global score com-

puted by comparing the observed depth image with the ren-

dered image R(T1:N) of object models placed at the

corresponding poses T1:N . Here, f is the constrained local

optimization of the object pose hi based on physical con-

sistency with respect to the other objects in the scene and

also the fact that the same points in the scene point cloud

cannot be explained by multiple objects simultaneously.

Then, the global optimization score is defined as

C(ID, T1:N)=
X
p2P

Sim(R(T1:N)½p�, ID½p�)

where p is a pixel (i, j) of a depth image, R(T1:N)½p� is the

depth of pixel p in the rendered depth image, ID½p� is the

depth of pixel p in the observed depth image,

P = fpjR(T1:N)½p� 6¼ 0 or ID½p� 6¼ 0)g and

Sim(R(T1:N)½p�, ID½p�)=
1, if jR(T)½p� � ID½p�j\e

0, otherwise

�

for a predefined precision threshold e. Therefore, score C
counts the number of non-zero pixels p that have a similar

depth in the observed image ID and in the rendered image R
within an e threshold. Thus, overall the objective is to find:

T �1:N = arg max
T1:N2f (h1:N)

C(ID,R(T1:N))

At this point, a combinatorial optimization problem

arises so as to identify T�1:N, which is approached with a

tree search process. A state in the search tree corresponds

to a subset of objects in the scene and their corresponding

poses. The root state s0 is a null assignment of poses. A

state sd at depth d is a placement of d objects at specific

poses selected from the hypotheses sets, i.e.,

sd = f(Mi, Ti), i = 1 : d} where Ti is the pose chosen for

object Mi, which is assigned to a tree depth i. The goal of

the tree search is to find a state at depth N, which contains

a pose assignment for all objects in the scene and maxi-

mizes the above-mentioned rendering score. Algorithm 3

describes the expansion of a state in the tree search process

towards this objective.

The EXPAND routine takes as input the state sd at tree

depth d, the point cloud segment corresponding to the next

object to be placed, Pd + 1, and the pose hypothesis Td + 1

for the next object to be placed Md + 1. Lines 3 and 4 of the

Algorithm 3: EXPAND(sd , (Md + 1,Td + 1),Pd + 1)

//sd : state at depth d (pose assignment for the
first d objects)
//(Md + 1, Td + 1): mesh model and pose hypothesis
for the (d + 1)th object
//Pd + 1: point cloud segment for (d + 1)th object

1. if d = N then
2. return NULL;

//maximum depth of tree is reached
3. foreach (MO,TO) 2 sd do
4. Pd + 1 Pd + 1 - POINTS_EXPLAINED(Pd + 1,MO, TO);

//remove points from Pd + 1 already assigned
to an object MO at TO in sd

5. Td + 1 TRIMMED_ICP((Md + 1,Td + 1),Pd + 1);
//pose is locally refined using trimmed-ICP

6. Td + 1 PHYSICS_SIM((Md + 1, Td + 1), sd);
//pose is locally refined based on physics
simulation

7. sd + 1 sd [(Md + 1,Td + 1);
8. return sd + 1;

Mitash et al. 9

algorithm iterate over the objects already placed in state sd

and remove points explained by these object placements

from the point cloud segment of the next object to be

placed. This step helps in achieving much better segmenta-

tion, which is utilized by the local optimization step of

Trimmed ICP (Chetverikov et al., 2002) in line 5. The

poses of objects in state sd physically constrain the pose of

the new object to be placed. For this reason, a rigid-body

physics simulation is performed in line 6. The physics

simulation is initialized by inserting the new object into the

scene at pose Td + 1, while the previously inserted objects

in the current search branch are stationary in the poses

T1:d . A physics engine is used to ensure that the newly

placed object attains a physically realistic configuration

(stable and no penetration) with respect to other objects

and the table under the effect of gravity. After a fixed num-

ber of simulation steps, the new pose Td + 1 of the object is

appended to the previous state to get the successor state

sd + 1.

The above primitive is used to search over the tree of

possible object poses. The objective is to exploit the con-

textual ordering of object placements given information

from physics and occlusion. This does not allow an addi-

tive rendering score to be defined over the search depth as

in previous work (Narayanan and Likhachev, 2016), which

demands the object placement to not occlude any part of

the already placed objects. Instead, this work proposes to

use a heuristic search approach based on MCTS utilizing

the upper confidence bound (UCB) formulation (Kocsis

and Szepesvári, 2006) to trade off exploration and

exploitation in the expansion process. The pseudocode for

the search is presented in Algorithms 4 and 5.

To effectively utilize the constrained expansion of states,

an order of object placements needs to be considered. This

information is encoded in a dependency graph, which is a

directed acyclic graph that provides a partial ordering of

object placements but also encodes the interdependency of

objects. An example of a dependency graph structure is

presented in Figure 5. The vertices of the dependency graph

correspond to the objects in the observed scene. Simple

rules are established to compute this graph based on the

detected segments P1:N for objects O1:N .

� A directed edge connects object Oi to object Oj if the

x–y projection of Pi in the world frame intersects with

the x–y projection of Pj and the z-coordinate (negative

gravity direction) of the centroid for Pj is greater than

that of Pi.
� A directed edge connects object Oi to object Oj if the

detected bounding-box of Oi intersects with that of Oj

and the z-coordinate of the centroid of Pj in camera

frame (normal to the camera) is greater than that of Pi.

The information regarding the independence of objects

helps to significantly speed up the search as the indepen-

dent objects are then evaluated in different search trees and

prevent exponential growth of the tree. This results in K

ordered list of objects, L1:K coming from the module

GET_DEPENDENCY of Algorithm 5, each of which is passed to

an independent tree search process for pose computation.

Algorithm 4: SEARCH

//M1:N : mesh models for all N objects
//P1:N : point cloud segments for all N objects
//h1:N : pose candidate sets for all N objects

1. Function MCTS (M1:N ,P1:N , h1:N)
2. S ;
3. L1:K GET_DEPENDENCY(P1:N);

//L1:K is a partition of N objects into K subsets where objects belonging to different subsets
are physically independent of each other

4. foreach L 2 L1:K do
5. s0 ;
6. best render score 0;
7. best state s0

8. while search time\tth do
//tth is a pre-defined time budget.

9. si SELECT(s0,M1:N ,P1:N , h1:N);
//si is the next state to be expanded based on UCB

10. fsN ,Rg RANDOM_POLICY(si,M1:N ,P1:N , h1:N);
//sN is the state obtained by randomly selecting poses for all unplaced objects, i.e., not
in si. R is the rendered score for sN

11. if R.best render score then
12. best render score R;
13. best state sR;
14. BACKUP_REWARD(si,R);

//R is used to update estimated costs of all states s along the path from si to the root node.
15. S T [best state;
16. return S;

//S is a set of object poses for N objects

10 The International Journal of Robotics Research 00(0)

The MCTS proceeds by selecting the first unexpanded

node starting from the root state. The selection of the next

state to be expanded takes place based on a reward associ-

ated with each state. The reward is the mean of the render-

ing score received at any leaf node in the state’s subtree

along with a penalty based on the number of times this

subtree has been expanded relative to its parent. This is the

UCB formulation (Kocsis and Szepesvári, 2006). Formally,

given a state s of the search tree, the next state to be

expanded is selected as

s = argmax
s02succ(s)

h(s0)

n(s0)
+ a

ffi
2log(n(s))

n(s0)

s
ð1Þ

where h(s) is the estimated score for state s, n(s) is the

number of times the subtree rooted at the state s has been

expanded, and a is the parameter that controls the trade-off

between exploration and exploitation in the search process.

