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Abstract—We consider the problem of apprenticeship learn- IRL is to recover a reward function under which the expert's
ing when the expert's demonstration covers only a small part policy is optimal, rather than to directly mimic the actions
of a Cljarge Statff space. 'l”Verse Rer']”forcerg‘lem 'Beam('jng (IRrI;) of the expert. The learned reward function is then used to
provides an efficient solution to this problem based on the . . .
assumption that the expert is optimally acting in a Markov fmd an optimal policy. Contrar)_/ to direct methods, IRL takes
Decision Process (MDP). However, past work on IRL requires into account the_fgct that the dlﬁerent_states of the system are
an accurate estimate of the frequency of encountering each related by transition and value functions. Consequently, the
feature of the states when the robot follows the expert's policy. expert's actions can be predicted in states that are different
Given that the complete policy of the expert is unknown, the from the states appearing in the demonstration.

features frequencies can only be empirically estimated from the .
demonstrated trajectories. In this paper, we propose to use a Unfortunately, as already pointed by (Abbeel & Ng, 2004),

transfer method, known as soft homomorphism, in order to ~recovering a reward function is an ill-posed problem. In fact,
generalize the expert's policy to unvisited regions of the state the expert’s policy can be optimal under an infinite number of
?palce- ]I_'he gentera“lzeol riolitchy cfan tbe USfEd either as thti robot's reward functions. Abbeel and Ng (2004) proposed to rather
na ICy, Or calc atures frequencies within an P H H
IRL a?;orit)llwn?. E?npﬁicgle:eesultz sﬁovtltﬁat oucﬂ approach is able minimize the Worst-cas? loss in Va!ue of the 'ea”.‘ed policy
to learn good policies from a small number of demonstrations. compare.d to the expert's one. Thelr _algor.lthm relies .on Fhe
assumption that the reward function is a linear combination
of state features, and the frequency of encountering each
. INTRODUCTION feature can be accurately estimated from the demonstration.
Modern robots are designed to perform complicated plarFhis assumption is considered in most of apprenticeship
ning and control tasks, such as manipulating objects, navigdarning methods, despite the fact that the features fre-
ing in outdoor environments, and driving in urban settinggguencies might be poorly estimated when the number of
Unfortunately, manually programming these tasks is almostemonstrations is small, as we will show in our experiments.
infeasible in practice due to the high number of related states.In this paper, we propose to use a transfer learning tech-
Markov Decision Processes (MDPs) provide efficient mathaique, known as soft homomorphism (Sorg & Singh, 2009),
ematical tools to handle such tasks with a little help fronin order to generalize the expert’s actions to unvisited regions
an expert. The expert's help consists in simply specifying ef the state space. The generalized policy can then be used
reward function. However, in many practical problems, eveto analytically calculate the expected frequencies of the fea-
specifying a reward function is not easy. In fact, it is oftertures. Contrary to previous direct methods, homomorphisms
easier to demonstrate examples of a desired behavior thantd@e into account the long term dependency between different
define a reward function (Ng & Russell, 2000). states. We will show that combining this transfer method
Learning policies from demonstrated examples, a.k.a. apdth other apprenticeship algorithms provides a significant
prenticeship learning, is a technique that has been wideipnprovement in the quality of the learned policies.
used in robotics. One can generally distinguish between
direct and undirect apprenticeship approaches (Ratliff et al., Il. PRELIMINARIES
2009). In direct methods, the robot learns a function that A finite-state Markov Decision Process (MDP) is a tuple
maps state features into actions by using a supervis:gg),q’T,Rﬂ,y), where: S is a finite set of statesq is a
learning technique (Atkeson & Schaal, 1997). The beginite set of actionsT is a transition functionT(s,a,s) =
known example of a system built on this paradigm ispr(st+1 =d|s =sa =a),ss € S,ac 4), Ris a reward
ALVINN (Pomerleau, 1989), where a neural network wasunction (R(s,a) is the reward associated to executing action
trained to learn a mapping between a road image andadin states), a is the initial state distribution, angl is a
vehicle steering action. Despite the remarkable success @scount factor used to weigh less rewards received further in
the ALVINN system and others, direct methods suffer fromhe future. We denote by MDP\R an MDP without a reward
a serious drawback: they can learn only reactive policiesunction. We assume that there exists a vectok édatures

where the optimal action of a state depends only on itg : s x 42— R, and the reward is a linear function of these
features, regardless of the future states of the system.  features with positive weights:

To overcome this drawback, Ng and Russell (2000) in- .

troduced a new approach of undirect apprenticeship learning Vses,vac A:Rsa) =Y wa(s.a) 1)
known as Inverse Reinforcement Learning (IRL). The aim of ’ B i;) '



The robot decides which action to execute according tdhe Bellman flow constraints (3) and (4) define the feasible
its policy T, defined agi(s,a) = Pr(a; = als =s). The value set ofx™. The learned policyt is given by:
V(1) of a policy tis the expected sum of rewards that the X'(s, a)
robot will receive if its actions are sampled accordingto (s, a) = m (5)

V(”)ZE[ith(&’at)|0,ﬂ7T] As many other algorithms, LPAL requires the knowl-
= edge of the features frequenci¥gT®) (in equation (2)).
These frequencies can be analytically calculated only when
a complete expert policy is provided. However, the expert
provides only a sequence ®f demonstration trajectories
tm=(s],a7",...,5y,ay,). The estimated frequenciés(nE),
which are used in lieu o (1F) in LPAL, are given by:

An optimal policytt" is one that satisfies" = argmaxV ().
The occupancy measur® of a policy Ttis defined as:

00

X"(s,a) = E[Zo\f5s,s5a¢,a\07"7ﬂ
t=

where & is the Kronecker delta. We also defing, the ~ o g 1 MH m
expected frequency of a featugg as follows: V'(TIE) - Mﬂ;ﬂ;v(ﬂ(s{“,a{ ) ©)

There are nevertheless many problems related to this
approach. First, the estimated frequenc\'kSTE) can be
) ) o _ ~_ too different from the true ones when the demonstration
Using this definition, the value function of a policy is giveNyrajectories are few. Second, the frequendigst) are esti-
by V(1) = $K owiVi(10). Therefore, the value is completely mated for a finite horizot, whereas the frequenci®g(T),
determined by the expected frequencies of the featgres given by S s ac2X(s,a)@i(s.a) and used in the objective

lIl. APPRENTICESHIPLEARNING functio.n (equation (2)), are calqulated for an infinite horizon

(equations (3) and (4)). In practice, these two values are very
different and cannot be compared as done in equation (2).

that is at least as good as the expert's pofity i.e. Finally, a frequency, (1) cannot even be estimated if the

V(1 > V(r). The valug functions offt and 1 cannot. feature@ takes non null values only in states that did not
be compared directly, given that the true reward funCt'OQppear in the demonstration

is unknown. As a first solutiqn to this problem, Ng a_nd To solve these problems, we propose a new approach
Russell (2000) proposed to first learn a reward funCtIorbased on transferring the demonstrated actions to the com-

assuming that t_he experts policy is optimal, land then us‘[‘):‘1ete state space. The generalized polity will be used
it to find a policy . However, the assumption that thefor calculating the frequencied (f€) by solving Bellman

expert’s policy is optimal cannot be guaranteed in pra : N :
tice. Abbeel and Ng (2004) did not consider this assumptiocﬂréz\t?lmigg?g?\?fég)) ?gdv_(?%éfiﬂ\;ﬁ[%)wm be used as our
H | y LGV — Vi .

