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Abstract: We present an Open-Vocabulary 3D Scene Graph (OVSG), a formal
framework for grounding a variety of entities, such as object instances, agents,
and regions, with free-form text-based queries. Unlike conventional semantic-
based object localization approaches, our system facilitates context-aware entity
localization, allowing for queries such as “pick up a cup on a kitchen table” or
“navigate to a sofa on which someone is sitting”. In contrast to existing research
on 3D scene graphs, OVSG supports free-form text input and open-vocabulary
querying. Through a series of comparative experiments using the ScanNet [1]
dataset and a self-collected dataset, we demonstrate that our proposed approach
significantly surpasses the performance of previous semantic-based localization
techniques. Moreover, we highlight the practical application of OVSG in real-
world robot navigation and manipulation experiments. The code and dataset used
for evaluation can be found at https://github.com/changhaonan/OVSG.
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1 Introduction

In this paper, we aim to address a fundamental problem in robotics – grounding semantic entities
within the real world. Specifically, we explore how to unambiguously and accurately associate
entities present in commands, such as object manipulation, navigation to a specific location, or
communication with a particular user.

Currently, the prevailing method for grounding entities in the robotics domain is semantic detec-
tion [2]. Semantic detection methods are intuitive and stable. However, in scenes with multiple en-
tities of the same category, semantic labels alone cannot provide a unique specification. In contrast,
humans naturally possess the ability to overcome this grounding ambiguity by providing context-
aware specifications, such as detailed descriptions and relative relations. For example, rather than
simply designating “a cup”, humans often specify “a blue cup on the shelf”, “a coffee cup in the
kitchen”, or “Mary’s favorite tea cup”.

Inspired by this, a series of recent works introduce context relationship into grounding problem [3,
4, 5, 6, 7]. These approaches employ 3D scene graphs as a scene representation that concurrently
accounts for instance categories and inter-instance spatial contexts. In a 3D scene graph, concepts
such as people, objects, and rooms are depicted as nodes, with attributes like color, material, and
affordance assigned as node attributes. Moreover, spatial relationships are represented as graph
edges. Such structure enables 3D scene graphs to seamlessly support context-aware object queries,
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such as “the red cup on the table in the dining room”, provided that the attribute, the semantic
category, and the relationship have been predefined in the graph.

However, this inevitably brings us to a more crucial question that this paper aims to answer: how
do we cope with scenarios when the class category, relationship, and attribute are not available in
the constructed 3D scene graph? Tackling this question is vital if we wish to effectively integrate
robots into real-world scenarios. To resolve the challenge, we present a novel framework in this
paper – the Open-Vocabulary 3D Scene Graph (OVSG). To the best of our knowledge, OVSG is the
first 3D scene graph representation that facilitates context-aware entity grounding, even with unseen
semantic categories and relationships.

To evaluate the performance of our proposed system, we conduct a series of query experiments on
ScanNet [1], ICL-NUIM [8], and a self-collected dataset DOVE-G (Dataset for Open-Vocabulary
Entity Grounding). We demonstrate that by combining open-vocabulary detection with 3D scene
graphs, we can ground entities more accurately in real-world scenarios than using the state-of-the-art
open-vocabulary semantic localization method alone. Additionally, we designed two experiments
to investigate the open-vocabulary capability of our framework. Finally, we showcase potential
applications of OVSG through demonstrations of real-world robot navigation and manipulation.

Our contributions are threefold: 1) A new dataset containing eight unique scenarios and 4,000 lan-
guage queries for context-aware entity grounding. 2) A novel 3D scene graph-based method to
address the context-aware entity grounding from open-vocabulary queries. 3) Demonstrate the real-
world applications of OVSG, such as context-aware object navigation and manipulation.

2 Related Work

Open-Vocabulary Semantic Detection and Segmentation The development of foundation vision-
language pre-trained models, such as CLIP [9], ALIGN [10], and LiT [11], has facilitated the
progress of 2D open-vocabulary object detection and segmentation techniques [12, 13, 14, 15, 16,
17, 18]. Among these approaches, Detic [16] stands out by providing open-vocabulary instance-
level detection and segmentation simultaneously. However, even state-of-the-art single-frame meth-
ods like Detic suffer from perception inconsistency due to factors such as view angle, image quality,
and motion blur. To address these limitations, Lu et al. proposed OVIR-3D [19], a method that fuses
the detection result from Detic into an existing 3D model using 3D global data association. After
fusion, the 3D scene is segmented into multiple instances, each with a unique Detic feature attached.
Owing to its stable performance, we choose OVIR-3D as our semantic backbone.

Vision Language Object Grounding In contrast with object detection and segmentation, object
grounding focuses on pinpointing an object within a 2D image or a 3D scene based on textual input.
In the realm of 2D grounding, various studies, such as [20, 21, 22, 23], leverage vision-language
alignment techniques to correlate visual and linguistic features. In the 3D context, object grounding
is inherently linked to the challenges of robot navigation, thus gaining significant attention from the
robotics community. For instance, CoWs [24] integrates a CLIP gradient detector with a navigation
policy for effective zero-shot object grounding. More recently, NLMap [25], ConceptFusion [26],
CLIP-Fields [27] opts to incorporate pixel-level open-vocabulary features into a 3D scene recon-
struction, resulting in a queryable scene representation. While NLMap overlooks intricate relation-
ships in their framework, ConceptFusion claims to be able query objects from long text input with
understanding of the object context. Thus, we include ConceptFusion as one of our baselines for 3D
vision-language grounding.