The selected state is then expanded by using a

RANDOM_POLICY, which in this case is picking a random

object pose hypothesis for each of the succeeding objects

while performing the constrained local optimization at each

step. The output of this policy is the final rendering score

of the generated scene hypotheses. This reward is then

backpropagated in the step BACKUP_REWARD to all preceding

nodes. Thus, the search is guided to the part of the tree,

which gets a good rendering score but also explores other

portions, which have not been expanded enough (con-

trolled by the parameter a). Figure 5 visualizes these steps

of the MCTS pipeline.

5. Self-learning

Given access to an object detector and a pose estimation

process trained with the physics-based simulator, the self-

learning pipeline labels real-world images with a robust

multi-view pose estimation. This is based on the idea

that the detector performs well on some views, while it

might be imprecise or fail in other views. Aggregating 3D

data over the confident detections and with access to the

knowledge of the environment, a 3D segment can be

extracted for each object instance in the scene. This pro-

cess, combined with the fact that 3D models of objects are

available, makes it highly likely to estimate correct 6-DoF

poses of objects given enough views and search time. The

results of pose estimation are then projected back to the

multiple views and used to label real images. These exam-

ples are very effective to reduce the confusion in the classi-

fier for novel views. The process also autonomously

reconfigures the scene using manipulation actions to

apply the labeling process iteratively over time in different

scenes, thus generating a labeled dataset which is used to

re-train the object detector. The pipeline of the process is

presented in Figure 6 and the pseudocode is provided in

Algorithm 6.

A robotic arm is used to move the sensor to different

pre-defined camera configurations Tcam and capture RGB

and depth images of the scene (lines 2–3). The PRACSYS

motion planning library (Kimmel et al., 2012; Littlefield

et al., 2015) was used to control the robot in the accompa-

nying implementation.

The detector trained using physics-aware simulation is

then used to extract bounding boxes corresponding to each

object in the scene (line 7). There might exist a bias in

simulation either with respect to texture or poses, which

can lead to imprecise bounding boxes or complete failure

in certain views. For the detection to be considered for fur-

ther processing, a threshold is considered on the confi-

dence value returned by RCNN (line 8).

The pixel-wise depth information Seg3d within the con-

fidently detected bounding boxes bbox (line 9) is aggre-

gated in a common point cloud per object CloudO given

information from multiple views (line 10). The process

employs environmental knowledge to clean the aggregated

Algorithm 5: SEARCH MODULES

1. Function SELECT (s,M1:N ,P1:N , h1:N)
//s: state of the search tree
//M1:N : mesh models for all N objects
//P1:N : point cloud segments for all N objects
//h1:N : pose candidate sets for all N objects

2. while depth(s)\N do
3. if s has unexpanded child then
4. d depth(s);
5. Td + 1 NEXT_POSE_HYPOTHESIS(hd);

//Td + 1 is the next pose candidate for
(d + 1)th object that has not already
been expanded for state s.

6. return EXPAND(s, (Md + 1, Td + 1),Pd + 1);
//appends the pose Td + 1 to state s

7. else
8. Return best child s according to UCB Equation (1);
9. return s;

10. Function RANDOM_POLICY (s,M1:N ,P1:N , h1:N)
//s: state of the search tree
//M1:N : mesh models for all N objects
//P1:N : point cloud segments for all N
objects
//h1:N : pose candidate sets for all N objects

11. while depth(s)\N do
12. d depth(s);
13. Td + 1 GET_RANDOM_HYPOTHESIS(hd + 1);

//Td + 1 is a random pose assigned to the
(d + 1)th object.

14. s EXPAND(s, (Md + 1,Td + 1),Pd + 1);
//appends the pose Td + 1 to state s.

15. return {s, render(s)};
16. Function BACKUP_REWARD (s,R)

//s: state of the search tree
//R: render score for the state s

17. while s 6¼ NULL do
18. n(s) n(s)+ 1;
19. h(s) h(s)+ R;

//number of expansions and estimated
cost of state s is updated

20. s parent(s);

Mitash et al. 11

point cloud (line 11). Points outside the resting surface

bounds are removed and outlier removal is performed based

on k-nearest neighbors and a uniform grid filter.

Several point cloud registration methods were tested for

registering the 3D model MO with the corresponding

segmented point cloud CloudO (line 12). This included

Super4PCS (Mellado et al., 2014), fast global registration

(Zhou et al., 2016), and simply using the principal compo-

nent analysis (PCA) with ICP (Besl and McKay, 1992).

The Super4PCS algorithm used alongside ICP was found

Fig. 5. Left: How a dependency graph is built based on interactions between the object segments. The Kleenex object is placed

separately and does not need to be evaluated in the same tree as the others, whereas the placement of expo depends on the placement

of crayola. Right: One iteration of the MCTS process. The next state to expand is selected based on the previously computed score for

the states. The selected state is then evaluated by executing a random policy which keeps expanding state until all objects in the

current tree are placed. Finally, a rendering of this completely reconstructed scene is compared with the observed depth image to

compute a score for the state.

Algorithm 6: SELF-LEARN(dataset,Tcam,M1:N)

//dataset: synthetic training dataset
//Tcam: set of camera poses to collect images
//M1:N : mesh models for all N objects

1. while jdatasetj\ desired size do
2. foreach view 2 Tcam do
3. {RGBview, Dview} CAPTURE(view);

//RGB-D images are collected my moving the camera to all views in Tcam

4. foreach object O in the scene do
5. CloudO = ;;
6. foreach view 2 Tcam do
7. bbox SIM_DETECT(RGBview);

//bounding box is detected for object O in image RGBview

8. if conf(bbox) .e then
9. Seg3d CONVERT3D(bbox, Dview);

10. CloudO CloudO [Seg3d;
//point cloud of object O is extracted from depth image according to bbox

11. OUTLIER_REMOVAL(CloudO);
12. TO COMPUTE_6DPOSE(CloudO, MO);

//6D pose is computed given the point cloud segment and object model
13. foreach view 2 Tcam do
14. {labels, bboxs} PROJECT(TO, view);

//Estimated pose TO is used to generate bounding-boxes in all views
15. dataset dataset [(RGBview, labels, bboxs);
16. randObj SAMPLE_RANDOM_OBJECT(M1:N);
17. RECONFIGURE_OBJECT(randObj);

//randomly selected objects are moved to pre-specified configuration.
18. Train Faster-RCNN using the expanded dataset;

12 The International Journal of Robotics Research 00(0)

to be the most applicable for the target setup as it is the most

robust to outliers and returns a very natural metric for confi-

dence evaluation. Super4PCS returns the best rigid align-

ment according to the LCP. The algorithm searches for the

best score, using transformations obtained from four-point

congruences. Thus, given enough time, it generates the opti-

mal alignment with respect to the extracted segment.

