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Abstract— We present the first real-time system capable of
tracking and reconstructing, individually, every visible object
in a given scene, without any form of prior on the rigidness of
the objects, texture existence, or object category. In contrast
with previous methods such as Co-Fusion and MaskFusion
that first segment the scene into individual objects and then
process each object independently, the proposed method dy-
namically segments the non-rigid scene as part of the tracking
and reconstruction process. When new measurements indicate
topology change, reconstructed models are updated in real-time
to reflect that change. Our proposed system can provide the
live geometry and deformation of all visible objects in a novel
scene in real-time, which makes it possible to be integrated
seamlessly into numerous existing robotics applications that
rely on object models for grasping and manipulation. The
capabilities of the proposed system are demonstrated in chal-
lenging scenes that contain multiple rigid and non-rigid objects.
Supplementary material, including video, can be found at
https://github.com/changhaonan/STAR-no-prior.

I. INTRODUCTION

Robots are increasingly deployed in unstructured envi-
ronments such as households, warehouses, and workshops.
The large variety of object types, shapes, and textures that
are encountered in such environments makes it virtually
impossible for robots to always rely on prior models of
the objects for grasping, dexterous manipulation, and mo-
tion planning. Moreover, visual demonstrations for teaching
robots new tasks in real-world setups are often performed
in complex scenes that contain a number of unknown and
novel objects. The objects are often non-rigid and partially
occluded during the demonstrations. Consequently, tracking
and 3D reconstruction of previously unseen objects is an
important component of any intelligent robotic system.

Thanks to the recent availability of low-price depth-
sensing cameras, tracking and 3D reconstruction of objects
became two popular topics in robot vision [1].

These two problems are however interrelated; recon-
structed 3D object models facilitate subsequent tracking of
the object, while object tracking is often essential for the
reconstruction of its 3D model, which is highly challenging
in the absence of object priors, as it is often the case.
Therefore, these two problems need to be solved jointly in
a unified framework.

The Scene-level Tracking and Reconstruction (STAR)
problem brings the above challenge to a scene scale: Given
a sequence of RGB-D images of an entire scene, can we
reconstruct the geometry model and track the pose and defor-
mation of each moving object in the scene simultaneously?
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One approach to solving this problem is to first segment
the scene images into point clouds of individual objects and
then treat them separately during tracking and reconstruc-
tion [2]–[4]. This approach however heavily relies on the ex-
istence of a pre-trained neural network (such as MaskRCNN)
as a prior for segmentation, which limits its applicability in
settings with entirely new types of objects.

Another approach is to reverse the order of segmentation
and tracking, reconstruction. First, reconstruct the non-rigid
scene geometry in its entirety, using all the RGB-D images
of the scene. Then, segment the reconstructed 3D scene
model into individual objects. A major challenge in the
first step lies in handling topological changes that affect the
feasibility of the second step. Topological changes occur for
example when separate objects, or parts of an object, become
physically connected and vice versa.

Topological changes in tracking and reconstruction of non-
rigid objects are handled differently depending on the type of
the geometry model that is adopted by the method, such as
TSDF (Truncated Signed Distance Field) and Surfels (surface
elements). For TSDF-based methods, some methods reset
the entire model whenever a major topological change is
detected [5], [6]. Other methods use the status of spatial
compression to determine areas where topology changes and
replace those areas [7], [8]. These methods however either
rely on complex and ultra-precise sensors [5], [6], or depend
on accurate texture-based registration [7], [8], which makes
them difficult to use in general robotics applications. A recent
work based on a killing-field approximation reduces the de-
pendency on texture while handling large topological change,
but its use of an SDF-based geometry makes object segmen-
tation very difficult and non-trivial [9], [10]. Surfel-based
models are more flexible for handling topology changes in
non-rigid reconstruction [11], [12]. Instead of resetting the
entire model whenever a major topology change is detected
and thus losing important information, surfel-based methods
can locally re-initialize the geometry around affected areas.
This can be achieved because, unlike TSDF models, surfel
models do not have any internal constraints, which makes
the removal and appending of point clouds relatively easy.
Furthermore, a surfel representation can be beneficial in
geometric separation leading to object segmentation.