3D Scene Graph 3D scene graphs provide an elegant representation of objects and their rela-
tionships, encapsulating them as nodes and edges, respectively. The term “3D” denotes that each
node within the scene possesses a three-dimensional position. Such graph structure has been widely
researched for decades in robotics community [3, 4, 5, 7, 6, 28, 29],. In [3], Fisher et al. first in-
troduced the concept of 3D scene graphs, where graph nodes are categorized by geometric shapes.
Armeni et al. [4] and Kim et al. [5] then revisited this idea by incorporating semantic labels to graph
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Figure 1: This is an illustration of the proposed pipeline. The system inputs are the positional input Pu , user input Lu , RGBD Scan I , and a query language Lq .
The top section depicts the construction of Gs . Both Pu and Lu are directly fed into Gs . The RGBD Scan I inputs into the open-vocabulary fusion system referred
to as OVIR-3D. This system outputs a position and a Detic feature for each object. Subsequently, the language descriptions for the agent and region are converted into
features via different encoders. A unique Spatial Relationship Encoder is employed to encode spatial relationship features from pose pairs. The bottom section shows
the building of Gq . The query Lq used in this example is, “I want to find Tom’s bottle in the laboratory.” An LLM is used to parse it into various elements, each
with a description and type. These descriptions are then encoded into features by different encoders, forming Gq . Finally, grounding the query language Lq within
scene S becomes a problem of locating Gq within Gs . A candidate proposal and ranking algorithm are introduced for this purpose. The entity we wish to locate is
represented by the central node of the selected candidate.

nodes. These works establish a good foundation for semantic-aware 3D scene graphs, demonstrating
that objects, rooms, and buildings can be effectively represented as graph nodes. Recently, Wald et
al. [7] showed that 3D feature extraction and graph neural networks (GNN) can directly infer seman-
tic categories and object relationships from raw 3D point clouds. Rosinol et al. [6] further included
dynamic entities, such as users, within the scope of 3D scene graph representation. While 3D scene
graphs exhibit great potential in object retrieval and long-term motion planning, none of the existing
methods support open-vocabulary queries and direct natural language interaction. Addressing these
limitations is crucial for real-world deployment, especially for enabling seamless interaction with
users.

3 Open-Vocabulary 3D Scene Graph

3.1 Open-Vocabulary 3D Scene Graph Representation

An Open-Vocabulary 3D Scene Graph (OVSG) is denoted as G = |V,E|, where V signifies
graph nodes and E stands for graph edges. Each node vi in V = {vi} = {ti, f i, li, pi} con-
sists of a node type ti, a open-vocabulary feature f i, a language description li (optional), and
a 3D position pi (optional); i is the node index. In this study, we identify three primary node
types, ti: object, agent, and region. The open-vocabulary feature f i associated with each node
vi is contingent on the node type ti. The encoder utilized for f i is accordingly dependent on
ti. The 3D position pi = {xc, yc, zc, xmin, ymin, zmin, xmax, ymax, zmax} of each entity is de-
fined by a 3D bounding box and its center position. Edges in the graph are represented by
E = {ei,j |vi, vj ∈ V }, ei,j = {ri,j,k = {ti,j,k, f i,j,k, li,j,k}|k = 0, . . .}. Each edge ei,j en-
capsulates all relationships ri,j,k between the nodes vi and vj . The triplet notation (i, j, k) refers the
kth relationship between node vi and vj , ti,j,k indicates the type of this relationship. We primarily
categorize two relationships in this study: spatial relations and abstract relationships. A short sen-
tence li is optionally provided to describe this relationship. The feature f i,j,k encodes the semantic
meaning of the relationship, whose encoder depends on ti,j,k. For a more detailed definition of these
types, please refer to Section 3.3.

The primary distinction of OVSG from conventional 3D scene graph work is its utilization of se-
mantic features, instead of discrete labels, to characterize nodes and relationships. These features
are either directly trained within the language domain like Sentence-BERT [30] and GloVe [31], or
aligned to it, as seen with CLIP [9] and Detic [16]. The versatility of language features enables
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OVSG to handle diverse queries. The degree of similarity among nodes and edges is depicted using
a distance metric applied to their features:

dist(vi, vj) =
{
∞ if ti ̸= tj

1− dot(f i, f j) else
; dist(ei,j , eu,v) = min

∀k∈|ei,j |,∀w∈|eu,v|
dist(ri,j,k, ru,v,w)

dist(ri,j,k, ru,v,w) =


∞ if ti,j,k ̸= tu,v,w

1− dot(f i,j,k, fu,v,w) if ti,j,k = tu,v,w ̸= spatial
SRP(f i,j,k, fu,v,w) if ti,j,k = tu,v,w = spatial

(1)

, where the |ei,j | and |eu,v| are the number of relationships inside ei,j and eu,v; SRP refers to a
Spatial Relationship Predictor. Check Section 3.3 and Appendix B for more details. Noticeably,
the distance across different types will not be directly compared. These distances will be used to
compute the type-free index in Section 3.4.

