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Abstract— Solving storage problems—where objects must be
accurately placed into containers with precise orientations and
positions—presents a distinct challenge that extends beyond
traditional rearrangement tasks. These challenges are primarily
due to the need for fine-grained 6D manipulation and the inher-
ent multi-modality of solution spaces, where multiple viable goal
configurations exist for the same storage container. We present
a novel Diffusion-based Affordance Prediction (DAP) pipeline
for the multi-modal object storage problem. DAP leverages a
two-step approach, initially identifying a placeable region on
the container and then precisely computing the relative pose
between the object and that region. Existing methods either
struggle with multi-modality issues or computation-intensive
training. Our experiments demonstrate DAP’s superior per-
formance and training efficiency over the current state-of-
the-art RPDiff, achieving remarkable results on the RPDiff
benchmark. Additionally, our experiments showcase DAP’s
data efficiency in real-world applications, an advancement over
existing simulation-driven approaches. Our contribution fills a
gap in robotic manipulation research by offering a solution
that is both computationally efficient and capable of handling
real-world variability. Code and supplementary material can
be found at: https://github.com/changhaonan/DPS.git.

I. INTRODUCTION

Storage tasks, such as placing a plate into a dishwasher or
putting a book onto a bookshelf, are ubiquitous in our daily
lives. These tasks involve placing an object into a container,
with the pose of the placed object meeting specified criteria.
However, unlike general rearrangement problems, storage
problems present two unique challenges: strict geometrical
constraints and multi-modal solutions. Firstly, the storage
criteria necessitate either an in-contact or a near-contact
goal pose configuration that is physically stable, such as the
case when inserting a book vertically into a tight gap on
a bookshelf. Furthermore, the entire placing process must
be collision-free. Secondly, there typically exist multiple
functionally correct but geometrically different goal configu-
rations under the same storage criterion. This inherent multi-
modality significantly impacts regression-based models, such
as Coarse-to-fine Q-attention [1], Relational Neural Descrip-
tor Fields [2], Neural Shape Mating [3], or Structformer [4].

Diffusion models have been shown to address the multi-
modality issue in image [5] and video generation. Struct-
Diffusion [6] pioneered the use of diffusion models in
rearrangement tasks by using diffusion to model the distri-
bution of task scenes. However, it suffers from inaccurate
pose prediction. Relative Pose Diffusion (RPDiff) proposes
Pose-diffusion [7], where initially-random relative poses are

The authors are with the Department of Computer Science, Rutgers
University, 08854 New Brunswick, USA. This work is supported by NSF
awards 1846043 and 2132972.

iteratively refined by a denoising model until an accurate goal
pose is found. However, RPDiff requires a significant amount
of environmental interactions as training data, making it
viable only in simulated tasks and not in real robotic tasks.

In this work, we introduce the Diffusion-based Affordance
Prediction (DAP) method to address storage problems. Our
key insight is to disentangle the strict geometrical constraint
and the multi-modality issue by tackling them separately.
Rather than directly predicting a goal pose within the entire
scene, our method, DAP, initially identifies a placeable region
within only the container region through diffusion-based
affordance prediction. Unlike classical affordance prediction,
which locates all placeable regions, DAP models the multi-
modal distribution of placeable regions using a diffusion
model. Next, inspired by region matching in one-shot ma-
nipulation learning [8], DAP derives the goal pose by finding
a point-wise correspondence between the object and the
identified region, without the interference from other possible
placeable regions within the container. For example, when
placing a plate into a dishwasher, DAP learns to model
the distribution of valid slots, samples one slot, and then
deterministically solves for the goal pose of that slot. Our
experiments demonstrate that DAP effectively resolves the
multi-modality issue while predicting accurate goal poses.
Compared to RPDiff, our method can be trained in just 2
hours, instead of several days.

Our contributions are summarized as follows: (1) We pro-
pose DAP, an efficient diffusion-based method that predicts
accurate goal poses for storage problems by generating a
multi-modal affordance distribution. (2) We evaluate DAP
on the RPDiff simulated benchmark, demonstrating that our
method is significantly more training-efficient and achieves
better accuracy compared to the existing state-of-the-art,
RPDiff [7]. (3) We deploy DAP in a real-robot system, where
it is shown to perform real-world storage tasks effectively,
even with noisy observations and minimal training data.