In this paper, we propose a novel system that can solve
the scene-level tracking and reconstruction problem without
any object or category prior, or any assumption regarding
the rigidness or texture of the objects. The contributions of
this work can be summarized as follows: (1) A new surfel-
based method for non-rigid scene reconstruction that can
handle topology change. Our proposed non-rigid geometry
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reconstruction pipeline improves the multi-view SurfelWarp
technique [12] by introducing a local re-initialization strat-
egy, which is used in our approach to detect and handle
topology changes. Compared to existing solutions to this
problem, ours does not rely on texture-based registration
or a category-dependent refiner. A comparison between our
proposed pipeline and multi-view SurfelWarp [12] clearly
illustrates the advantages of our approach. (2) The first real-
time scene-level, tracking and reconstruction solution
that does not use any object prior. Existing solutions such
as MaskFusion require objects to be rigid and rely on pre-
trained neural networks as priors for segmenting scenes into
objects. To our best knowledge, our system is the first that
solves this problem and returns an individual model for each
moving object in the scene without any prior information
about the objects, their rigidness, or texture. The proposed
system is tested over a set of RGB-D images of challenging
scenes, with various types of objects.

TABLE I: Properties of different real-time, dense-SLAM scene
reconstruction systems.

Method Category Dynamic Non-rigid Topology Segmentation Texture
free scene objects change free

SLAM++ ✗ ✗ ✗ ✗ ✗ ✗

DynamicFusion [13] ✓ ✓ ✓ ✗ ✗ ✓

Volume Deform ✓ ✓ ✓ ✗ ✗ ✗

SurfelWarp [12] ✓ ✓ ✓ ✗ ✗ ✓

Fusion4D [5] ✓ ✓ ✓ ✓ ✗ ✗

Motion2Fusion [6] ✓ ✓ ✓ ✓ ✗ ✗

Functon4D [14] ✗ ✓ ✓ ✓ ✗ ✓

TCAFusion [8] ✓ ✓ ✓ ✓ ✗ ✗

Co-fusion [2] ✗ ✓ ✗ ✓ ✓ ✓

MaskFusion [3] ✗ ✓ ✗ ✓ ✓ ✓

RigidFusion [4] ✗ ✓ ✗ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓

II. RELATED WORKS

We discuss in the following some of the recent related
techniques. Table I shows a taxonomy of these techniques.

Simultaneous tracking and reconstruction. Simultane-
ous tracking and reconstruction is an important problem
in robotic manipulation, since manipulation planning and
learning algorithms often require geometric models of the
objects and their poses [2]. Unlike earlier works centered
on single object tracking and reconstruction, more recent
techniques focus on dealing with multiple objects simulta-
neously. Examples of such techniques include Co-fusion [2],
MaskFusion [3] and RigidFusion [4]. These techniques re-
quire priors for segmenting the given scene initially into
multiple objects and then tracking and reconstructing each
object separately. Object priors are not always available, and
initial segmentation errors can lead to significant tracking
and reconstruction errors later. Moreover, these techniques
assume that the objects are rigid.

Dynamic Scene Reconstruction. Dynamic scene recon-
struction typically uses a static geometric model and a de-
formation field to describe a deformable object or a dynamic
scene. Existing techniques require solving joint optimization
problems, which are computationally expensive [15], [16].
DynamicFusion [13] is a parallel GPU-based solution that

solves this problem more efficiently and that can be consid-
ered as the first online non-rigid reconstruction system. How-
ever, DynamicFusion cannot handle topological changes in
measurements. More recent techniques such as Fusion4D [5],
Motion2Fusion [6], and others [7], [8], try to solve this
problem with texture-based, learning-based registration or
global re-initialization. Some of these works achieved excel-
lent reconstruction results. But to the best of our knowledge,
all existing topology-aware non-rigid reconstruction methods
either rely on texture-rich measurements or topology-prior
for registration, or on category-level priors (such as a human
or a pre-trained network) for model refinement. In contrast
with existing solutions, we exploit an intriguing property of
surfels that makes them easy to remove or append locally, to
perform local re-initialization. Our proposed method makes
no assumption on the existence of texture or category-level
prior to the target scene.