After the 6-DoF pose is computed for each object, the

scene is recreated in the simulator using object models

placed at the pose TO and projected to the known camera

views (line 14). Bounding boxes are computed on the simu-

lated setup and transferred to the real images. This gives

precise bounding box labels for real images in all the views

(line 15).

To further reduce manual labeling effort, an autonomous

scene reconfiguration is performed (lines 16–17). The

robot reconfigures the scene with a pick and place

manipulation action to iteratively construct new scenes and

label them, as in Figure 7. For each reconfiguration, the

object to be moved is chosen randomly and the final con-

figuration is selected from a set of pre-defined configura-

tions in the workspace.

Finally, the Faster-RCNN network is re-trained with the

expanded dataset. The factors that prevent this process from

a label drift are as follows. (1) The network is re-trained

with a large number of accurate synthetic data. Thus, the

training is immune to some amount of label noise in the

self-labeled data. (2) Only the most confident detections

from multiple views are considered and a global-search-

based process for pose estimation is used to obtain the esti-

mates which are eventually used for labeling.

6. Evaluation

This section evaluates several aspects of the proposed

approach. It describes the experimental setup, evaluation

metrics and compares against baseline alternatives. The

evaluations are performed over four datasets with different

challenges in each, as described in Table 2. The Shelf&Tote

dataset (Zeng et al., 2017) offers 148 different configura-

tions of objects from the APC, placed in bins of a shelf

with challenging conditions such as occlusions and shiny

reflective surfaces of the shelf. In each scene, two to five

objects are supposed to be detected. The Extended Rutgers

RGBD dataset was created for the purpose of studying the

utility of the proposed physics-based pose estimation pro-

cess. RGB-D images for 42 different configurations of

objects were collected and ground-truth 6-DoF poses were

labeled for each object in the image. The dataset contains

Fig. 6. Automatic self-labeling pipeline: the detector trained with simulated data is used to detect objects from multiple views. The

point cloud aggregated from successful detections undergoes 3D segmentation. Then, Super4PCS (Mellado et al., 2014) is used to

estimate the 6D pose of the object in the world frame. The computed poses with high confidence are projected back to the views to

obtain precise labels over real images.

Fig. 7. Manipulator performing scene reconfiguration by

moving an object from one configuration on the table to another.

Mitash et al. 13

the same 11 objects from the APC as the Shelf&Tote data-

set, representing different object geometries. Each scene

contains three objects to be detected and the object place-

ment is a mix of independent object placements, objects

with physical dependencies such as one stacked on/or sup-

porting the other object and occlusions. The dataset was

collected using an Intel RealSense sensor mounted over a

Motoman robotic manipulator. The Linemod (LM) dataset

(Hinterstoisser et al., 2012) is a popular dataset for evaluat-

ing pose estimation techniques. For several frames captured

from different views, one object instance is labeled per

scene. However, the scene has a clutter of other known and

unknown objects. Brachmann et al. (2014) labeled the pose

of all the known objects (eight object classes) in clutter for

one such test sequence. This test sequence referred to as

the Linemod-Occluded (LM-O) dataset has a high level of

occlusions in several views.

In the first section, the synthetic data generation pipe-

line and the effect of self-learning is evaluated on the

Shelf&Tote dataset. This is followed by a detailed summary

of performance and accuracy of the pose estimation

approach on the Extended Rutgers RGBD dataset. Finally,

the entire pipeline is evaluated on the LM and LM-O data-

set according to the recently published benchmark (Hodan

et al., 2018).

6.1. Evaluating the dataset generation pipeline

The dataset generation pipeline is evaluated for the task of

bounding-box object detection. A Faster-RCNN-based

(Ren et al., 2015) object detector is trained with the data-

sets generated from different pipelines. The most likely

bounding-box prediction for each of the known classes in

the scene is considered and a mean average precision

(mAP) is calculated. The predicted bounding-box is a true

positive when the intersection-over-onion (IoU) of the pre-

dicted bounding box with the ground-truth bounding-box

is greater than a threshold (set to a standard IoU value of

0.5).

To study how the object pose distribution affects the

training process, different techniques for synthetic data gen-

eration are evaluated. The results of experiments performed

on the Shelf&Tote dataset are presented in Table 3.

The following is a brief discussion of the dataset genera-

tion techniques used for the comparisons.

6.1.1. Training data generated using test data

distribution. The objective here is to establish an upper

bound for the performance of a detector trained with simu-

lated images. For this purpose, the object detector is trained

with the knowledge of pose distribution from the test data.

This process consists of estimating the density of the test

data with respect to object poses using kernel density esti-

mation, and generating training data according to this dis-

tribution. The sampled scenes were used to train a Faster-

RCNN detector, which achieved an accuracy of 69%.

Fig. 8. Images from training datasets. Left: Uniformly sampled synthetic data. Center: Training data from the Shelf&Tote dataset

(Zeng et al., 2017). Right: Dataset generated from the proposed physics-aware simulation.

Table 2. Statistics for the test datasets.

Shelf&
Tote

Ext.
Rutgers

LM LM-O

Number of objects 11 11 8 8
Number of scenes 148 42 8 3
Number of frames 2,220 42 1,600 200
Objects/scene 2–5 3 1 8
Sensor Intel Realsense Microsoft Kinect
Resolution 640× 480

Table 3. Evaluating object detection trained with synthetic data.

Method mAP (%)

Zeng et al. (2017) (benchmark) 75%
Sampled from test data distribution 69%
Sampled from uniform distribution 31%
Physics-aware simulation 64%
Physics-aware simulation
+ randomized illumination

70%

Method mAP (%)

Self-learning (2,000 images) 75%
Self-learning (6,000 images) 81%
Self-learning (10,000 images) 82%

14 The International Journal of Robotics Research 00(0)

6.1.2. Uniformly sampled synthetic data. This alternative

is a popular technique for generating synthetic data. It

uses 3D models of the objects to render their images from

several viewpoints sampled on a spherical surface cen-

tered at the object. The background image corresponded

to the APC shelf, on top of which randomly selected

objects were pasted at sampled locations. This process

allows to simulate occlusions and mask subtraction pro-

vides the accurate bounding boxes in these cases. The

objects in these images are not guaranteed to have physi-

cally realistic poses. This method of synthetic data gener-

ation does not perform well on the target task, giving a

low accuracy of 31%.

6.1.3. Generating training data with physics-aware

simulation. The accuracy of 64% achieved by the pro-

posed physics-aware simulator is close to the upper bound.

By incorporating the knowledge of the camera pose, rest-

ing surface and by using physics simulation, the detector is

essentially constraining the distribution of poses to resem-

ble the one from which the test data comes.

The results discussed until now were with respect to a

constant lighting condition. As the dataset grows, a dip in

the performance is observed. This is expected as the detec-

tor overfits with respect to the synthetic texture, which does

not mimic real lighting conditions. This is not desirable,

however. To deal with this issue, the lighting conditions are

varied according to the location and color of the light

source. This does resolve the problem to some extent but

the dataset bias still limits performance to an accuracy of

70%.