II. RELATED WORKS
A. Pair-wise Object Manipulation

Storage requires to compute the precise transformation
between the object being moved and the stationary con-
tainer object. In the realm of pair-wise object manipulation,
traditional approaches start with point cloud registration
to identify the task-relevant region, followed by relative
transformation estimations. Tax-Pose [9] and R-NDF [2]
exemplify this, using transformers and neural descriptor
fields to compute the correspondence between the stationary
object and the moving object and infer transformations,
respectively. On the other hand, Neural Shape Mating [3]
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Fig. 1: Visualization of the backward diffusion process in affordance prediction. Each row represents different samples. Each column
corresponds to one diffusion step. The diffusion step ¢ starts from 99 and ends at 0. Each figure represents a visualization of a sample at
that time step. Yellow indicates that the region is placeable, and purple indicates it is not. At beginning, the scene starts with a random
segmentation. As the backward diffusion process progresses, the affordance prediction gradually converges to the 4 placeable regions.

learns the transformation directly, without the point cloud
registration. However, these methods struggle with multi-
modal tasks, a gap filled by RPDiff’s [7] diffusion-based
pose refinement model, at a high computational cost requir-
ing several days of training on an advanced GPU (V100).
Our approach presents a solution to the computational and
multi-modality challenges inherent in the existing works.
We achieve this by proposing a diffusion-based affordance
prediction method to retrieve one task-relevant region among
many and then determine the correspondences between the
identified sub-region and the moving object to estimate the
transformation accurately.

B. Affordance Prediction & Point Cloud Segmentation

In 3D point cloud segmentation, methods are classified
into: (1) Semantic segmentation, categorizing points into
broad classes; (2) Instance segmentation, identifying indi-
vidual entities; and (3) Affordance segmentation, segment-
ing object regions for interactions like pushing or stor-
ing. Initially, the focus was on MLP/CNN-based architec-
tures (e.g., PointNet [10], PointNet++ [11], 3DSIS [12],
PointGroup [13]), but recent advances have shifted towards
transformer-based models (e.g., Superpoint [14], Point Trans-
former [15], Mask3D [16], OneFormer3D [17]), starting
with Point Transformer [15]’s advancement in semantic
segmentation. Subsequent works like Mask3D [16] and
OneFormer3D [17] have pushed the boundaries in semantic
and instance segmentation with transformer models, en-
hancing performance. In affordance prediction on 3D point
clouds [18]-[22], 3D AffordanceNet [18] provides a bench-
mark across 18 affordance categories, with 3DAPNet [19]
simultaneously predicting affordance regions and generating
corresponding 6DoF poses for action affordances.

Our problem is to segment a suitable region among many
possible ones for object storage, introducing complexities
beyond the scope of traditional segmentation approaches.
Semantic segmentation cannot distinguish between multiple
viable regions. Instance segmentation is impractical due to
the variability of potential storage spaces (e.g., placing a
can on a cabinet with many stackable regions), making the
generation of instance labels infeasible. Our task aligns more
with affordance prediction, aiming to segment a region from

a container object. However, existing methods do not address
multi-modality, failing to select a single storage region from
multiple candidates. To this end, we combine the diffusion
model with the latest Point Transformer architecture to
model the distribution of placeable storage region within a
container’s point cloud.

C. Diffusion Model

Diffusion models have seen success in a wide range
of generative tasks, including image generation [5], [23],
video generation [24], imitation learning [25], and offline
reinforcement learning [26]. These models are latent variable
models that consist of two processes: a noising forward
process, in which Gaussian noise is iteratively added to
data samples, and a denoising backward process in which a
learned model predicts what noise was added in the forward
process and removes it to reconstruct the original data sam-
ple. The model is trained by minimizing the mean-squared
error between the predicted noise and the actual noise [5].
This method offers several benefits over other generative
architectures. Compared to GANS, diffusion models are more
stable during training because they do not involve solving
a minimax problem [27], [28]. Compared to approximating
the target distribution with a multivariate Gaussian, diffusion
models can represent arbitrary probability distributions, so
they perform better in settings where it is important to
represent multi-modality [29].