Surfel-based Reconstruction. Surfels (surface elements)
are first proposed by Pfister et al. [17] as rendering primi-
tives. A surfel is a zero-dimensional n-tuple that can approx-
imate a local surface. Keller et al. [11] defined a surfel as a
tuple of a 3D position, a normal, and a radius and first used
surfels for real-time reconstruction. Then SurfelWarp [12]
was proposed to extend the use of surfels to non-rigid scene
reconstruction. Using surfels for geometry representation in
non-rigid reconstruction has the advantage of faster process-
ing and smaller memory usage [12]. However, current surfel-
based methods do not handle large topological change (e.g.,
surface splitting) without global re-initialization. We found
in this work that surfels are efficient for local re-initialization
because they can be structured as a simple unordered list of
points. Compared to TSDF-based models, removing failure
parts and appending new geometry locally is much easier for
surfel-based models. Meanwhile, this property also makes it
easy to split a model into models for different objects, which
is another key requirement for scene-level segmentation.

III. PROBLEM FORMULATION AND BACKGROUND

We consider the problem of simultaneous tracking and
reconstruction of all the objects that are present in a given
dynamic scene, using as inputs a sequence of RGB-D images
taken from K different camera poses. The objects and their
number are completely unknown a priori. The objects can
also be non-rigid. A depth map in a given RGB-D image
is denoted as d : Ω→ R where Ω is the set of pixels in
the image, and d(u) is the depth of pixel u = (x,y) ∈ Ω.
Similarly, we denote the RGB image as c : Ω→ [0,1]3.

The output of the proposed system at each time-step t is a
set containing a Surfel-based geometry St

i for each individual
object i in the scene, and a corresponding deformation graph
Gt

i . Surfel-based geometry St
i is a set of surfels s j. A surfel

s j is defined as s j = (v j,n j,c j,ri), where v j,n j,c j,ri are
respectively the 3D coordinates, normal, color and radius
of surfel s j ∈ St

i . Different from previous methods [13],
[12], which keep a canonical geometry model and a live
geometry model, we only keep the latest geometry model,
because we only care about the current geometry of the scene



and objects. Deformation graph Gt
i is defined by a set of

nodes {gt
i} that correspond to 3D points belonging to the

same topology (i.e., same object). Each node in the graph is
connected to its nearest-neighbors. Nodes and edges in Gt

i
are added or dropped dynamically as topology changes are
detected. Deformation graph Gt

i of object i is accompanied
with a warp field W t

i . A warp field is defined as W = {[p j ∈
R3,δ j ∈R+,Tj ∈ SE(3)]}, wherein j is the node index in the
accompanying graph, p j is the 3D point that corresponds to
node j, δ j is a the node’s radius of influence, and Tj is the 6-
D transformation defined on node g j. Here Tj is represented
by a dual quaternion q j for smooth interpolation [18]. Warp
field W is used to describe the deformation between two
consecutive time steps. For each surfel s = (v,n,c,r) ∈ S, we
compute its 6-D transformation W̄ (s) based on warp field W
by applying the formula

W̄ (s) = normalize( ∑
k∈N(s)

ωk(v, pk)qk) (1)

Here, N(s) denotes the set of nodes that are the neigh-
bors of the surfel s (see Sec. IV-B and Fig. 2 for de-
tails). ω(s) is an interpolation parameter, defined as ω(s) =
exp

(
∥v− pk∥2

2 /(2δ 2
k )
)
, v is 3-D position of surfel s. The

local transformation W̄ (s) is then used to describe the
deformation of surfel s as follows,

W̄ t(s)v = vwarp,

rotation
(
W̄ (s)

)
n = nwarp,

(2)

wherein v,n are vertex and normal of s before deformation,
and vwarp,nwarp are those after warping.