Once a detector is trained with the dataset from simula-

tion, the self-learning pipeline is executed. It is used to

automatically label training images from Shelf&Tote data-

set. The real images are incrementally added to the simu-

lated dataset to re-train the Faster-RCNN. This results in a

performance boost of 12%. This result also outperforms the

training process by Zeng et al. (2017) which uses approxi-

mately 15,000 real images labeled using background sub-

traction. The reason that the proposed method outperforms

a large dataset of real training images is that the proposed

system contains labels for objects placed in a clutter and

not just single instances of objects.

The detector trained from the self-learning pipeline is

also evaluated on the task of multi-view pose estimation.

Table 4 compares the Faster-RCNN-based detector trained

with the proposed dataset generation technique to a fully

convolutional network (FCN) trained with dataset genera-

tion process from Zeng et al. (2017). Different algorithms

for estimating the 6D pose is considered and the success is

reported by counting the instances when the pose predic-

tion encounters an error in translation less than 5 cm and

mean error in the rotation less than 158. It is also interesting

to note that the success in pose estimation is on a par with

the success achieved using ground-truth bounding boxes.

6.2. Evaluating the search-based pose estimation

In this section, the proposed MCTS-based algorithm is

evaluated over the Extended Rutgers RGBD dataset. The

scenes in the dataset express three different levels of inter-

action between objects, namely, independent object place-

ment where an object is physically independent of the rest

of objects, two-object dependencies where an object

depends on another, and three-object dependencies where

an object depends on two other objects.

The evaluation is performed by computing the error in

translation, which is the Euclidean distance of an object’s

center compared with its ground-truth center (in centi-

meters). The error in rotation is computed by first trans-

forming the computed rotation to the frame attached to the

object at ground truth. The rotation error is the average of

the roll, pitch, and yaw angles (in degrees) of the transfor-

mation between the returned rotation and the ground-truth

one, while taking into account the object’s symmetries,

which may allow multiple correct answers. The results pro-

vide the mean of the errors of all the objects in the dataset.

The evaluation was first performed for methods that rea-

son about one object at a time, i.e., methods that do not

perform any scene-level reasoning. These approaches trust

the segments returned by the object segmentation module

and perform model matching followed by local refinement

to compute object poses. The results of performing pose

estimation over the collected dataset with some of these

techniques are presented in Table 5. Zeng et al. (2017)

developed a system for pose estimation towards the APC

2016. The system uses a FCN to get pixel-level

Table 4. Evaluating pose estimation on model learnt from self-learning process.

2D-segmentation method 3D-registration method Mean-error
rotation (deg)

Mean-error
translation (m)

Success (%)

Ground-truth bounding-box PCA + ICP 7.65 0.02 84.8
FCN (trained with Zeng et al. (2017)) PCA + ICP 17.3 0.06 54.6
FCN (trained with Zeng et al. (2017)) Super4PCS + ICP 16.8 0.06 54.2
FCN (trained with Zeng et al. (2017)) fast-global-registration 18.9 0.07 43.7
Faster-RCNN (Proposed training) PCA + ICP 8.50 0.03 79.4
Faster-RCNN (Proposed training) Super4PCS + ICP 8.89 0.02 75.0
Faster-RCNN (Proposed training) fast-global-registration 14.4 0.03 58.9

Mitash et al. 15

segmentation of objects in the scene, then uses PCA for

pose initialization, followed by ICP to get the final object

pose. This system was designed for shelf and tote environ-

ments and often relies on multiple views of the scene.

Thus, the high error in pose estimates could be attributed

to the low recall percentage in retrieving object segment

achieved by the semantic segmentation method, which in

turn resulted in the segment not having enough information

to compute a unique pose estimate. The second system

tested uses a Faster-RCNN-based object detector trained

with the physics-based dataset generator as described pre-

viously. The point cloud segments extracted from the

bounding box detections were used to perform pose estima-

tion using two different approaches: (i) PCA followed by

ICP and (ii) Super4PCS followed by ICP (Besl and

McKay, 1992). Even though the detector succeeded in pro-

viding a high recall object segment on most occasions, in

the best case the mean rotation error using local approaches

was still high (10.5�). This was sometimes due to bounding

boxes containing parts of other object segments, or due to

occlusions. Reasoning only at a local object-level does not

resolve these issues.

The proposed search framework was used to perform

pose estimation on the dataset. In each scene, the depen-

dency graph structure was used to get the order of object

placement and initialize the independent search trees.

Then, the object detection was performed using Faster-

RCNN and congruent set matching was used to generate

pose candidates, which were clustered to get 25 representa-

tives per object. The search is performed over the com-

bined set of object candidates and the output of the search

is an anytime pose estimate based on the best rendering

score. The stopping criterion for the searches was defined

by a maximum number of node expansions in the tree, set

to 250, where each expansion corresponds to a physics

simulation with Bullet and a rendering with OpenGL, with

a mean expansion time of ;0:2 s per node. The search was

initially performed using a depth-first heuristic combined

with the LCP score returned by the Super4PCS for the pose

candidates. The results from this approach, PHYSIM-

Heuristic (depth + LCP), are shown in Table 5, which

indicates that it might be useful to use these heuristics if

the tree depth is low (one and two object dependencies).

As the number of object dependencies grows, however, one

needs to perform more exploration. For three-object

dependencies, when using 250 expansions, this heuristic

search provided poor performance. The UCT MCTS was

used to perform the search, with UCBs to trade off explora-

tion and exploitation. The exploration parameter was set to

a high value (a = 5, 000), to allow the search to initially

look into more branches while still preferring those that

give a high rendering score. This helped in speeding up the

search process significantly, and a much better solution

could be reached within the same time. The plots in

Figures 10 and 11 captures the anytime results from the

two heuristic search approaches. Figure 12 shows some of

the images from the Extended Rutgers RGBD dataset and

the corresponding results from the UCT MCTS process.

To study the effect of training on the pose estimation

process, an experiment was performed which utilizes the

ground-truth segmentation of objects and performs the

PHYSIM-MCTS to generate object poses. This resulted in

a rotation error of 2.94� and a translation error of 0.7 cm.

This is not significantly different from the results with the

proposed process which indicates that the bounding-box

detector trained from the autonomous dataset generation

Table 5. Comparing our approach with different pose estimation techniques.

Method No dependencies 2-object dependencies 3-object dependencies All

Rot.
Err.

Trans.
Err.

Rot.
Err.

Trans.
Err.

Rot.
Err.

Trans.
Err.

Rot.
Err.

Trans.
Err.

APC-Vision-Toolbox 15.5� 3.4 cm 26.3� 5.5 cm 17.5� 5.0 cm 21.2� 4.8 cm
Faster-RCNN + Super4PCS + ICP 2.4� 0.8 cm 14.8� 1.7 cm 12.1� 2.1 cm 10.5� 1.5 cm
PHYSIM-Heuristic (depth + LCP) 2.8� 1.1 cm 5.8� 1.4 cm 12.5� 3.1 cm 6.3� 1.7 cm
PHYSIM-MCTS (proposed approach) 2.3� 1.1 cm 5.8� 1.2 cm 5.0� 1.8 cm 4.6� 1.3 cm

Fig. 9. Results of object detection before and after training with

the self-learning process. The detector learns to predict more

precise bounding boxes. It can also detect objects better from

novel views.