Two major milestones in the development of diffusion
models are Deep Denoising Probabilistic Models (DDPM)
[5] and Diffusion Transformers (DiT) [30]. DDPM uses the
Rao-Blackwell theorem to obtain a closed-form expression
for the noise target, which makes training considerably faster.
DiT uses neural networks with a transformer architecture,
enabling better scaling and generalization to variable-length
inputs. We use the diffusion transformer architecture with
the DDPM loss function.

III. PROBLEM FORMULATION

We address the challenge of multi-modality storage. Our
objective is to position a target object O inside a bigger
container C, considering that there are multiple viable place-
ments for O within C. We represent the relative transfor-
mation between O and C as Toc € SE(3). The storage



is successful when Toc falls in the support of a multi-
modal distribution 2. The goal is to, given the point cloud
observations of O and C, Py and P, in the world coordinate
system W, calculate a transformation for O, denoted as
Two = (Rwo € SO(3),two € R?). Applying this transforma-
tion to object O should result in the relative pose of O and C
falling into the distribution &. Point cloud P consists of point
vertexes {v;}~_; and normals {n;}¥ ,. We assume a small set
of M demonstrations {P},,P{, T}, }*, is provided.

IV. METHOD

We tackle this problem using a two-stage method. Ini-
tially, we employ a diffusion-based affordance prediction to
identify the placeable regions within the container, given
the target object. Unlike conventional affordance prediction
methods, which return all placeable regions simultaneously
without distinction, our diffusion-based approach singles
out one focused region in each sample. Upon identifying
the placeable region, we proceed to compute the relative
pose between the placeable region and the target object.
Rather than directly calculating the SE(3) transformation,
we first establish a point-wise correspondence between the
container’s local region and the target object’s point cloud.
This correspondence predicts which parts of the container
and target should be in contact. We then utilize the algorithm
in [31] to determine the pose from this correspondence.

A. Diffusion-based Affordance Prediction

The primary challenges in the multi-modal storage prob-
lem are twofold: (1) The model must have high enough
accuracy that the generated poses are stable and avoid col-
lisions, and (2) The multi-modal nature of the task presents
multiple viable solutions, making it difficult for learning-
based methods to separate them. To address the first issue, we
adopt a coarse-to-fine strategy, proven by prior research [1]
to enhance pose prediction accuracy effectively. In tackling
the second challenge of ambiguity of viable solutions, we in-
troduce a diffusion-based affordance prediction method. This
method serves as a critical step in our coarse-to-fine strategy,
effectively narrowing down the possibilities by focusing on
placeable regions within the container. Specifically, we aim
to predict a score S = (s1,52,...,87n.),s;i € [—1,1] for each
point in the container point cloud P¢, where a higher score
signifies a more suitable placement area. After we obtain the
affordance prediction S, we crop the container based on this
prediction, and then perform pose-relevant computation on
that local geometry. This prediction is framed as a generative
task, aiming to model the conditional distribution of score S
over container geometry Pc.

Data labeling: As outlined in the problem formulation,
our data comprises {Pc,Pp,Two}. From this, we need
to generate labels for placeable affordance. We apply the
transformation Ty = (Rwo,two) to Po using the formula:

vi = Ryovi+two, n; =Rwon;. (D

This results in the transformed point cloud P}, = { (v, /) }Y9,,

which represents the goal object point cloud. Next, we

identify points on the container Pc whose minimal distance
to the transformed object Py, is smaller than a threshold
€place- These nearby points to the target point cloud on the
container point cloud indicate the placeable region on Pc.
We assign a score of 1 to these points and —1 to the rest.
Formally, this labeling is defined as:

1 if mi F—vills < €pjpee, Vi EP
1 varéanch’ Vj||2 place; V; € Py @)

Si =
—1 else

Here, €,/4ce serves as a hyper-parameter to adjust the size

of the placeable region, enabling us to mitigate the ambiguity
inherent in the multi-modality storage challenge.
Training: Based on our label generation method, the score S
will be a distribution conditioned on the container’s geometry
Pc, denoted as Zs = p(S|P¢). To capture s, we utilize
a denoising diffusion probabilistic model (DDPM) [5]. We
construct a continuous diffusion process {S(¢)}_, indexed
by time-variable . S(0) originates from the demonstration
data, representing the ground-truth affordance score. As the
time-step ¢ progresses from 1 to 7T (the total number of
diffusion steps), S(¢) is progressively perturbed by Gaussian
noise,

p(S(1)IS(r = 1),Pc) := A (S(t); V1= BS( — 1), B1). (3)

Here f; follows the notation in [5]. The training goal is to
learn a network ug(S(z),7,Pc), which is able to backward
the diffusion process, estimating S(r — 1) from S(¢):

Po(S(t—1)[S(t),Pc) := A (S(t — 1); e (S(r — 1),2,Pc), 07).