IV. PROPOSED APPROACH

A. Overview

An overview of the proposed system is shown in
Fig.1. This pipeline is divided into four main compo-
nents: (1) measurement fusion (shown in blue), (2) non-
rigid alignment (yellow), (3) geometry and deformation
graph update (pink), and (4) topology separation (grey). The
green box refers to the entire scene representation model
(St−1,Gt−1,W t−1,dt−1

h ) at time-step t−1 as input to the sys-
tem, and as its output at time-step t. At each time-step, RGB-
D measurements of the scene from different cameras are
fused into a single surfel-based geometry M, defined as a set
of surfels (Sec. III). Current model (St−1,Gt−1,W t−1,dt−1

h ) is
aligned with in-coming fused measurement M through non-
rigid alignment (Sec. IV-E), which results in a new scene
geometry Salign. Then, a registration between Salign and M
is performed (Sec. IV-F). The parts of Smatch and Mmatch
that match together are fused. The unmatched parts of the
geometry from the existing model (i.e., outliers) are removed,
and the unregistered measurement (newly observed parts of
the scene) is appended to the model. In parallel to the updates
of the geometry model, deformation graph Gt−1 is updated
by removing nodes that are out of track and expanding the
graph with nodes corresponding to newly observed points.
Finally, historical maximum distance dt−1

h is updated. In
addition to the updated scene model, the system returns a

set of local models (St
i ,G

t
i), one for each detected object

after applying a topology-based segmentation.

Fig. 1: Overview of the proposed pipeline

B. Deformation model representation

The proposed method uses a surfel-based model instead
of the TSDF model which is the main-stream model used
for non-rigid scene reconstruction. We found from our in-
vestigation that a surfel-based representation is better than
TSDF when facing frequent topology changes. TSDF is
efficient at maintaining local topology because each surface
is determined by all its nearby voxels, which also implies
however that local topology is hard to change. When a local
geometry is lost, due to occlusion, the entire TSDF model
needs to be reset to fix the local problem. In contrast, a
surfel-based representation has no internal constraints over
topology. Therefore, failures can be fixed locally.

On the other hand, surfel representations have the disad-
vantage of not carrying any topology information. A typical
surfel-based model cannot distinguish between two surfels
belonging to different objects. Thus, we propose a hybrid
model that combines a surfel-based geometry S with a
topology-aware deformation graph G. As shown in Fig. 2,
for each surfel si ∈ S, we assign a node g j = support(si,G)
from G as its support node. Support node of si is defined as
the nearest point in G to si when it joined the geometry
S, using the Euclidean distance. Each surfel is assigned
to a unique support node, and one support node typically
supports numerous surfels. Graph G is dynamically decom-
posed into several topologies (i.e., connected components),
one per object. Surfel si is assigned to the same topology
as its supporting node g j. When g j is removed, all surfels
supported by g j are also removed from S. Deformation graph



G is the skeleton of the 3D model, and surfel set S is its skin.
The topology of the surfel set S is represented by its skeleton
G.

Deformation graph G is dynamic, its nodes and edges
change over time. Each node in G is connected to its k-
nearest neighboring nodes in G, using the historical maxi-
mum distance dh as a metric, which we define here as:

∀gi,g j ∈ G,dh(gi,g j) = maxt∈T{dt(gi,g j)}, (3)

wherein T is the number of time-steps (or frames) in the
sequence of images, and dt(gi,g j) is the Euclidean distance
between nodes gi and g j at that time step t. The historical
maximum distance proposed here is better than the Euclidean
distance in terms of determining topology. Two nodes gi and
g j belonging to different objects can be close to each other
for arbitrarily long periods, which happens for example when
one of the objects is resting on the other. But if the two nodes
have been observed to be far away from each other at any
moment in the past frames, then they should not be neighbors
in G.

Given deformation graph G, we define the set N(s) of
neighbors of surfel s ∈ S as the k′-nearest neighbors of s
among the k-nearest neighbors of g, the support node of
s. In other terms, N(s) = k′NN

(
s,kNN(g,G)

)
, with g =

support(s,G) and k′ ≤ k. Unlike the k-nearest neighbors of
g selected using the historical maximum distance, the k′-
nearest neighbors of s are obtained using the Euclidean
distance at the latest time step. Because all neighbors of s
are selected among the neighbors of its support node in G,
they necessarily belong to the same connected component in
G, i.e., same topology.
In summary, we use S (surfel-based geometry), G (deforma-
tion graph), W (warp field), dh (historical maximum distance)
to describe the deformable model of the entire scene.