16 The International Journal of Robotics Research 00(0)

pipeline already provides enough information for this pose

estimation process. Some of the reasons for failures in pose

estimation when evaluated with ground-truth segmentation

were found to be because of pose averaging when using

cluster centers as pose representatives resulting in the fail-

ure of local optimization and when the depth sensor did

not return points for some reflective surfaces.

6.3. Evaluating over benchmark for pose

estimation

In this section, the entire pipeline is evaluated over the

Linemod (Hinterstoisser et al., 2012) and the Linemod-

Occluded (Brachmann et al., 2014) datasets. Evaluation is

performed according to the benchmark (Hodan et al., 2018)

for eight objects as shown in Figure 13, which have corre-

sponding ground-truth pose labels in both the datasets. The

accuracy is measured in terms of the visual surface discre-

pancy (VSD) metric as defined in Hodan et al. (2018) with

a misalignment tolerance of t = 20 mm and correctness

threshold u = 0:3. Given these parameters, the error is cal-

culated by rendering the object model at the predicted and

the ground-truth pose as depth maps S and S0. These are

compared with the actual depth map of the image to obtain

visibility masks V and V 0 and the error is calculated as

evsd = avg
p2V\V 0

0, if p 2 V \ V 0 ^ jS(p)� S0(p)j\t

1, otherwise

�

A pose is counted as correct if evsd\u. Finally the recall

rate per object and over the entire dataset are presented in

the Table 6.

To compare the proposed approach, first synthetic train-

ing data was generated based on the developed pipeline.

Some examples of the generated images are shown in

Figure 13. Overall 30,000 RGB and corresponding depth

Fig. 10. Rotation error in degrees as a function of the number of

iterations.

Fig. 11. Translation error in centimeters as a function of the

number of iterations.

Fig. 12. Example images from Extended Rutgers RGBD dataset and accompanying results from the MCTS process. The results are

visualized in the lightweight physics engine (Bullet), which plays an integral part in performing the local optimization in this pipeline

and ensures that the returned results are physically stable configurations.

Mitash et al. 17

images are generated along with per pixel class labels. To

generate this dataset, the intrinsic camera parameters,

object texture, and pose of the table are kept constant. The

pose of the object over the table is varied randomly over

x, y position and yaw while the rest of the pose parameters

are kept constant. Finally, physics simulation is applied to

get a physically consistent scene which is rendered from 20

different viewpoints. The viewpoints are sampled randomly

from a hemisphere of radius varying in a range similar to

the test dataset. The camera sampling policy and range val-

ues are similar to those used for generating the training

data in Hodan et al. (2018). Other scene parameters such

as light position, light color, object material emission,

background, and texture of the table are varied randomly

within a pre-specified domain.

An FCN (Long et al., 2015) is trained with the generated

data to obtain pixel-level classification and the output is used

to guide the pose estimation process. The choice of using an

FCN instead of Faster-RCNN was due to the fact that several

unknown objects are present in the scene and predicting one

definite location for an object in the scene would reduce the

recall rate for the recognition task. In the Linemod dataset

only one object needs to be estimated in each frame. To per-

form this task, first the pose of the table is computed using a

RANSAC-based process and the direction of gravity is

assumed to be perpendicular to the surface of the table.

Then, 50 pose candidates are considered for the object based

on the segmentation output and each of these are locally opti-

mized based on physics simulation and ICP in the MCTS

process. Finally, the score is computed to select the best

Table 6. Evaluating the performance of the proposed search process on the Linemod and Linemod-Occluded dataset according to the

recent benchmark (hodan2018bop) in pose estimation.

Linemod (recall %)

1 5 6 8 9 10 11 12 All

Hodaň et al. (2015) 91 91 97 69 90 97 81 79 86.9
MCTS 93 90 87 90 80 97 80 65 85.3
Vidal et al. (2018) 89 92 96 89 87 97 59 69 84.8
Drost et al. (2010) 86 93 87 92 66 96 53 67 80.0
Drost et al. (2010) (Edge) 77 98 94 96 45 94 68 66 79.8
Brachmann et al. (2016) 91 86 90 72 85 79 46 67 77.0
Hoda_n et al. (2015) (NR) 91 66 87 49 92 90 65 63 75.4
Brachmann et al. (2014) 74 88 66 81 69 66 50 75 71.1
Kehl et al. (2016) 60 79 68 68 42 91 45 42 61.9
Buch et al. (2017) (ppfh) 77 84 60 59 75 67 24 39 60.6
Buch et al. (2017) (si) 40 81 47 8 36 43 18 3 34.5
Buch et al. (2017) (ecsad) 31 66 3 0 9 49 1 0 19.9
Tejani et al. (2014) 36 1 0 11 1 70 27 0 18.3
Buch et al. (2016) (ppfh) 11 3 7 7 18 12 4 3 8.1
Buch et al. (2017) (shot) 3 9 4 3 2 10 1 0 4.0
Buch et al. (2016) (ecsad) 2 5 0 4 5 8 0 0 3.0
SL-MCTS — — — — — — — — —

Linemod-Occluded (recall %)

1 5 6 8 9 10 11 12 All

SL-MCTS 50 71 43 68 72 46 33 66 60.3
Vidal et al. (2018) 66 81 46 65 73 43 26 64 59.3
MCTS 48 59 35 78 71 48 32 65 58.4
Drost et al. (2010) 62 75 39 70 57 46 26 57 55.4
Drost et al. (2010) (Edge) 47 82 46 75 42 44 36 57 55.0
Brachmann et al. (2016) 64 65 44 68 71 3 32 61 52.0
Hodaň et al. (2015) 54 66 40 26 73 37 44 68 51.4
Brachmann et al. (2014) 50 48 27 44 60 6 30 62 41.5
Buch et al. (2017) (ppfh) 59 63 18 35 60 17 5 30 37.0
Hoda_n et al. (2015) (NR) 47 35 24 12 63 9 32 53 34.4
Kehl et al. (2016) 39 47 24 30 48 14 13 49 33.9
Buch et al. (2017) (si) 54 63 11 2 16 9 1 3 20.4
Buch et al. (2017) (ecsad) 29 29 0 0 7 8 1 0 9.6
Tejani et al. (2014) 26 2 0 1 0 0 10 0 4.5
Buch et al. (2016) (ppfh) 4 0 0 2 11 1 1 1 2.3
Buch et al. (2017) (shot) 2 7 0 0 1 1 1 0 1.5
Buch et al. (2016) (ecsad) 1 3 0 2 2 0 0 0 1.0

18 The International Journal of Robotics Research 00(0)

candidate. Owing to the presence of unmodeled clutter, the

optimization cost cannot assume that the entire scene can be

explained by the estimated pose of known objects. Thus, the

optimization cost for this dataset is set so as to maximize

only the alignment of the rendered depth map of the object at

the predicted pose with the observed depth map. The align-

ment is computed with a distance threshold of 10 mm and a

surface normal tolerance of 308. The surface normal is used

to avoid cases where the objects are falsely assigned to parts

of large flat surfaces.