“4)
According to [5], rather than directly estimating g, we can
express (g as:

1o (S(t),1,Pc) = %(S(z) - \}%ee(sa),r,m). )

Thus, the training objective for the DDPM can be simplified
to:

L?imple = ]EZN[I,T],S(),E; [||8t - EG(S([),I,PC)HZ} : (6)

The parameters o, @, 3, € adhere to the definitions provided
in [5]. This training objective is equal to minimizing a
variational lower bound over the KL-divergence between a
learned distribution Py and the goal distribution Zs. After
training, we can sample from the learned distribution %y
with the learned network €g(S(z),7,Pc). We start from a
pure Gaussian noise S(7) ~ .4(0,I), and then perform the
denoising steps from t =T to t = 1 using:

S(t—1) = \/la—t(s(f)—\}%SG(SU)J’PC))‘FO}Z- ™

Here z ~ #(0,1) if t > 1 else 0. And we select 6 = .
After iterating from t =T to t = 1, we get an affordance
prediction S(0). Fig. 1 provides an illustrative visualization
for this sampling process.

Architecture: For the network €9 (S(r — 1),7,P¢), we adopt
a diffusion-transformer (DiT) architecture as introduced
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in [30]. A major distinction is that, whereas the original DiT
was designed for 2D tasks, our task is inherently 3D. We
detail our architecture in Fig. 2. €5(S(t —1),7,P¢) takes as
input the point cloud P¢, the noisy prediction S(r — 1), and
the time-step 7. As illustrated in Fig. 2, the point cloud P¢
is input into the network at two different positions: one part
uses the point coordinates {v; f.icl, and the other utilizes per-
point features { fi}?’fl. The Point-Transformer2 [32] serves as
the backbone to extract per-point features { fi};v:C] from coor-
dinates {v; ficl and normals {n,}fvzcl These per-point features
{ f,-}?/:C] are concatenated with the noisy scores {s,-}fy:cl to
form the point tokens. The time-step ¢ is processed through
an embedding layer, generating the time token. These point
tokens, point coordinates, and the time token are then fed
into the Point-DiT block. Within the Point-DiT block, we
apply a Fourier position embedding [33] to encode the point-
wise positional information. Notably, unlike in traditional
transformer architectures where positional encoding is ap-
plied only at the first layer, we implement this encoding
at every layer. As demonstrated in [16], applying positional
encoding at each transformer layer proves advantageous for
segmentation tasks. Subsequently, the position-encoded point
tokens and time-token are processed by the DiT Block,
which retains the structure described in [30]. The output
refined point tokens are then used as input for the next
Point-DiT layer, while the point coordinates and time-token
remain unchanged. Finally, a linear layer projects the latent
embeddings back to an N¢ x 1 vector with a range of [—1,1].

After obtaining the final affordance prediction S, we crop
point cloud P¢ by removing all points with negative scores.
We use P to denote the cropped point cloud in Section IV-B.

B. Pose estimation

As aforementioned, one challenge of multi-modality stor-
age is that it requires high accuracy for the generated place-
ment pose. This is especially crucial for compact regions,
such as placing a book on a shelf, where the gap for placing
an object may be very small, and we need to ensure the
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Fig. 3: Nlustration of the correspondence and pose computation on
a 2D toy example. The green points are the target object, and the
blue points are the container.

pose we generate is physically plausible and collision-free.
Previous works for pairwise object manipulation [2], [9]
have shown that, rather than directly predicting the pose
for an object, decomposing the pose estimation into first
finding point-wise correspondence between point cloud and
then computing the 6D pose from correspondence seems to
be more stable and accurate. We therefore utilize a similar
pipeline in our method. We train a network Cg4 (P, Po) to
predict the correspondence matrix C between two geometries
P{ and Po. This correspondence C models which point on
P{. should be in contact with which point on Pp. Then, we
apply Arun’s algorithm, which is a least squares optimization
method that minimizes the distance between the correspond-
ing points. Arun’s algorithm returns the goal pose, Tywo. We
present a toy 2D example in Fig. 3 to illustrate how our pose
estimation pipeline looks like.