Fig. 2: Proposed topology-aware deformation graph. In traditional
embedded deformation graphs, neighbors of a node (such as gk)
are decided by their current Euclidean distances, and neighbors of
a surfel (such as si and s j) are also defined by their Euclidean
distance to the nodes in the graph. In our proposed deformation
graph, neighbors of a node are determined by a historical maximum
distance dt . Also, neighbors of a surfel can only be selected from the
same sub-graph as its support node (support(si) and support(s j)).

C. Initialization

S,G,W,dh are initialized at the first frame. The geometry S
is initialized with the measurement M from the first frame.

The nodes of deformation graph G are uniformly sampled
from those initializing surfels spatially with the same algo-
rithm as DynamicFusion [13]. The initializing neighbor set
N(g) of every node g in G is their kNN set by Euclidean
distance at the first frame. The historical maximum distance
dh is initialized by the Euclidean distance at the starting
frame. The warp-field W associated with the deformation
graph G is initialized to an identity transformation.

D. Measurement

The measurement acquisition system in our pipeline is
similar to that of Function4D [14], a sparse multi-camera
system consisting of three RealSense-415 RGB-D cameras.
Multi-view measurement fusion is achieved through a TSDF-
based fusion pipeline similar to the one used in [5], [6].
It is worth noting that we use TSDF here instead of the
surfel-based representation because surfel models are more
sensitive to distortion and calibration error across different
cameras, and correcting for these errors is hard and computa-
tionally expensive. This problem with surfels was addressed
in [15] by projecting the point cloud to local planes, but
this solution is still computationally inefficient and relies on
a multi-camera system with 106 cameras. Alternatively, a
TSDF model can dramatically decrease measurement noise
and achieve a good smoothness between measurements from
different sources with a low computational cost.

Since we rely on the measurement to detect areas where
topology changes (Sec. IV-F), we only keep the best mea-
surement. According to [19], the noise level of depth mea-
surement at a point is proportional to the angle between the
local normal and the camera view direction. Thus, we discard
measurements that have a viewing angle larger than 70◦.

After each measurement fusion, we use the Raycast algo-
rithm described in KinectFusion [20] to transform the TSDF
into a measurement surfel model M for further processing.

E. Non-rigid alignment

We show here how to compute the non-rigid warp field
by solving a massive optimization problem on a GPU. For
this step, we principally follow the method of DynamicFu-
sion [13] and SurfelWarp [12], and adapt them to our surfel-
based model and multi-view setting. The key idea of non-
rigid warp field estimation is to align the geometry model
St−1 to the current measurement M. This can be formulated
as the following optimization problem,

min
W

Etotal(W ) with Etotal(W ) = Edepth(W )+λEreg(W ). (4)

Here, Edepth is used to align measurement M and geometry S.
Ereg is used to regulate the deformation within each topology
favoring rigidity. λ is a balancing parameter. Parameter λ

is typically small because strong regularization constraints
prevent topology from separation. Furthermore, Edepth is
defined as follows,

Edepth(W ) =
K

∑
i=1

∑
(st−1,sM)∈Pi

(
nT

M(vt−1− vM)
)2
. (5)



Here, K is the number of cameras, Pi is a set of pairs of
measured depths sM from each camera pose i and their
corresponding rendered models St−1. The normals of sM and
st−1 are denoted by nM and nt−1, while vt−1 and vM are the
vectors containing the 3D vertices of st−1 and sM .

Rendered models are obtained by rendering the global
geometry St−1 under different camera views. Each rendered
image has the same size as its corresponding measurement
depth image. Thus, for each pixel u=(ux,uy) on the rendered
geometry map, we search within a small neighborhood (ux±
σ ,uy±σ) for the best correspondence in terms of position
and normal difference. If their position distance or normal
difference are above thresholds γdistance and γnormal , this pair
will be discarded from the cost computation in Equation 5.

As for the regulation term Ereg, it is defined as follows,

Ereg(W ) = ∑
g j∈G

∑
gi∈N(g j)

∥∥Tj p j−Ti pi
∥∥2

2 . (6)

This regulation term is used to constrain deformations within
each topology to be as rigid as possible. The topology
structure is described by N(g j), the set of neighbors of node
g j in the deformation graph. Neighbors are not defined as
the nearest ones by Euclidean distance, but by a historical
maximum distance dh (See Sec. IV-B).