3.2 Context-Aware Open-Vocabulary Entity Grounding

The problem we address can be formally defined using the open-vocabulary scene graph concept
as follows: Given a scene, represented as S, our objective is to localize an entity, referred to as s,
using natural language, represented as Lq , within the context of the scene S. Essentially, we seek to
establish a mapping π such that s = π(Lq|S). An RGBD scan of the scene I , user linguistic input
Lu, and position input Pu are provided to facilitate this process. Significantly, the query language
Lq may encompass entity types and relationship descriptions not previously included in the scene
graph construction phase.

Our proposed procedure can be separated into two main stages. The first stage involves the con-
struction of the scene graph. From the user input Lu and the RGBD scan I , we construct an open-
vocabulary scene graph (OVSG) for the entire scene, denoted as Gs. This is a one-time process that
can be reused for every subsequent query. When a new query is introduced, we also construct an
OVSG using the query Lq , denoted as Gq . Once we have both scene graphs Gs and Gq , we proceed
to the second stage, which is the graph matching stage. Here, we match the query scene graph, Gq ,
with a sub-graph from the whole scene graph, Gs. The queried entity is situated within the matched
sub-graph.

3.3 3D Scene Graph Building

Type definition Prior to delving into the scene graph construction procedure, we first delineate the
categories of node types and edge types this paper pertains to. The term Object signifies static ele-
ments within a scene, such as sofas, tables, and so forth. The term Agent is attributed to dynamic,
interactive entities in the scene, which could range from humans to robots. Region indicates a spe-
cific area, varying in scale from the surface of a tabletop to an entire room or building. Regarding
relationships, spatial describes positional relationships between two entities, such as Tom being in
the kitchen. Conversely, abstract relationships are highly adaptable, enabling us to elucidate rela-
tionships between an agent and an object (for instance, a cup belonging to Mary) or the affordance
relationship between two objects, such as a key being paired with a door.

Input process The inputs for Gs consist of an RGBD-scan set I , a user language input Lu, and a
user position input Pu. The Lu input assigns names to agents and regions and provides descriptions
of abstract relationships. Pu provides the locations for the agent and region (not including object
position), and it can be autonomously generated using existing algorithms like DSGS [6]. Since this
process is not the focus of our study, we assume Pu is pre-determined in this paper. The input I is
an RGBD scan of the entire scene, which is fed into the Open-Vocabulary 3D Instance Retrieval
(OVIR-3D) [19] system, a fusion system operating at the instance level. OVIR-3D returns a set of
objects, each denoted by a position pi and a Detic feature f i

Detic.

Gq accepts a language query Lq as its input. An exemplary query, as depicted in Figure 1, is “I want
to find Tom’s bottle in laboratory”. To parse this language, we utilize a large language model (LLM),
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such as GPT-3.5 or LLAMA. Utilizing a meticulously engineered prompt (refer to Appendix A for
more details), we can interpret different entities within the query.

Feature encoding As specified in Eq. 1, the calculation of the similarity between nodes and edges
relies heavily on their features. This operation of computing features is termed the feature encoding
process.

Instead of using a unified encoder as in previous works [25, 26], we choose different encoders for
various node and relationship types. Since the inputs of Gs and Gq differ, the selection of encoders
for each graph also varies. Object features in Gs are generated by deploying OVIR-3D to the 3D
scan of the scene. These features are Detic features. Meanwhile, objects in Gs are encoded from
their names l (parsed from LLM during the input process) using the CLIP-text encoder. Because the
Detic feature is directly trained to align with the CLIP-text feature, we can compute distances for
object nodes between Gs and Gq using Eq.1. For agent and region nodes in Gs, they are identified
by their names in the user input, Lu. Whereas in Gq , agent and region nodes are also specified by
names l. For both of them, we employ Sentence-BERT [30] to encode the language features. As
for relationships, we differentiate between spatial relationships and abstract relationships. In Gs,
the input for spatial relationships comes from the positions of the corresponding nodes. In contrast,
in Gq , the input for spatial relationships comes from language descriptions l parsed from Lq by
LLM. Given the absence of a standardized approach for spatial-language encoding, we trained a
spatial encoder for this purpose (see Appendix B). Finally, for abstract relationship features in Gs,
the input is language l from user input, Lu. In Gq , the input is also textual. We use GloVe to encode
these texts on both sides.

Multiple distinct encoders are utilized during the feature encoding step. Different encoders have var-
ied emphases, and using a combination can improve the robustness of OVSG. For instance, GloVe
is trained to be sensitive to nuances like sentiment, while Sentence-BERT is not. Therefore, we use
GloVe for abstract relationships to better distinguish relationships such as “like” and “dislike”. Con-
versely, while GloVe does have a predefined vocabulary list, Sentence-BERT does not. Hence, for
encoding the names of agents and regions, we prefer Sentence-BERT. Moreover, OVSG is designed
with a modularized structure, allowing future developers to easily introduce new types and feature
encoders into OVSG.