Data labeling: We sample a random size bounding box
around the demonstrated storage location. We crop P¢ using
this bounding box to get P¢.. The ground-truth correspon-
dence identifies which parts of Pj and Po should be in
contact. We apply Two to Po using Eq. 1, resulting in Py,.
Subsequently, we calculate the pairwise distance between all
points in P, and all points in P{.. For any two points in
P and Py, their correspondence value is set to 1 if their
distance is less than a threshold &.,,, and O otherwise. Cor-
respondence matrix C’s shape is (Np x N¢). Mathematically,
C is defined as follows:

Cli.j) = {1’

0, else

HV§_Vj||2 < gcorravg € PIO,V]‘ € PZ‘

®)

Training: The training for correspondence is conducted
through pure supervised learning. We assume that the multi-
modality problem has been addressed by the diffusion-based
affordance prediction, leading to the existence of only one
optimal correspondence for given P and Po. To this end, we
train a network Cy(Pg,Po) to approximate C. We employ
a focal loss between Cg(P;,Po) and the ground-truth C as
training objective:

No N¢

[eorr _ ; Y. log (C(i, /)Cy i) - (1 = C(i, ))Co i )
a ©)
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The focal loss is specifically chosen to mitigate the imbalance
in data distribution. y is a hyper-parameter to tune the
balancing strength.

Architecture: We employ Point-Transformer2 [32] as the
3D backbone network to extract point-wise features {f;}Y |
for both P;, and Po. Point-Transformer2 introduces an effi-
cient attention mechanism termed Grouped Vector Attention
(GVA). Unlike classical attention mechanisms that calculate
the attention between all key tokens and query tokens, GVA
computes attention within predefined groups, necessitating
the establishment of these groups beforehand. In 3D prob-
lems, where each token is associated with 3D points, we can
utilize K-nearest-neighbors (KNN) to determine the attention
groups. For instance, to compute a KNN-based GVA between
two point clouds P; and P,, where P; serves as the query
point cloud and P, as the key point cloud, we determine
the K-nearest neighbors of each point in P; within P,. The
attention logit for each point in Py is then calculated using
this point-token and its K-nearest neighbor point tokens in
P,. Due to space constraints, we refer readers to [32] for the
complete definition of GVA.

In our approach, we use KNN-GVA for efficient self-
attention and cross-attention processing on point cloud data.
The full correspondence prediction pipeline is depicted in
Fig. 4. P{. and Py are fed into the backbone point network
to extract point-wise features. Object point tokens { fi}?g act
as query tokens, while container point tokens { fi}f.vzcl serve
as key tokens. These query tokens are processed through
a KNN-GVA layer for self-attention. Subsequently, cross-
attention is performed between the query tokens and key
tokens to refine the query tokens. This process is followed
by cross-attention between key tokens and query tokens to
refine the key tokens. The refined query and key tokens are
then used as inputs for the next block. Finally, a dot-product

(b) Can in cabinet

(a) Book in book-shelf

Fig. 5: Samples from RPdiff benchmark. We show two sample
scenes from the RPdiff benchmark: one is placing a book into the
bookshelf and the other is stacking a can inside a cabinet.

operation is employed to predict the correspondence between
points:

C¢(i>j):fi'fj7 iePOajEPZ’ (10)
Pose solving & Ranking: After getting the point-
correspondence between Pp and P{, we can analytically
compute the goal pose Two using Arun’s algorithm [31].
While the pose estimation step is a deterministic process,
the previous step, diffusion-based affordance prediction and
cropping, is a sampling process. We sample K candidate
poses each time, where K is a hyper-parameter. We perform
simple collision checking between the resulting P{, and P:
counting how many points of P; fall within the bounding
box of P),. Candidates are ranked based on this collision
estimation.

V. EXPERIMENTS

We conduct a comprehensive series of experiments, en-
compassing both simulation and real-world scenarios, aiming
to address several key questions: (1) How does the perfor-
mance of DAP compare with other methods? (2) How crucial
is the diffusion-based affordance prediction for addressing
the multi-modality issue? (3) Is our method sufficiently data-
efficient to learn effectively from real-world data?