This optimization problem is a nonlinear least-squares
problem. Thus, we solve it with the Gaussian-Newton algo-
rithm. Every step here is implemented with CUDA on single
GPU efficiently, and the solution process runs on real-time.

The output of this step is the warp-field estimate in time
step t, W t . The aligned geometry Salign = W tSt−1. This
deformation is defined in Equations 1 and 2. We also update
the node position of the deformation graph Gupdate with the
following formulas:

gupdate← W̄ t(gt−1)gt−1

W̄ t(gt−1) = normalize( ∑
k∈N(gt−1)

ωk(gt−1, pk)qk) (7)

Here ωk has the same definition as Equation 1. N(gt−1)
is the neighbor set of gt−1 in graph Gt−1.

F. Geometry and deformation graph update

There are four steps in this section: registration, fusion,
appending, and removal.

In a nutshell, after the non-rigid alignment (See Sec. IV-
E), the geometry from the last time step St−1 is warped to
Salign, close to the current measurement M. However, there
still exists a discrepancy between the aligned geometry Salign
and the measurement surfel M. There could be multiple rea-
sons for this: measurement noises, newly observed surfaces,
topology changes, etc. Thus, we perform registration between
Salign and M. A match between salign and sM means the
geometry is being observed in the current measurement. We
need to fuse sM into salign to average the measurement noise.
Meanwhile, if a given sM has no match in Salign, this sM can
be a newly observed surface or a noise. If we verify this sM
as newly observed geometry, we should append it to St . And
when a given salign finds no correspondence to M, it is likely

Fig. 3: Change of the deformation graph when topological change
is detected. At the beginning, the non-rigid plush toy belongs to the
same topology as the table. The toy is then grasped and lifted. After
the non-rigid alignment step, the upper part geometry of the toy is
aligned to the current measurement. However, the remaining part
of the toy still belongs to the same topology as the table, staying
still at its original location. Since this part is out of track, its surfels
are removed from the geometry. When enough surfels are removed
due to their inconsistency with the free space, the removal of their
support nodes is also triggered. After enough nodes in-between the
deformation graphs of the toy and the table are deleted, the table
and the toy’s topologies are separated.

to be an outlier or just currently invisible. If it is an outlier,
then it should be removed from geometry St .

Registration. The geometry registration pipeline is similar
to SurfelWarp [12], but in a multi-view version. We first
render the aligned geometry Salign and the fused measure-
ment M to each camera pose k to generate an index map
Ik and a depth map Dk. Each surfel will be projected to
the camera’s coordinates with corresponding camera intrinsic
Ik and camera pose T k

camera. To avoid nearby surfels being
projected to the same pixel in the index map. The index map
is super-sampled by a scale of 4× 4. Then by comparing
the index map Ik with depth measurement Dk, we can
get the correspondence between geometry surfel Salign and
measurement surfel M. Given a pixel position u on the depth
measurement, we search a 4× 4 area on the corresponding
part of the index map. Among these points, we select the
correspondence with the following criteria: (1) Ignore surfels
whose distance to the depth vertex is larger than γdistance. (2)
Ignore surfels whose normal is far away from depth normal.
i.e. dot(nsur f el ,ndepth)< γnormal . (3) If there are multiple such
surfels, choose the one that is nearest to the depth vertex.

Fusion. If such a correspondence between salign
and sM is found, we will use the following for-
mula to fuse them: v f use ←

calignvalign+cMvM
(calign+cM) ,n f use ←

calignnalign+cMnM
(calign+cM) ,r f use ←

calignralign+cMrM
(calign+cM) , t f use ← tM,c f use ←

calign + cM . Here, v,n,r, t,c are vertex, normal, radius, time-
stamp and confidence of a surfel. The update is done in the
above order sequentially.

Append. If no correspondence is found for a measurement
surfel sM , we will mark it as an appending candidate. Candi-
dates under the following three cases will not be appended:

If sM is far away from existing geometry, it is likely to be
a measurement noise. Furthermore, the multi-view camera



(a) We lift a fire dragon plush toy from the table and release it. The first row is the RGB image from camera 0, the second row is the corresponding
segmentation result at that frame. The top right shows the separated models for each object. The bottom right is the scene geometry at the final frame.