their algorithm returns a policyt with a bounded loss in

the value function, i.e|| V(1) — V(1) || < . However, this IV. TRANSFERLEARNING

algorithm iteratively calls an MDP planner as a subroutine, Transfer learning refers to the problem of using the policy

which considerably affects its computational efficiency. Inearned for performing some task in order to perform a

this work, we will adopt a faster algorithm proposed by Syegelated, but different, task. The related task may be defined

et al. (2008), known as LPAL (Linear Programming Apprenon a new domain, or on the same domain but in a different

ticeship Learning). region of the state space. This problem has been widely
LPAL algorithm is based on the following observation: ifstudied in the context of reinforcement learning, and due

for some policyrt we havev* = mini—o__x_1Vi(T) —Vi(T€)  to the lack of space, we cannot give an overview of the

thenV (m) > V(1) 4+ v*. This is a direct consequence of theliterature. The interested reader might find an extended

assumption that the weightg are positive. LPAL consists overview in (Taylor & Stone, 2009).

in maximizing the margirv*, aiming to find policies that  In this paper, we focus on a transfer method known as

might outperform the expert’s one. The maximal valuesof MDP homomorphism (Ravindran, 2004), and more particu-

VI =El3 Yasa)enT= 5 saaisa
=

ses,ac4

The aim of apprenticeship learning is to find a poliy

is found by solving the following linear program: larly, on soft MDP homomorphism (Sorg & Singh, 2009).
max v The core idea of this latter approach consists in finding a
VXt function f, called the transfer function, that maps each state
such that of an MDP modelM = (§,4,T,Ra,y) to a probability

Vie{o,... k—1}: distribution over the states of another MDP mod#l =

(5,4, T",R,a,y). Additionally, the mapping between the

TU A
Vs Z X(s,2)@(s,2) = Vi (1) @ states of§ and.$’ should preserve the transition probabilities:

scS,aeA4
Vse S,ac4: f:5xS5 10,1
ZX“(aa):a(s)+ysZ > X'(s,a)T(s,as)  (3) Vse s, s eSS \Vae 4:
acAa €S

acAa , , _ : , )
X(sa)>0  (4) s/%J(s,a,s’)f(s’,s’)_Sgyf(s,s’)T (s",a,9) (7)



The reward function also should be preserved, but we Input: An MDP model without reward$, 4,T,a,y), a set of
will not consider this constraint since, in the context o demonstration trajectories, an error threshgland a
apprenticeship learning, the reward function is unknown. Es'm"a”ty distanced; . _ _

Sorg and Singh (2009) showed that soft homomorphisms tl}g}eitogg;he set of states contained in the demonstration
can be used to transfer the vaIL_Jes of the_ policies from an (yse the demonstration trajectories to estimate the paticy
MDP to another. In the next section, we will show how one for the states ofE:
can use soft homomorphisms in order to transfer actions fromLet s be the set of states that can be reached from a stat

a subset of a state space to another subset of the same spacwithin t steps,votesa vector containing the number of votes
per action, anct the stopping condition;

[

V. APPRENTICESHIPLEARNING WITH LOCAL foreach se€ $\SE do
HOMOMORPHISMS t — 0,80 « {s},votes— (0,...,0),c — false;
. . repeat

Given an MDP model without rewar@ = ($,4,T,q,y) te—t+1;
and a set oM trajectories provided by an expert, the state if & =¢"1then
spaces can be divided into two subsets®, the set of states ‘I C— truevotes— (1,...,1);

; ; ; ; E else
that appe%r in the prO\’nded.traJectones, aj_’l‘ds . F_or the foreach s € £ M.SE do
states ofS*, .the exper.ts' pollcynE ca}n'b(.a dlrectly_mferred Let e be the error returned by the linear
from the trajectories if it is deterministic, or estimated by program (9) on(Msd, a/s.d) ;
calculating the frequencies of actions if it is stochastic. We if e<ethen
will consider the general case and uie to denote the C —lrue;
estimated expert’s policy foreach a € 4 do FE(
o L . votega) — votega) + ,a
In order to generalize the polici® to S\SE, we first L @) ) (.3)

create a restrained MDP\R/E = (5E, 4, TF a,y), where

the transition functiorE is defined as: until ¢ = true ;

foreachac 4 do

vs s € SE.vae 4: L fﬁ(ga):%;
TE(s,a,d) =T(s,a,9) if §+#s
TE(s,2,9) =T(528,9) + Yyes e T(SRS)

Output: A generalized policyfF;
Algorithm 1: Apprenticeship Learning via Soft Loca
This function ensures that all the transitions remain within Homomorphisms
the states ofs® by assuming that any transition that leads
to a state outside o$F has no effect.