On the Linemod-Occluded dataset, pose for eight objects

need to be estimated in every image with a high level of

occlusion. Two separate tests are performed on this dataset.

In the first experiment the FCN is trained with just syn-

thetic data from the proposed pipeline and the output is

used to guide the MCTS process to estimate the pose for all

eight objects present in the scene. An example of the pre-

diction is visualized in at the bottom-left of Figure 13. In

the second experiment, the FCN is re-trained with addi-

tional images from the Linemod dataset which are labeled

using the confident estimates from the pose estimation over

the entire dataset and projected to all the different views.

Note that in this case only the segment corresponding to

one object could be extracted from each image of the

Linemod dataset, so a mask is used during the training pro-

cess to only use that small part of the image which corre-

sponds to the object and ignores the rest. This presents only

positive samples for training on real data and thus not a

very significant improvement can be seen from this task.

The performance corresponding to this experiment is

referred to as the MCTS-SL in Table 6.

Overall, the proposed approach achieves state-of-the-art

performance on both of these datasets. On the Linemod

dataset, the proposed pipeline which is just trained on syn-

thetic data achieves 85.3% accuracy that is just slightly

below the template matching work of Hodaň et al. (2015)

(86.9%) in terms of overall success. Although template

matching works well in cases of less occlusion, it fails to

achieve a high recall on occluded datasets. Thus, on the

Linemod-Occluded dataset, our proposed approach

achieves the highest recall rate of 60.3% when the entire

pipeline is used. When the self-learning component is not

used, the performance is still just slightly below the top

performing method of Vidal et al. (2018).

Some examples of the successful estimates and failure

conditions on this dataset are presented in Figure 13. One

of the cases for failure is the presence of unmodeled

objects on which the target object are physically dependent

(Eggbox object in the bottom-right corner of the figure).

The other failure case is that of object models getting good

alignment scores with similar looking and large surfaces in

the image (first three failure cases in the figure).

6.4. Limitations

One of the limitations of global reasoning, as in this

approach, is the time required for computing and searching

over an extensive hypotheses set. In particular, owing to

the hierarchical clustering approach that was adapted to

consider object specific distances, the hypotheses genera-

tion time for an object can be in the order of multiple sec-

onds. The search process, which seemed to converge to

good solutions with 150 expansions for three-object depen-

dencies, takes approximately 30 seconds. Nevertheless,

both of these processes are highly parallelizable. Future

work can perform the hypotheses generation and the search

with parallel computing. Another limitation of this work in

the current form is the assumption that the objects are non-

transparent and rigid. For transparent objects, this is due to

the lack of depth data on the surface of these objects.

7. Discussion

This work provides a comprehensive framework for 6- DoF

pose estimation of objects placed in clutter. It leverages the

advantages of recent success in deep learning without the

need for any manual effort in data collection and labeling.

Fig. 13. Performing pose estimation over Linemod and Linemod-Occluded datasets. The visualizations demonstrate (left) the object

models and final result of the pose estimation process on RGB-D data, (middle) the training data generated from the proposed

pipeline, and (right) some instances of successful estimates as well as failure cases on the Linemod-Occluded dataset with high level

of occlusion.

Mitash et al. 19

It offers a novel way of performing pose estimation for

objects placed in clutter by efficiently searching for the

best scene explanation over the space of physically consis-

tent scene configurations. It also provides a method to con-

struct these sets of scene configurations by using state-of-

the-art object detection and model registration techniques,

which by themselves are not sufficient to give a desirable

pose estimate for objects. The evaluations indicate signifi-

cant performance improvement in both the tasks of object

detection and pose estimation using the proposed approach.

The limitations mentioned in the previous section encour-

age future work on fast and robust hypotheses generation

and developing a method to systematically and quickly

cluster object poses in SE(3), while taking into consider-

ation the symmetries of objects. There is also a wide inter-

est in bridging the domain gap between simulated and real

images by domain randomization (Tobin et al., 2017) or

with a generative learning technique (Shrivastava et al.,

2017). The current work could leverage such techniques to

provide an even better initialization to this process.

ORCID iDs

Chaitanya Mitash https://orcid.org/0000-0002-8547-2634

Kostas Bekris https://orcid.org/0000-0002-0675-3324

References

Aiger D, Mitra NJ and Cohen-Or D (2008) 4-points congruent sets

for robust pairwise surface registration. ACM Transactions on

Graphics 27: 85.

Akizuki S and Hashimoto M (2016) Physical reasoning for 3d

object recognition using global hypothesis verification. In:

Computer Vision–ECCV 2016 Workshops. New York:

Springer, pp. 595–605.

Aldoma A, Marton ZC, Tombari F, et al. (2012a) Tutorial: Point

cloud library: Three-dimensional object recognition and 6 dof

pose estimation. IEEE Robotics and Automation Magazine

19(3): 80–91.

Aldoma A, Tombari F, Di Stefano L and Vincze M (2012b) A glo-

bal hypotheses verification method for 3D object recognition.

In: European Conference on Computer Vision. Berlin: Springer.

Aldoma A, Tombari F, Prankl J, Richtsfeld A, Di Stefano L and

Vincze M (2013) Multimodal cue integration through hypoth-

eses verification for RGB-d object recognition and 6DOF pose

estimation. In: 2013 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, pp. 2104–2111.

Arthur D and Vassilvitskii S (2007) k-means + + : The advan-

tages of careful seeding. In: Proceedings of the eighteenth

annual ACM-SIAM symposium on Discrete algorithms. Phila-

delphia, PA: Society for Industrial and Applied Mathematics,

pp. 1027–1035.

Ballard DH (1981) Generalizing the Hough transform to detect

arbitrary shapes. Pattern Recognition 13(2): 111–122.

Besl PJ and McKay ND (1992) Method for Registration of 3D

Shapes. International Society for Optics and Photonics.

Birdal T and Ilic S (2015) Point pair features based object detec-

tion and pose estimation revisited. In: 2015 International Con-

ference on 3D Vision (3DV). IEEE, pp. 527–535.

Bo L, Ren X and Fox D (2014) Learning hierarchical sparse fea-

tures for RGB-(D) object recognition. The International Jour-

nal of Robotics Research 33(4): 581–599.

Bouazix S, Tagliasacchi A and Pauly M (2013) Sparse iterative

closest point. Computer Graphics Forum 32(5): 1–11.

Brachmann E, Krull A, Michel F, Gumhold S, Shotton J and

Rother C (2014) Learning 6D object pose estimation using 3d

object coordinates. In: European Conference on Computer

Vision. Berlin: Springer, pp. 536–551.

Brachmann E, Michel F, Krull A, et al. (2016) Uncertainty-driven

6D pose estimation of objects and scenes from a single RGB

image. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 3364–3372.

Buch AG, Kiforenko L and Kraft D (2017) Rotational subgroup

voting and pose clustering for robust 3D object recognition.

In: 2017 IEEE International Conference on Computer Vision

(ICCV). IEEE, pp. 4137–4145.

Buch AG, Petersen HG and Krüger N (2016) Local shape feature

fusion for improved matching, pose estimation and 3D object

recognition. SpringerPlus 5(1): 297.