(b) We use one hand to lift a non-rigid bag and put it on the table. Then, we pick a cracker box up from the bag with another hand.

Fig. 4: Experiments on two scenarios with a multitude of topological changes. Whenever a topology is discovered to be separate from
others, it will be identified as an individual object. No object prior is used during the entire process. While such topological changes can
relatively easily be detected by other techniques that make rigid-body assumptions, the non-rigidity of objects (i.e. the plush toy, hand,
bag) makes the simultaneous reconstruction, tracking, and topology change handling extremely challenging.

setting brings a problem of different distortion models. In
our practice, we find that there exists a shift in depth among
different cameras even towards the same area. In case we
create multiple surfaces for the same geometry, candidates
too close to existing surfaces are thrown away. Finally,
candidates supported by a compressed node should not be
appended. A node gi ∈ |G| can be defined as compressed if
the following holds,

∃g j ∈ |G|,dt
h(gi,g j)> γupper,dt(gi,g j)< γlower, (8)

dt
h is the historical maximum distance, and dt is the Eu-

clidean distance in the current frame. A node becomes
compressed when there exist some other nodes that are far
away in history but currently near each other. This often
happens when separated topologies approach each other (i.e.,
a hand approaching the table). To avoid having different
topologies wrongly connected together by appending nodes,
the appending process is not performed near these areas.

In summary, the following criteria are imposed: (1) Dis-

card surfels s whose distance to nearest deformation node
is larger than γnn. (2) Discard surfels s whose support (i.e.
closest) node support(s) is in compression status. (3) Dis-
card surfels s whose maximal distance to nearby depth surfels
along the camera view direction is smaller than γinlier. All
remaining candidates are appended to the latest geometry St .
After new surfels are appended to the geometry, we collect
surfels with shortest distances to the existing deformation
node larger than rsample. These surfels do not have a valid
support node. Thus, we perform a spatially uniform sampling
from these surfels, and sampled nodes are appended to the
deformation graph Gt . Since new nodes are appended to the
deformation graph, the historical maximum distance dh also
needs to be updated. If gk belongs to the newly appended
nodes, we initialize their dh by the following formula,

∀g j ∈ Gt ,dt
h(gk,g j) = max{dt

h(gi,g j)−dt(gi,gk),dt(g j,gk)}.

wherein gi is the nearest neighbor node of gk. According to
the triangle inequality, dt

h(gk,g j) is a lower bound for the



historical maximal distance between k and j.
Removal. Surfels salign that are not registered are marked

as removal candidates. There are three cases where a surfel
s should be removed: it is unstable for a long time (low
confidence and not updated in a long time), overlapped with
nearby surfels, or inconsistent with measurement M.

A removal counter for each node is maintained to count
how many of its supporting surfels have been removed. If
this counter passes a threshold γremove, the removal of the
corresponding node is triggered. Because it is very likely that
there exists a topological change and tracking failure nearby
this node, we perform a local re-initialization by removing
this node and its supporting surfels.

After the update of geometry St and deformation graph
Gt is finished, we update historical maximum distance dt

h
between every two graph node with the follows:

∀gi,g j ∈ {Gt ∩Gt−1},dt
h← max(dt−1

h ,dt(gi,g j)),

wherein dt is the Euclidean distance in Gt .

G. Topological separation

The final step of our system is the topological separation.
This step separates the geometry S and deformation graph
G into a set {(Si,Gi)}, wherein {Gi} are the connected
components of G, which have been already separated based
on the maximum historical distance dh. These components
are obtained by applying the flood-fill algorithm on G.

V. EXPERIMENTS

Fig. 5: We pick a scarf from the table. The RGB images show
how both our arm and the scarf are dramatically deformed. Despite
that, our system successfully isolated each topology, tracked and
reconstructed each object in the scene.

For non-rigid reconstruction problems, it is hard to provide
quantitative results with real scenes [12], [13], because it is
extremely challenging and expensive to obtain ground truth
for deformable models. Thus, we conduct a set of qualitative
experiments over a wide range of real-world scenarios that
involve non-rigid object manipulation, which are closely
related to robotic manipulation scenarios. The experiments
aim to assess the functionality of the proposed system and the
validity of our novel topological change handling strategy.