3.4 Sub-graph Matching

Subsequent to the phases of input processing and feature encoding, two OVSG representations are
constructed: one for the scene and another for the query, denoted by Gs and Gq respectively. The
problem of grounding Lq within the scene S can be converted now effectively translates to locating
Gq within Gs. Generally, the subgraph-matching problem is NP-hard, prompting us to make several
assumptions to simplify this problem. In this study, we assume that our Gq is a star graph, signifying
that a central node exists and all other nodes are exclusively linked to this central node. (If Gq is not
a star-graph, we will extract a sub-star-graph from it, and use this sub-graph as our query graph.)

The pipeline of sub-graph matching is illustrated on the right side of Figure 1. This a two-step
procedure: candidate proposal and re-ranking. Let’s denote the center of Gq as vcq . Initially, we
traverse all nodes, vis, in Vs, ranking them based on their distance to vcq , computed with Eq. 1.
Subsequently, we extract the local subgraph, Gi

s, surrounding each candidate, vis. These extracted
subgraphs serve as our candidate subgraphs. In the second phase, we re-rank these candidates us-
ing a graph-similarity metric, τ(Gq, G

i
s). To evaluate graph similarity, we examine three distinct

methodologies: Likelihood, Jaccard coefficient, and Szymkiewicz-Simpson index.

Likelihood Assuming the features of nodes and edges all originate from a normal distribu-
tion, we can define the likelihood of nodes and edges being identical as follows: L(vi, vj) =

exp(−dist(fi,fj)
σv

) for nodes and L(ei,j , eu,v) = exp(−dist(fi,j ,fu,v)
σe

) for edges. Here σv and σe

are balancing parameters. From this, we can derive the graph-level likelihood τL as:
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τL(Gq, G
i
s) = L(vcq, v

c
si)×

∏
k∈|Vq|

argmax
j∈|Vsi |

[L(vkq , v
j) · L(ec,kq , ec,jsi )] (2)

where vcsi is the center node of Gi
s. The insight behind this formula is to iterate over all possible

node-level associations and select the one that maximizes the overall likelihood that Gq matches with
Gi

s. Noticeably, we use σv and σe to balance the node-wise and edge-wise likelihood. In practice,
we use σv = 1.0 and σe = 2.0 to make the matching more sensitive to node-level semantics.

Jaccard-coefficient & Szymkiewicz–Simpson index In addition to the likelihood index, we also
consider other widely used graph similarity indices such as the Jaccard and Szymkiewicz–Simpson
indices. Both indices measure the similarity between two sets.

We adopt a similar method as in [7], generating a set S(G) for each graph G by combining nodes
and edges, such that |S(G)| = |V | + |E|. The Jaccard coefficient τJ and Szymkiewicz–Simpson
index τS are then defined as follows:

τJ(Gq, G
i
s) =

|S(Gq) ∩ S(Gi
s)|

|S(Gq)|+ |S(Gi
s)| − |S(Gq) ∩ S(Gi

s)|
, τS(Gq, G

i
s) =

|S(Gq) ∩ S(Gi
s)|

min(|S(Gq)|, |S(Gi
s)|)

(3)

Given that we already know |S(Gq)| and |Gi
s|, we simply need to compute |S(Gq)∩S(Gi

s)|, which
consists of nodes or edges that belong to both Gq and Gi

s. We can define this union by applying
distance thresholds τv and τe for node and edge separately:

S(Gq) ∩ S(Gi
s) = {(vkq , v

π(k)
si )|dist(fk

q , f
π(k)
si ) < ϵv}+ {(ekq , e

π(k)
si )|dist(ekq , e

π(k)
si ) < ϵe} (4)

Here, π is a data association between Gq and Gi
s, where π(k) = argminπ(k)(dist(sk, sπ(k))). ϵv and

ϵe are threshold parameters. The differences between τL, τJ , and τS can be understood as follows:
τL describes the maximum likelihood among all possible matches between Gq and Gi

s. Both τJ
and τS use thresholds ϵv , ϵe to convert the node and edge matches to binary, and they measure the
overall match rate with different normalization.

4 System Evaluation

Our OVSG framework experiments addressed these research questions: 1) How does our context-
aware grounding method compare to prevailing approaches, including the SOTA semantic method
and the recent work in the landscape of 3D semantic/spatial mapping, ConceptFusion [32] 2) How
well does OVSG handle open-vocabulary queries? 3) What differences do our graph similarity-
based methods show? 4) How well does OVSG perform inside a real robot environment?

These questions are imperative as they not only test the robustness of the OVSG framework but
also its comparative efficacy against notable methods like ConceptFusion in the ability to handle the
intricacies of context-aware open-vocabulary queries.

4.1 Queries, Dataset, Metrics & Baselines

Queries We have two categories of queries for evaluation:

• Object-only Queries These queries are devoid of any specific agent or region preference.
They are less generic and assess the system’s grounding ability based purely on objects.
An example might be: “Can you identify a monitor with a keyboard positioned behind it?”