The next step consisti in finding & lossy soft homomokeyeen two states. We denote &y the set of states that
phism betweeri and =, where the loss function corre- oo pe reached from stasawithin a distance ofi steps, and

sponds to the error in preserving the transition probabilitie&y asd(d, 2,739 ,y) the MDP\R model defined on these
according to equation (7). The transfer functiénof this  giates. The transition functioFs? is then defined as:
homomorphism is found by solving the following linear

program: vs,s el vae 4:

: T84 =T(say9) if §#s

8 ) d
mn e ) { Ts‘d:T(s,a,s)Jrzglej\sd T(s,a9")
such that . .
scsdcsEvaca: ¢ Given a distanced and a threshol@, two statess and
v ) ) . are considered as locally similar if there exists a soft
|y Tsas)f(Es)- 5 f(ss)TE( a8) <e homomorphism betweem/3¢ and %9 with a transfer
s §ESE error not greater thaa This property is checked by solving
f(s¢) >0, Z f(s¢) =1 the following linear program:
geSE mfin e (9)

The transfer functionf corresponds to a measure of
similarity between two states. One can use this measure in
order to define the generalized polié§ as follows:

such that

vs et scedd vae a:
Y Ts,as)f(ss0 - Y f(s,5)T5%s,a8) <e
vseS\sFvae 4:ff(sa)= § f(s8)f(s,a) sjee =

gest f(s,s) =0, ) f(s.s)=1
scesd

Unfortunately, this method scales up poorly with respect
to the number of states visited by the expert and the numberThe principal steps of our approach are summarized in
of states in the corresponding domain. This is due to th&lgorithm 1. For every stats € $\SF, we create the list
fact that|SE| x | 5| variables are used in this linear programof neighbor states that can be reached fowithin t steps.
To improve the computational efficiency of this approachThe distance is gradually increased until we find a state
we redefine the functiori as a measure of local similarity s € &N SE that is locally similar tcs. If & =d-1, i.e. all the



Gridworld Number of || Expert policy | Full policy Soft local Monte Carlo Maximum Euclidian Regression | Manhattan
Size Regions homomorphism Entropy k-NN k-NN

16 0.4672 0.4692 0.4663 0.0380 0.3825 0.4672 0.4370 0.4635

16x 16 64 0.5281 0.5310 0.5210 0.0255 0.4607 0.5218 0.5038 0.5198
256 0.3988 0.4029 0.4053 0.0555 0.3672 0.3915 0.3180 0.4062

64 0.6407 0.6386 0.6394 0.0149 0.5855 0.6394 0.5530 0.6334

24x 24 144 0.5916 0.5892 0.5827 0.0400 0.5206 0.5890 0.5069 0.5876
576 0.3568 0.3553 0.3489 0.0439 0.2814 0.3114 0.2701 0.2814

64 0.6204 0.6179 0.6188 0.0145 0.5694 0.6198 0.5735 0.6177

32x32 256 0.5773 0.5779 0.5726 0.0556 0.5118 0.5730 0.4372 0.5729
1024 0.4756 0.4778 0.4751 0.0394 0.4482 0.4751 0.4090 0.4706

64 0.6751 0.6751 0.6732 0.0141 0.6234 0.6732 0.6052 0.6653

48x 48 256 0.6992 0.7006 0.6909 0.0603 0.6587 0.6999 0.6437 0.6997
2304 0.4950 0.4972 0.4876 0.0528 0.4640 0.4913 0.4437 0.4330