Fig. 6: An object re-arrangement example. Three objects are
moved to different positions in a 9-seconds video. This experiment
demonstrates the capability of our system in dealing with multiple
moving objects, and its potential use in robot re-arrangement tasks.

Fig. 4a and Fig. 4b show the process of topological change
handling. For example, in Fig. 4a, four distinct topological
changes are happening during this experiment; (1) the hand
grasps the non-rigid plush toy, (2) the toy separates from
the table, (3) the hand releases the toy, (4) and the toy rests
on the table again. The Fig. 4b is even more complicated
than Fig. 4a. Our system detected and handled all of those
topological changes correctly.

Fig. 5 and Fig. 6 demonstrate the stability of our pro-
posed system under different challenging settings. In Fig. 5,
our proposed framework successfully handles a scene with
large deformation, picking up a scarf. Fig. 6 illustrates
the capability of our system in processing multiple moving
objects (5 objects in this scene, including the table), which
demonstrates a potential usage in robot re-arrangement tasks.

Fig. 7 compares our reconstruction result with Surfel-
Warp [12] with/without global re-initialization, from which
we can observe how global re-initialization loses too much
information and no re-initialization cannot handle the topo-
logical change. This shows the superiority of the proposed
local re-initialization strategy over the global re-initialization
strategy. To the best of our knowledge, this is the first
real-time non-rigid reconstruction system using local re-
initialization as the topology handling strategy.

Performance. The proposed system can run at 40 fps.
On average, the measurement fusion takes 4ms, non-rigid
alignment takes 10ms, geometry and graph updates take 8ms,
and topology segmentation takes 3ms. This performance is
obtained by testing the system on a desktop machine with
a GeForce RTX 3090 and an AMD-Ryzen 9 5900X, on the
scene shown in Fig. 4a, which contains 13k surfels and 900
deformation nodes.

Limitation and Discussion. Although our system is able
to solve the scene-level tracking and reconstruction problem
without any prior, it still has many limitations. First, our cur-
rent system relies on only depth measurement for registration
and global registration is lacking here. If there is a fast and
large deformation or motion in the scene, our system is not
able to track it. How to combine global registration with
our current system is a future direction of our work. Our



Fig. 7: We move a Mario plush toy from one hand to another. The
top row is the RGB measurement from camera 0. The middle row
is the corresponding segmentation result. The bottom row shows a
comparison between the final model of our proposed method, with
SurfelWarp (w) [12] with global re-initialization, and SurfelWarp
(o) without re-initialization. In the third row, we can observe that
the global re-initialization in the sparse multi-camera settings is
losing too much information. There is a big hole in Mario’s face.
Without re-initialization, we observe that the hand and the toy are
mistakenly connected. Our proposed method correctly separates the
hand and the toy while maintaining most of the information.

proposed pipeline relies heavily on measurements for surfel
appending and removal. Although we are using a multi-view
setting, we often lose the measurement of partially visible
scenes. The reason is that our multi-view camera system
is sparse (we only use 3 cameras in our experiment). For
those areas missing measurement, we are unable to make
any update or refinement towards their geometry. This is
the reason why the edges of our reconstructed model are
sometimes not smooth. Furthermore, if a local geometry is
out of vision but deforms largely, likely, we have already lost
track of it when it comes back to our view. This loop-closure
problem is an ongoing topic in all works related to non-rigid
scene reconstruction.

VI. CONCLUSION

In this paper, we presented the first real-time solution for
the STAR (Scene-level Tracking and Reconstruction) prob-
lem with no object prior, regardless of the rigidness or texture
existence in the scene. Instead of segmenting the scene and
reconstructing each object individually, the operation order is
reversed by reconstructing the non-rigid scene first and then
performing topology-based segmentation. A novel surfel-
based local re-initialization strategy is introduced to deal with

frequent topological changes in the scene while maintaining
most of the global geometry. The proposed method can be
integrated seamlessly into several robotics applications, such
as learning manipulation skills from visual demonstrations.
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