• Whole Queries These queries inherently contain a mix of agent, region, and object prefer-
ences. For instance, these queries may include agents and other different entity types. An
example would be: “Locate the shower jet that Nami loves, with a mirror to its right.”

6



ScanNet We employed ScanNet’s validation set (312 scenes) for evaluation. Since ScanNet only
includes objects, we emulated agents, induced their abstract relationships to objects, captured spatial
relationships between objects, and extracted object features via OVIR-3D before integrating the
dataset into our evaluation pipeline. Resource limitations prevented manual labeling of scenes;
hence, we synthetically generated 62000 queries (approx.) for evaluation (details in Appendix E.1).

DOVE-G We created DOVE-G to support open-vocabulary queries within scenes using natural
language. Each scene includes manually labeled ground truth and 50 original natural language
queries (Lq). Using LLMs, we expanded this by generating four extra sets of queries, totaling 250
queries per scene and 4000 overall to test OVSG’s capabilities with diverse language expressions.

ICL-NUIM To thoroughly compare our method, notably with ConceptFusion, we utilized the ICL-
NUIM dataset[8]. We have created 359 natural language queries for the ‘Whole Query’ category and
190 natural language queries for the ‘Object-only Query’. It should be noted that our approach is
not merely a superficial addition of another dataset; instead, we have adapted and generated natural
language queries for each scene within ICL-NUIM, emulating our methodology with DOVE-G. To
adapt it to our framework, we performed similar preprocessing steps as with DOVE-G, importantly
manually labeled ground-truth annotations and leveraging OVIR-3D for feature extraction. Using
this dataset, we demonstrate the superiority of our proposed method over ConceptFusion, especially
concerning complex natural language queries that hinge on multiple relationships as context.

Evaluation Metrics

For each query, we evaluated the system’s performance using three distinct metrics:

• IoUBB For each query, this measures the 3D bounding box IoU between the ground truth
and the top-k candidates yielded by our system.

• IoU3D For each query, this measures the IoU between the point cloud indices of the ground
truth instance and the predicted instance.

• Grounding Success Rate For each scene, this measures the fraction of queries where
the system’s predictions accurately match the ground truth given that the overlap is
significant(IoUBB ≥ 0.5 or IoU3D > 0.5). The overlap threshold can be adjusted to
alter the strictness of the success criteria.

We reported the Top1 and Top3 Grounding Success Rates and average IoU scores for each scene,
reflecting the performance of our system in the Top-k results returned for each query.

Query Type # Queries Metric Avg. Top1 Scores per Query Avg. Top3 scores per Query

OVIR-3D OVSG-J OVSG-S OVSG-L (Ours) OVIR-3D OVSG-J OVSG-S OVSG-L (Ours)

Object-only 18,683

IoUBB 0.38 0.15 0.4 0.51 0.52 0.4 0.52 0.55
IoU3D 0.38 0.22 0.44 0.55 - - - -

Grounding Success RateBB 38.52 15.29 40.99 52.18 52.95 41.25 53.6 56.25
Grounding Success Rate3D 45.13 17.22 47.79 60.35 - - - -

Whole 20,173

IoUBB 0.37 0.22 0.44 0.55 0.53 0.45 0.55 0.57
IoU3D 0.39 0.16 0.41 0.53 - - - -

Grounding Success RateBB 38.56 24.33 47.77 58.85 56.28 47.84 59.87 61.6
Grounding Success Rate3D 43.86 24.83 51.22 63.88 - - - -

Table 1: Performance of OVSG on ScanNet

Baselines We assessed five methods in our study. The SOTA open-vocabulary grounding method,
OVIR-3D, is our primary baseline as it will not leverage any inter-notion relations, providing a com-
parative measure for the effectiveness of contextual information integration in the other methods.
Unlike OVIR-3D, ConceptFusion integrates spatial relationships implicitly. The other three meth-
ods, namely OVSG-J, OVSG-S, and OVSG-L (for Jaccard coefficient, Szymkiewicz-Simpson index,
and Likelihood, respectively) implement Context-Aware Entity Grounding using different sub-graph
matching techniques, as detailed in Section 3.4.
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Query Type # Queries Metric Avg. Top1 Scores per Query Avg. Top3 scores per Query

OVIR-3D OVSG-J OVSG-S OVSG-L (Ours) OVIR-3D OVSG-J OVSG-S OVSG-L (Ours)

Object-only 320

IoUBB 0.37 0.14 0.39 0.49 0.57 0.36 0.56 0.56
IoU3D 0.41 0.14 0.43 0.54 - - - -

Grounding Success RateBB 36.56 13.75 39.06 48.44 58.12 34.06 56.25 56.56
Grounding Success Rate3D 49.69 18.44 53.13 67.82 - - - -

Whole 400

IoUBB 0.35 0.2 0.41 0.51 0.55 0.41 0.55 0.56
IoU3D 0.37 0.21 0.43 0.55 - - - -

Grounding Success RateBB 35.5 23.0 44.75 54.25 56.0 41.0 56.75 57.0
Grounding Success Rate3D 41.5 25.25 50.25 65.75 - - - -