Cao Z, Sheikh Y and Banerjee NK (2016) Real-time scalable

6DOF pose estimation for textureless objects. In: IEEE Inter-

national Conference on Robotics and Automation (ICRA), pp.

2441–2448.

Cheng ZQ, Chen Y, Martin R, Lai YK and Wang A (2013) Super-

matching: Feature matching using supersymmetric geometric

constraints. In: IEEE Transactions on Visualization and Com-

puter Graphics 19: 11.

Chetverikov D, Svirko D, Stepanov D and Krsek P (2002) The

trimmed iterative closest point algorithm. In: Proceedings 16th

International Conference on Pattern Recognition, Vol. 3. IEEE,

pp. 545–548.

Choi C and Christensen HI (2012) 3D pose estimation of daily

objects using an RGB-d camera. In: 2012 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS).

IEEE, pp. 3342–3349.

Collet A, Martinez M and Srinivasa S (2011) The MOPED frame-

work: Object recognition and pose estimation for manipula-

tion. The International Journal of Robotics Research 30(10):

1284–1306.

Correll N, Bekris KE, Berenson D, et al. (2016) Analysis and

observations from the first Amazon Picking Challenge. IEEE

Transactions on Automation Science and Engineering 15(1):

172–188.

Dhillon IS, Guan Y and Kulis B (2004) Kernel k-means: Spectral

clustering and normalized cuts. In: Proceedings of the 10th

ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining. New York: ACM Press, pp. 551–

556.

Drost B and Ilic S (2012) 3D object detection and localization

using multimodal point pair features. In: Second International

Conference on 3D Imaging, Modeling, Processing, Visualiza-

tion and Transmission (3DIMPVT), pp. 9–16.

Drost B, Ulrich M, Navab N and Ilic S (2010) Model globally,

match locally: Efficient and robust 3D object recognition. In:

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pp. 998–1005.

Durrant-Whyte H and Bailey T (2006) Simultaneous localization

and mapping: Part I. IEEE Robotics and Automation Magazine

13(2): 99–110.

20 The International Journal of Robotics Research 00(0)

Erkent O, Shukla D and Piater J (2016) Integration of probabilistic

pose estimates from multiple views. In: European Conference

on Computer Vision (ECCV).

Fischler MA and Bolles RC (1981a) Random sample consensus:

A paradigm for model fitting with applications to image analy-

sis and automated cartography. Communications of the ACM

24(6): 381–395.

Fischler MA and Bolles RC (1981b) Random sample consensus:

A paradigm for model fitting with applications to image analy-

sis and automated cartography. Communications of the ACM

24(6): 381–395.

Gelfand N, Mitra N, Guibas L and Pottmann H (2005) Robust

global registration. In: Proceedings of the Third Eurographics

Symposium on Geometry Processing.

Hernandez C, Bharatheesha M, Ko W, et al. (2016) Team Delft’s

robot winner of the Amazon Picking Challenge 2016. In:

Robot World Cup. Berlin: Springer, pp. 613–624.

Hinterstoisser S, Lepetit V, Ilic S, et al. (2012) Model based train-

ing, detection and pose estimation of texture-less 3D objects in

heavily cluttered scenes. In: Asian Conference on Computer

Vision. Berlin: Springer, pp. 548–562.

Hinterstoisser S, Lepetit V, Rajkumar N and Konolige K (2016)

Going further with point pair features. In: European Confer-

ence on Computer Vision. Berlin: Springer, pp. 834–848.

Hodan T, Michel F, Brachmann E, et al. (2018) BOP: Benchmark

for 6D object pose estimation. European Conference on Com-

puter Vision (ECCV 2018), pp. 19–35.

Hodaň T, Zabulis X, Lourakis M, ObdržálekŠ and Matas J (2015)

Detection and fine 3D pose estimation of texture-less objects

in RGB-d images. In: 2015 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). IEEE, pp.

4421–4428.

Irani S and Raghavan P (1996) Combinatorial and experimental

results for randomized point matching algorithms. In: Proceed-

ings of the Symposium on Computational Geometry, pp. 68–

77.

Izadi S, Kim D, Hilliges O, et al. (2011) Kinectfusion: Real-time

3D reconstruction and interaction using a moving depth cam-

era. In: Proceedings of the 24th Annual ACM Symposium on

User Interface Software and Technology. New York: ACM

Press, pp. 559–568.

Johnson AE and Hebert M (1999) Using spin images for efficient

object recognition in cluttered 3D scenes. IEEE Transactions

on Pattern Analysis and Machine Intelligence 21(5): 433–449.

Kehl W, Manhardt F, Tombari F, Ilic S and Navab N (2017) SSD-

6D: Making RGB-based 3D detection and 6D pose estimation

great again. In: IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pp. 1521–1529.

Kehl W, Milletari F, Tombari F, Ilic S and Navab N (2016) Deep

learning of local RGB-D patches for 3D object detection and

6D pose estimation. In: European Conference on Computer

Vision (ECCV), pp. 205–220.

Kim E and Medioni G (2011) 3D object recognition in range

images using visibility context. In: 2011 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS).

IEEE, pp. 3800–3807.

Kimmel A, Dobson A, Littlefield Z, Krontiris A, Marble J and

Bekris K (2012) PRACSYS: An extensible architecture for

composing motion controllers and planners. In: International

Conference on Simulation, Modeling, and Programming for

Autonomous Robots, pp. 137–148.

Kocsis L and Szepesvári C (2006) Bandit based Monte-Carlo

planning. In: ECML, Vol. 6. Berlin: Springer, pp. 282–293.

Krull A, Brachmann E, Michel F, Ying Yang M, Gumhold S and

Rother C (2015) Learning analysis-by-synthesis for 6D pose

estimation in RGB-d images. In: Proceedings of the IEEE

International Conference on Computer Vision, pp. 954–962.

Littlefield Z, Krontiris A, Kimmel A, Dobson A, Shome R and

Bekris KE (2015) An extensible software architecture for com-

posing motion and task planners. In: International Conference

on Simulation, Modeling and Programming for Autonomous

Robots (SIMPAR).

Long J, Shelhamer E and Darrell T (2015) Fully convolutional

networks for semantic segmentation. In: IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3431–3440.

Lowe DG (1999) Object recognition from local scale-invariant fea-

tures. In: IEEE International Conference on Computer Vision

(ICCV), Vol. 2, pp. 1150–1157.

McCormac J, Clark R, Bloesch M, Davison A and Leutenegger S

(2018) Fusion + + : Volumetric object-level SLAM. In: 2018

International Conference on 3D Vision (3DV). IEEE, pp. 32–

41.

McCormac J, Handa A, Leutenegger S and Davison AJ (2017)

Scenenet RGB-d: Can 5m synthetic images beat generic Ima-

geNET pre-training on indoor segmentation. In: Proceedings

of the International Conference on Computer Vision (ICCV),

Vol. 4.

Mellado N, Aiger D and Mitra NJ (2014) Super4PCS fast global

pointcloud registration via smart indexing. Computer Graphics

Forum 33: 205–215.