A. Simulation Experiment

We evaluate our method using the benchmark from
RPDiff [7] (check Fig. 5), which provides a challenging
simulation environment for addressing the multi-modal re-
arrangement problem. This environment includes tasks such
as book shelving, can stacking, and cup hanging, all of
which highlight the benchmark’s complexity due to the
variability in container and object geometries within each
task. This variability demands a model’s ability to generalize
across different geometric configurations. We exclude the
cup hanging task from evaluation as it does not match our
problem requirement that the object is to be placed in a
bigger container. The benchmark’s inputs are a container
point cloud P¢ and an object point cloud Py. Success
is determined by the object’s stable placement inside the
container. The reported success rate is averaged over 100
independent random trials.



Method Book/Shelf  Can/Cabinet
C2F Q-attn 57% 51%
R-NDF-base 00% 14%
NSM-base 02% 08%
NSM-base + CVAE 17% 19%
RPDiff 94% 85%
DAP (ours) 98% 94%

TABLE I: Performance on RPDiff benchmark (Success rate).

Regarding the baselines, we adopt the same benchmarks
used in RPDiff [7]. We compare our approach against five
baseline methods, each offering a unique perspective on
tackling multi-modal rearrangement problems:
Coarse-to-Fine Q-attention (C2F-QA): Adapted from a
classification approach, this method predicts a score dis-
tribution over a voxelized scene representation to identify
candidate translations of the object centroid. It operates
in a coarse-to-fine manner, refining predictions at higher
resolutions and culminating in a rotation prediction for the
object. The best-scoring transformation is then executed.
Relational Neural Descriptor Fields (R-NDF): Utilizing
a neural field shape representation, R-NDF matches local
coordinate frames to category-level 3D models, facilitating
relational rearrangement tasks. The “R-NDF-base” version
does not include the refinement energy-based model found
in the original implementation.

Neural Shape Mating (NSM) + CVAE: NSM processes
paired point clouds via a Transformer to align them. The
“NSM-base” differs in its training on large perturbations
without local cropping and makes a single prediction. To
address multi-modality, NSM is enhanced with a Condi-
tional Variational Autoencoder (CVAE), allowing for multi-
ple transform predictions, with the top-scoring transform se-
lected for execution. “NSM-base” and “NSM-base + CVAE”
are considered as two different baselines.

Relational Pose Diffusion (RPDiff): RPDiff operates di-
rectly on 3D point clouds and is capable of generalizing
across novel geometries, poses, and layouts. It addresses
the challenge of multiple similar rearrangement solutions
through an iterative pose de-noising training strategy, allow-
ing for precise, multi-modal outputs. It was the state of the
art method on RPDiff’s benchmark until the present work.

The comparative performance of DAP and the baselines
is presented in TABLE 1. The table illustrates that RPDiff
significantly outperforms the other four baselines. However,
DAP exceeds RPDiff’s performance by a considerable mar-
gin, highlighting DAP’s superior capability. Furthermore,
the efficiency of DAP is demonstrated through its training
requirements: RPDiff necessitates three days of training on a
V100 GPU for its action module and an additional five days
for the evaluation module on each task. In contrast, DAP
requires only one hour for training the affordance prediction
module and another hour for pose estimation, all on a single
3090 GPU, showcasing DAP’s remarkable efficiency.

B. Ablation Study

To analyze the impact of diffusion-based affordance pre-
diction, we conducted an ablation study upon RPDiff bench-

Method Book/Shelf  Can/Cabinet
CAP 24% 36%
DAP (ours) 98% 94%

TABLE II: Ablation study on RPDiff benchmark.

P

i

ez
H
)

L]

iy,
: N=ET
N =
o] SACEE

Fig. 6: Robot setup: a Kuka robot equipped with two RealSense
D415 cameras and a three-finger Robotiq hand.

mark. We compare DAP with a variant framework without
using DDPM loss:

Classification Affordance Prediction (CAP): Instead of
treating affordance prediction as a generative task, we ap-
proach it as a classification problem using cross-entropy
loss. The architecture remains the same as DAP. During
inference we do not perform iterative de-noising, but provide
the classification in one step.