Table 2: Performance of OVSG on DOVE-G

Query Type # Queries Metric Avg. Top1 Scores per Query Avg. Top3 scores per Query

ConceptFusion (w/o rel) ConceptFusion OVIR-3D OVSG-J OVSG-S OVSG-L (Ours) OVIR-3D OVSG-J OVSG-S OVSG-L (Ours)

Object-only 190

IoUBB - - 0.32 0.18 0.37 0.5 0.55 0.49 0.55 0.56
IoU3D 0.13 (0.3) 0.06 (0.15) 0.37 0.19 0.41 0.56 - - - -

Grounding Success RateBB - - 35.26 16.84 38.95 51.6 54.74 48.95 54.74 55.79
Grounding Success Rate3D 7.37 (41.18) 2.64 (14.71) 48.95 22.64 51.58 68.95 - - - -

Whole 359

IoUBB - - 0.33 0.34 0.47 0.61 0.62 0.56 0.64 0.64
IoU3D - - 0.35 0.0.35 0.49 0.64 - - - -

Grounding Success RateBB - - 39.28 44.29 59.61 74.09 72.42 66.3 74.09 74.65
Grounding Success Rate3D - - 45.97 44.29 61.84 78.56 - - - -

Table 3: Performance of OVSG & ConceptFusion on ICL-NUIM

4.2 Performance

ScanNet Table 1 averages results across 312 ScanNet scenes. Contextual data greatly improved en-
tity grounding, with graph similarity variants (OVSG-S, OVSG-L) surpassing OVIR-3D, especially
in scenes with repetitive entities like bookstores. More details are in Appendix E.

DOVE-G Table 2 averages performance over DOVE-G scenes for five query sets. OVSG-L consis-
tently led, further detailed in Appendix F.3. While OVSG-J and OVSG-S were competitive in some
scenes, OVSG-L was generally superior. OVIR-3D shined in the Top3 category, especially since
DOVE-G scenes had fewer repetitive entities. Additional insights in Appendix F.

ICL-NUIM Table 3 shows ICL-NUIM results with OVSG-L outperforming other methods, espe-
cially in the ‘Whole Query’ segment, contrasting with ScanNet and DOVE-G performances. Con-
ceptFusion’s performance was inconsistent across ICL-NUIM scenes (see Appendix G.3), with no-
table success in one scene (highlighted in orange in Table 3). Simplified queries improved Con-
ceptFusion’s results, as depicted in the ‘ConceptFusion (w/o rel)’ column. Due to its point-level
fusion approach, we evaluated different point thresholds and found optimal results at the Top 1500
points. Metrics like IoUBB are not applicable for ConceptFusion. Further details on ICL-NUIM
are in Appendix G. Despite ConceptFusion’s strategy to avoid motion-blurred ScanNet scenes [32],
its efficacy was still suboptimal in certain clear scenes.

Apart from these results, we also provide vocabulary analysis on OVSG as well as two robot exper-
iments. Due to space limits, we put them to Appendices C and D.

5 Conclusion & Limitation

Although we have demonstrated the effectiveness of the proposed OVSG in a set of experiments,
there still remains three major limitations for our current implementation. First, OVSG heavily relies
on an open-vocabulary fusion system like OVIR-3D, which may lead to missed queries if the system
fails to identify an instance. Second, the current language processing system’s strong dependence
on LLMs exposes it to inaccuracies, as any failure in parsing the query language may yield incorrect
output. Third, as discussed in Section 3.4, calculating graph likelihood by multiplying nodes and
edges likelihoods may not be optimal, as likelihoods from distinct types might carry varying levels
of importance and distribution. Accurately balancing these factors remains a challenge for future
research, as our efforts with a GNN have not yielded satisfactory results.

Despite the aforementioned areas for improvement, we observe that OVSG significantly improves
context-aware entity grounding compared to existing open-vocabulary semantic methods. Since
OVSG only requires natural language as the query input, we believe it holds great potential for
seamless integration into numerous existing robotics systems.
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A Prompt Engineering for Query Parse

As Chain of Thoughts (COT) has demonstrated, by providing with a series of detailed examples,
we can guide large language model to generate our desired output while maintaining some format
requirement. The design of these examples are also known as prompt engineering.

A.1 Prompt Example Illustration

Consider this natural language query as an example: “Could you point out Zoro’s go-to cup, which
we usually keep to the right of our espresso machine, on the left of the trash can, and in front of the
coffee kettle?”

In this query, the user is asking about the location of a cup, which has three different spatial rela-
tionships with other reference entities and one abstract relationship with a user named Zoro.