TABLE |

GRIDWORLD RESULTS

states that can be reached franare already contained in to other methods ( (Neu & Szepesvari, 2007) for example).
¢-1, and no one is locally similar t§ then we seftt(s,a) to  The length of the trajectories are 50 for the 16 by 16 and
a uniform distribution. Otherwise, for each actianf(s,a) 24 by 24 grids, 100 for the 32 by 32 grid, and 200 for the
is proportional to the weighted votes farof the states that 48 by 48 grid.
are locally similar tos. The robot is trained by using LPAL algorithm. However,
The generalized polic§t can be either considered as theas already mentioned, this algorithm requires the knowledge
robot's policy, or used to calculate the features frequencies the frequenciesv(t€), which is not the case in our
Vi(TE) for another algorithm, as LPAL. experiments since the demonstration covers only a small
number of states. Instead, we used the following methods
for learning a generalized policyi, and provided the
To validate our approach, we experimented on two simifeatures frequencies & to LPAL. Except for Monte Carlo,
lated navigation domains. The first one is a gridword problerthe frequencies/i(f€) are calculated by solving the flow
taken from (Abbeel & Ng, 2004). While this is not meant toequations (3) and (4).
be a challenging task, it allows us to compare our approadhull policy: the complete expert's policy€ is provided to
to other methods of generalizing the expert’s policy whehPAL.
the number of demonstrations is small. The second domafoft local homomorphism The generalized policy€ is

VI. EXPERIMENTS

corresponds to a racetrack. learned by Algorithm 1, the thresholis set to 0 and the
_ distanced is set to 1.
A. Gridworld Maximum entropy: The generalized policy® is set to a

We consider multiplex by x gridworld domains, withx uniform distribution on the states that did not appear in the
taking the following values: 16, 24, 32, and 48. The state gfemonstration.
the robot corresponds to its location on the grid, therefor&uclidian k-NN: The generalized policji® is learned by the
the dimension|$| of the state space takes the values 25¢k-nearest neighbors algorithm using the Euclidian distance.
576, 1024, and 2304. The robot has four actions for movinghe distancek is gradually increased until encountering at
in one of the four directions of the compass, but with d€ast one state that appears in the demonstration trajectories.
probability of Q3 actions fail and result is a random move Manhattan k-NN: the Manhattan distance from stageto
The initial state corresponds to the positith0), and the States; is the number of states contained in the shortest path
discount factory is set to 099. The gridworld is divided from states to states; on the MDP graph.
into non-overlapping regions, and the reward function varig§onlinear regression The occupancy measusé” is con-
depending on the region in which the robot is located. Faidered as a linear function of a polynomial kernel defined
each region, there is one feature, where@ (s) indicates on the horizontal and vertical coordinates of the robot's
whether states is in regioni. The robot knows the features position. In other terms, for each stae- (s,s;j) we have
@, but not the weightsy; defining the reward function of S,cq Xit (s,@) = O+ 01S + 02Sj + 035 + 014312 + 0SS +
the expert (equation (1)). The weights are set to 0 with £(s). We use a linear program to minimiZgs|e(s)| under
probability Q9, and to a random value between 0 and 1 wittBellman flow constraints, the states that appear in the demon-
probability Q1. stration are constrained to have the same action as the expert.
The expert’s policyr® corresponds to the optimal de- Finally, 7€ is extracted fromx'® according to equation (5).
terministic policy found by value iteration. In all our ex- Monte Carlo: This is the method used in the literature, the
periments on gridworlds, we used only 10 demonstratiofiequenciesV (T€) are estimated directly from the trajecto-
trajectories, which is a significantly small number comparedes, according to equation (6).



Finish line—

vertical action, the number of actions then is five. When the
speed is low, acceleration\deceleration actions succed with
probability Q9, and fail with probability 0L, leaving the
speed unchanged. The success probability falls down3o 0
™ when the speed is high, making the vehicle harder to control.
~ 1 When the vehicle tries to move off-road, it remains in the
same position and its speed is reset to zero. The controller
@) receives a reward of 5 for each step except for off-roads,
where it receives 0, and for reaching the finish line, where
the reward is 200. A discount factor of9® is used in order

to favour shorter trajectories.