The results of our ablation study are depicted in TABLE II.
Classification Affordance Prediction (CAP) significantly un-
derperforms compared to the complete DAP. This finding
confirms our hypothesis that diffusion-based affordance pre-
diction effectively addresses multi-modality issues.

C. Real world Experiment

We conducted a qualitative real-world experiment to assess
DAP’s performance in a real-world setting, using a real-
to-real setup for both data collection and deployment. This
approach, distinct from the sim-to-sim or sim-to-real setups
in previous works [6], [7], faces challenges from noisier data
and a significantly smaller dataset. Unlike the thousands of
clean data points available from simulations, real-world data
is inherently noisier and scarcer. To our knowledge, DAP is
the first to demonstrate real-to-real capabilities in tackling
the multi-modality storage problem, a notable advancement
over prior diffusion-based methods like RPDiff [7] and
StructDiffusion [6], which have leaned on sim-to-real setups.
Existing imitation-based rearrangement frameworks such as
Transporter networks [34] and CLIPort [35] can deal with
real-to-real setup but fall short in addressing multi-modality
issues. Addressing the real-to-real multi-modality storage
problem necessitates a delicate balance between the model’s
representational capacity and data efficiency.
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Fig. 7: Real experiment on fruit storage. From left to right are: (a) robot execution recording; (b) final storage result; and (c) placeable

affordance prediction.

Fig. 8: Task objects: the fruits and storage racks used in the real-
world fruit storage task for training (left) and testing (right).
Robot Setup: We conducted real-world experiments using a
Kuka ITWA 14 robot arm, equipped with a Robotiq 3-finger
adaptive gripper. We positioned two Intel RealSense D415
cameras on opposite sides to observe the container and the
object at the same time. This setup is illustrated in Fig. 6.
Task: We trained and tested our method in a real-world fruit
storage task, where given the initial point clouds of a fruit
and a storage rack, the robot arm is asked to pick and place
the fruit into one of the four rack slots (Fig. 8). We collected
80 demonstrations. The fruits and storage rack for the testing
experiments are unseen during training. Each demonstration
consists of a start scene point cloud and an end scene point
cloud. We used the Segment-Any-Thing (SAM) [36] model
to segment out the fruits and storage rack. The testing demos
in Fig. 7 show that our method can generalize well to unseen
objects and containers in the real world. As shown in Fig 7,
DAP successfully detected all four placeable regions on the
test storage rack.

VI. LIMITATIONS

There are several limitations in the current DAP pipeline.
(1) DAP is primarily limited to storage problems, wherein a
target object is placed inside a larger container. In this setup,

after applying the diffusion-based affordance segmentation
to the container’s point cloud, there is only one optimal
goal pose for the local region. For tasks where multiple
optimal solutions exist within the local region, such as
hanging a cup, which can be hung by its handle or by
its rim, DAP performs less effectively. Investigating how
to combine diffusion models with correspondence prediction
can be a future research direction. Moreover, the storage of
arbitrary target objects necessitates the use of open-set object
detectors [37]-[39]. (2) A multi-camera setting is required
for real-world applications, as it helps maintain consistency
between the point cloud data during training and deployment.
This limitation could be addressed through advancements
in point cloud backbones or by developing new 3D data
augmentation techniques.

VII. CONCLUSION

We present DAP, a diffusion-based affordance predic-
tion pipeline for multi-modality storage problems, aimed at
placing a target object into a larger container. Our method
consists of two steps: a diffusion-based prediction step and
a pose estimation step. First, we sample a placeable region
for the container using a diffusion model and crop it out.
Then, we compute the point-wise correspondence between
the target object and the cropped region of the container. This
correspondence indicates which parts of the two geometries
should be in contact. We employ Arun’s algorithm to solve
the goal relative pose of the object with respect to the
container. Through thorough experimentation, including both
simulation and real-world scenarios, we demonstrate that
our proposed DAP pipeline is superior in performance and
training efficiency compared to previous methods. We hope
that DAP can pave the way for further research on multi-
modality pair-wise object manipulation tasks.
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APPENDIX

A. Implementation Details

Similar to Mask3D [16] and Oneformer3D [17], the point
cloud P in this work has been pre-clustered using the super-
point algorithm [14]. Each point in P represents a super-point
rather than a raw point. The position v and the normal n
represent the average position and normals of all raw points
within the cluster of the superpoint. .