The desired output we provided is shown as below:

There are three notions here: zoro, cup, espresso machine, trash can, coffee kettle. I can
only use the relation provided.
The query target is cup. The relationship between zoro and cup is like. This relationship is
a abstract relationship.
The relationship between cup and espresso machine is right to. This relationship is a spatial
relationship.
The relationship between cup and trash can is left to. This relationship is a spatial
relationship.
The relationship between coffee kettle and cup is behind. This relationship is a spatial
relationship.
The notion, target, and relationship are:
“‘
target @ cup {object}
zoro {user} – like [abstract] – cup {object}
cup {object} – right to [spatial] – espresso machine {object}
cup {object} – left to [spatial] – trash can {object}
coffee kettle {object} – behind [spatial] – cup {object}
”’

This example starts from some reasoning process in natural language, and ends with a structured
output which can be parsed by code. A breakdown of the structure is as follows:

target @ cup {object}: This line specifies the target object, which is a cup.

zoro {user} – like [abstract] – cup {object}: This line represents a relationship between a user
named Zoro (user) and the cup (an object) that Zoro likes the cup (Zoro’s favorite). In our current
implementation, like is a relation of type abstract.

cup {object} – right to [spatial] – espresso machine {object}: This line represents a spatial
relationship between the cup (an object) and the espresso machine (an object). The cup is positioned
to the right of the espresso machine.

cup {object} – left to [spatial] – trash can {object}: This line represents a spatial relationship
between the cup (an object) and the trash can (an object). The cup is positioned to the left of the
trash can.

coffee kettle {object} – behind [spatial] – cup {object}: This line describes a spatial relationship
between the coffee kettle (an object) and the cup (an object). The coffee kettle is positioned behind
the cup.
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A.2 More prompt examples

Before asking the LLM to process the real user input, we will first input around 10 examples as a
prompt to control the output format. We select a few examples to show here.

Question: I want to get the cracker box around the table in the kitchen.
There are three notions here: cracker box, table, and kitchen. I can only use the relation
provided.
The query target is the cracker box.
This is a query for an object of the known category: cracker box.
The relationship between the cracker box and the table is ‘near’. This relationship is a spatial
relationship.
The relationship between the table and the kitchen is ‘in’. This relationship is a spatial
relationship.
The notion, target, and relationship are:
“‘
target @ cracker box object
cracker box object – near [spatial] – table object
table object – in [spatial] – kitchen region
”’

Question: Bring Tom his favorite drink.
There are two notions here: Tom and drink. I can only use the relation provided.
This is a query for an object of a known category: drink.
The relationship between me and drink is ‘like’. This relationship is a spatial relationship.
The query target is ‘drink’.
The notion, target, and relationship are:
“‘
target @ drink object
Tom user – like [spatial] – drink object
”’

Question: Can you find Marry’s favourite coffee cup? It might be at the kitchen.
There are three notions here: Mary, coffee cup, and kitchen.
This is a query for object of known category: coffee cup.
The relationship between Mary and coffee cup is like. This relationship is a user relation-
ship.
The relationship between coffee cup and kitchen is in. This relationship is a spatial relation-
ship.
The query target is coffee cup.
The notion, target, and relationship are:
“‘
target @ coffee cup object
Mary user – like [user] – coffee cup object
coffee cup object – in [spatial] – kitchen region
”’
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Figure 3: The illustration highlights the non-linear nature of the spatial language feature. Let’s assume both the spatial pose feature and spatial text feature can be
represented within a singular linear space. For instance, consider A being to the left and in front of B, while C is to the left but behind B. The pose feature for A relative
to B should align closely with the text features “left” and “front”. Conversely, the pose feature for C relative to B should be close to the text feature “left” but distant
from “front”. If all these features were mapped onto a linear space, the pose feature fpose(A,B) would paradoxically be both near and far from fpose(C,B).

B Spatial Relationship Prediction Pipeline

Figure 2: Architecture of spatial-language encoder and predictor. The blue block is the spatial pose encoder, and the yellow block is the spatial relationship predictor.

The Spatial Relationship Predictor module aims to estimate the likelihood between pose pairs and
language descriptions. Given that there is no standard solution to this spatial-language alignment
challenge, we have developed our own encoder-predictor structure.

Network Structure The input for the spatial pose encoder (depicted as a blue block
in Figure 2) is a pose pair defined by (N, 18). An entity’s pose in the OVSG
is characterized by the boundaries and center of its bounding box, specifically
(xmin, ymin, zmin, xmax, ymax, zmax, xcenter, ycenter, zcenter). We employ a five-layer MLP
to encode this pose pair into a spatial pose feature. For the encoding of the spatial relationship
description, we utilize the CLIP-text encoder, converting it into a 512-dimensional vector.

Distance Design These encoders serve as the foundation for constructing the OVSG. When per-
forming sub-graph matching, the predictor head estimates the distance between the spatial pose
feature and the spatial text feature. We do not use cosine distance because the spatial relationship
is highly non-linear. Figure 3 illustrates why cosine distance is not sufficiently discriminative for
spatial-language alignment.