Michel F, Kirillov A, Brachmann E, et al. (2017) Global hypoth-

esis generation for 6D object pose estimation. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Rec-

ognition, pp. 462–471.

Mitash C, Bekris KE and Boularias A (2017) A self-supervised

learning system for object detection using physics simulation

and multi-view pose estimation. In: 2017 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS).

IEEE, pp. 545–551.

Mitash C, Boularias A and Bekris KE (2018) Improving 6D pose

estimation of objects in clutter via physics-aware Monte Carlo

tree search. In: 2018 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, pp. 1–8.

Mitra N, Gelfand N, Pottmann H and Guibas H (2004) Registra-

tion of point cloud data from a geometric optimization per-

spective. In: Proceedings of the 2004 Eurographics/ACM

SIGGRAPH Symposium on Geometry Processing, pp. 22–31.

Movshovitz-Attias Y, Kanade T and Sheikh Y (2016) How useful

is photo-realistic rendering for visual learning? In: ECCV 2016

Workshops.

Narayanan V and Likhachev M (2016) Discriminatively-guided

deliberative perception for pose estimation of multiple 3d

object instances. In: Robotics: Science and Systems.

Papazov C and Burschka D (2010) An efficient RANSAC for 3D

object recognition in noisy and occluded scenes. In: Asian

Conference on Computer Vision. Berlin: Springer, pp. 135–

148.

Pavlakos G, Zhou X, Chan A, Derpanis G and Daniilidis K

(2017) 6-DOF object pose from semantic keypoints. In: IEEE

International Conference on Robotics and Automation (ICRA).

Peng X, Sun B, Ali K and Saenko K (2015) Learning deep object

detectors from 3D models. In: IEEE International Conference

on Computer Vision.

Mitash et al. 21

Pillai S and Leonard JJ (2015) Monocular SLAM supported object

recognition. In: Robotics: Science and Systems.

Redmon J, Divvala S, Girshick R and Farhadi A (2016) You only

look once: Unified, real-time object detection. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Rec-

ognition, pp. 779–788.

Ren S, He K, Girshick R and Sun J (2015) Faster R-CNN:

Towards real-time object detection with region proposal net-

works. In: Advances in Neural Information Processing Sys-

tems, pp. 91–99.

Rennie C, Shome R, Bekris KE and De Souza AF (2016) A data-

set for improved RGBD-based object detection and pose esti-

mation for warehouse pick-and-place. IEEE Robotics and

Automation Letters 1(2): 1179–1185.

Rothganger F, Lazebnik S, Schmid C and Ponce J (2006) 3D

object modeling and recognition using local affine-invariant

image descriptors and multi-view spatial constraints. Interna-

tional Journal of Computer Vision 66(3): 231–259.

Rusinkiewicz S and Levoy M (2001) Efficient variants of the ICP

algorithm. In: IEEE Proceedings of 3DIM, pp. 145–152.

Rusu RB, Blodow N and Beetz M (2009) Fast point feature histo-

grams (FPFH) for 3D registration. In: IEEE International Con-

ference on Robotics and Automation, 2009 (ICRA’09). IEEE,

pp. 3212–3217.

Salas-Moreno RF, Newcombe RA, Strasdat H, Kelly PH and

Davison AJ (2013) SLAM + + : Simultaneous localisation

and mapping at the level of objects. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 1352–1359.

Segal A, Haehnel D and Thrun S (2009) Generalized-ICP. In:

Robotics: Science and Systems, Vol. 2, p. 4.

Shrivastava A, Pfister T, Tuzel O, Susskind J, Wang W and Webb

R (2017) Learning from simulated and unsupervised images

through adversarial training. In: IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), Vol. 3, p. 6.

Simonyan K and Zisserman A (2015) Very deep convolutional

networks for large-scale image recognition. In: International

Conference on Learning Representations (ICLR).

Singh A, Sha J, Narayan KS, Achim T and Abbeel P (2014) Big-

bird: A large-scale 3D database of object instances. In: IEEE

International Conference on Robotics and Automation (ICRA).

IEEE.

Srivatsan RA, Vagdargi P and Choset H (2017) Sparse point reg-

istration. In: International Symposium on Robotics Research

(ISRR).

Stein GJ and Roy N (2018) Genesis-RT: Generating synthetic

images for training secondary real-world tasks. In: 2018 IEEE

International Conference on Robotics and Automation (ICRA).

IEEE, pp. 7151–7158.

Su H, Qi CR, Li Y and Guibas LJ (2015) Render for CNN: View-

point estimation in images using CNNs trained with rendered

3D model views. In: IEEE International Conference on Com-

puter Vision.

Sun B and Saenko K (2014) From virtual to reality: Fast adapta-

tion of virtual object detectors to real domains. In: British

Machine Vision Conference.

Tejani A, Tang D, Kouskouridas R and Kim TK (2014) Latent-

class Hough forests for 3D object detection and pose estima-

tion. In: European Conference on Computer Vision. Berlin:

Springer, pp. 462–477.

Thrun S, Burgard W and Fox D (2005) Probabilistic Robotics.

Cambridge, MA: MIT Press.

Tobin J, Fong R, Ray A, Schneider J, Zaremba W and Abbeel P

(2017) Domain randomization for transferring deep neural net-

works from simulation to the real world. In: 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS). IEEE, pp. 23–30.

Tombari F and Di Stefano L (2010) Object recognition in 3D

scenes with occlusions and clutter by Hough voting. In: 2010

Fourth Pacific-Rim Symposium on Image and Video Technol-

ogy (PSIVT). IEEE, pp. 349–355.

Tombari F, Salti S and Di Stefano L (2010) Unique signatures of

histograms for local surface description. In: European Confer-

ence on Computer Vision. Berlin: Springer, pp. 356–369.

Vidal J, Lin CY and Mart R (2018) 6D pose estimation using an

improved method based on point pair features. In: 2018 4th

International Conference on Control, Automation and Robotics

(ICCAR). IEEE, pp. 405–409.

Wohlhart P and Lepetit V (2015) Learning descriptors for object

recognition and 3D pose estimation. In: Conference on Com-

puter Vision and Pattern Recognition (CVPR).

Xiang Y, Schmidt T, Narayanan V and Fox D (2018) PoseCNN: A

convolutional neural network for 6D object pose estimation in

cluttered scenes. Robotics: Science and Systems (RSS).

Zeng A, Yu KT, Song S, et al. (2017) Multi-view self-supervised

deep learning for 6D pose estimation in the amazon picking

challenge. In: IEEE International Conference on Robotics and

Automation (ICRA).

Zhang L, Kim YJ and Manocha D (2007) C-DIST: Efficient dis-

tance computation for rigid and articulated models in config-

uration space. In: Proceedings of the 2007 ACM symposium on

Solid and physical modeling. New York: ACM Press, pp. 159–

169.

Zhou QY, Park J and Koltun K (2016) Fast global registration.

European Conference on Computer Vision.

Zhu JY, Park T, Isola P and Efros AA (2017) Unpaired image-to-

image translation using cycle-consistent adversarial networks.

In: Proceedings of the International Conference on Computer

Vision (ICCV).

22 The International Journal of Robotics Research 00(0)