In this experiment, we compared only the methods that
performed well in the gridworld domain, which are LPAL
with a full policy, LPAL with soft local homomorphisms,
and LPAL withk-NN using the Manhattan distance, since the

() Euclidian distance considers only the position of the vehicle
Fig. 2. Racetrack configurations and a demonstration of the expert's policgnd not its speed. We also comparte®iN and soft local
In racetrack (b), the car starts at a random position. homomorphisms without LPAL.
Figures 2 (a-f) show the average reward per step of the

controller’s policy, the average number of off-roads per step,
Table | shows the average reward per step of the robot,y the average number of steps before reaching the finish

policy, averaged over 1000 independent trials of the samge 4 a function of the number of trajectories in the demon-

length as the demonstration trajectories. Our first observatiQtion. For racetrack (a), the car always starts from the
is that LPAL algorithm learned policies just as good as theame initial position, and the length of each demonstration

expert's policy when the features frequencies are calculatgQjectory is 20. For racetrack (b) however, the car starts at a
by using the expert's full policy, but remarkably failed to do,,nqom position, and the length of each trajectory is 40. The

so when the frequencies are learned from the demonstratigl 15 are averaged over 1000 independent trials of length
by using a Monte Carlo estimator. This is due to the fact thago for racetrack (a) and 50 for racetrack (b).

we useq a very small number of demonstrations comparedCOmrary to the gridworld experiments, LPAL achieved
to the size of these problems. Second, LPAL returns bettghoy performances only when the features are calculated
pohmgs when_ the frequencies are analytically calculate using the complete policy of the expert. For clarity, we
by using maximum entropy technique than when they arglyqyed from Figures 2 (d-f) the results of LPAL witkNN

estimated by Monte Carlo. This is because Monte Carlg,y yith soft local homomorphisms, which were below the
estimates the frequencies for a finite horizon. Given that t rformances of the other methods.

expert’s actions cannot be explained by only the vertical and As expected, we notice the significant improvement of our

horizontal coordinates, the regression method also failed ta‘?gorithm overk-NN in terms of average reward, average

outperform the maximum entropy method. We also remarkmper of off-roads per step, and average number of steps
that Euclidian and ManhattaaNN performed similarly dué 4 the finish line. This is due to the fact that, contrary to

to the similarity between these two distances in the context QINN homomorphisms do take into account the dynamics

flat grids. They poth succeed.ed to learn policies with valueér the system. For example, when the car faces an obstacle,
plose to the 9pt|mal valug. Finally, our approach performeg.le local MDP defined around its current position is similar
just ask-NN in this _expenment. In fact, since there are NGy g| the local MDPs defined around the positions of facing
obstacles on the grid, most of the states are locally similaty, ohgtacle, the optimal action in these states, which is to
even for neighbors of a long distance. decelerate, can then be efficiently transferred.

Starting line

/Finish line

B. Racetrack VIlI. CONCLUSION

The main question of apprenticeship learning is how to
We implemented a simplified car race simulator, th@eneralize the expert’s policy to states that have not been
corresponding racetracks are showed in Fig. 2. The statescountered during the demonstration. Previous works have
correspond to the position of the car in the racetrack amattempted to solve this problem by considering the state as
its speed. We considered two discretized speeds, low aadvector of features of a smaller dimension, and classifying
high, in each direction of the vertical and horizontal axisthe states accordingly. However, an expert’s policy is a much
in addition to the zero speed in each axis, leading to more complicated function than it can be explained by only
total of 25 possible combinations of speeds, 5900 states fitnmediate features.
racetrack (a), and 5100 states for racetrack (b). The controllerinspired by the intuition that the states that are locally
can accelerate or decelerate in each axis, or do nothirgimilar have the same optimal action in general, we intro-
The controller cannot however combine a horizontal and duced a new technique for generalizing the expert’s policy
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Fig. 1. Racetrack results
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