Training process We train this encoder and predictor module using supervised learning. The train-
ing data is generated synthetically. We manually defined 8 different single spatial relationships, i.e.
left, right, in front of, behind, in, on, above, under. From these 8 basic spatial relationships, we
can generated more than 20 different meaningful combinations, e.g. “on the right side”, “at the left
front part”. Each combinations can also have more than one descriptions. Finally, we collected 90
descriptions in total. The training loss we used is a binary cross entropy loss.
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C Robot application

Manipulation In order to exemplify the utility of OVSG in real-world manipulation scenarios, we
devised a complex pick-and-place experiment. In this task, the robot is instructed to select one
building block and position it on another. The complexity of the task stems from the multitude
of blocks that are identical in both shape and color, necessitating the use of spatial context for
differentiation. Each task consists of a picking action and a placing action. We formulated nine
distinct tasks for this purpose (please refer to Appendix C.1 for detailed setup). The effectiveness of
the manipulation task was evaluated by comparing the success rate achieved by OVIR-3D and our
newly proposed OVSG-L. The outcome of this comparative study is depicted in the accompanying
table. The results demonstrate that our innovative OVSG-L model significantly enhances the object
grounding accuracy in manipulation tasks involving a high prevalence of identical objects. This
improvement highlights the potential of OVSG-L in complex manipulation scenarios, paving the
way for further exploration in the field of robotics.

object shoe bottle chair trash can#1 trash can#2 drawer cloth

success rate (%) 100.0 100.0 100.0 100.0 100.0 100.0 0.0
Table 4: Success rate of object navigation task

Method scene1 scene2 scene3

OVIR-3D (%) 0.0 0.75 0.33
OVSG (%) 0.88 0.75 0.75

Table 5: Success rate of manipulation task

Navigation We conducted a system test on a ROSMASTER R2 Ackermann Steering Robot for an
object navigation task. The detailed setup can be found in Appendix C.2. We provided queries for
seven different objects within a lab scene, using three slightly different languages to specify each
object. These queries were then inputted into OVSG, and the grounded positions of the entities were
returned to the robot. We considered the task successful if the robot’s final position was within 1
meter of the queried objects. The results are presented in Table 4. From the table, it is evident
that the proposed method successfully located the majority of user queries. However, there was one
query that was not successfully located: “The cloth on a chair in the office.” In this case, we found
that OVIR-3D incorrectly recognized the cloth as part of a chair, resulting in the failure to locate it.

C.1 Manipulation Experiment Setup

Robot Setup All evaluations were conducted using a Kuka IIWA 14 robot arm equipped with a
Robotiq 3-finger adaptive gripper. The arm was augmented with an Intel Realsense D435 camera,
which was utilized to capture the depth and color information of the scene in an RGB-D format,
offering a resolution of 1280 x 720. The gripper operated in “Pinch Mode,” whereby the two fingers
on the same side of the gripper bent inward.

To initiate the process, the robot arm was employed to position the camera above the table, orienting
it in a downward direction. Subsequently, the RGB-D data, along with a query specifying the object
to be picked and a target object for placement, were inputted into the OVSG system. Upon acquiring
the bounding box of the query object, the robot gripper was directed to move towards the center
coordinates of the target box by utilizing the ROS interface of the robot arm.

Block building task To evaluate the application of the proposed method in real-world manipulation
tasks, we designed a block-building task. The task is to pick one building block from a set of building
blocks and place it on another building block. The picking block and placing block are separately
specified by a different natural language query. The difficulty of this task is that each building block
has many repeats around it so we have to use spatial context to specify the building block. And we
need to succeed twice in a row to complete a task.
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Object Query Id Query

shoe 1 A shoe that is in front of the monitor and in the office.
2 A shoe positioned both before the monitor and within the office.
3 A shoe rests in front of the monitor. The shoe is inside the office.

bottle 4 The bottle that is right to Tom’s keyboard
5 The bottle to the right of Tom’s keyboard.
6 The bottle positioned to the right of a keyboard which belongs to Tom.

chair#1 7 The chair that is behind the TV.
8 The chair is situated behind the TV
9 The chair with a TV in front of it.

chair#2 10 The chair that is in front of the car.
11 The chair rests before a car.
12 The chair with a car behind it.

trash can#1 13 The trash can that is behind the refrigerator.
14 The trash can which can be found behind the refrigerator.
15 The trash can that is situated at the rear of the refrigerator.

trash can#2 16 The trash can that is in the lab and under a table.
17 The trash can is located in the lab and beneath a table.
18 The trash can is situated within the lab, positioned under a table.

drawer 19 The drawer that is behind a box in the office.
20 The drawer is positioned behind a box in the office.
21 The drawer is situated at the rear of a box within the office.

cloth 22 The cloth that is on a chair
23 The cloth is resting on a chair
24 The cloth is positioned atop a chair.

Table 6: Queries for navigation task

Figure 4: The left one is the robot for our navigation task, ROSMASTER R2 Ackermann Steering Robot. The right one is the robot for our manipulation task, KUKA
IIWA 14

C.2 Navigation Experiment Setup

Robot Setup All evaluations were conducted using a ROSMASTER R2 Ackermann Steering Robot.
For perception, we utilized an Astra Pro Plus Depth Camera and a YDLidar TG 2D lidar sensor, both
mounted directly onto the robot. The robot is equipped with a built-in Inertial Measurement Unit
(IMU) and wheel encoder. The Astra camera provides a video stream at a resolution of 720p at 30
frames per second, and the lidar operates with a sampling frequency of 2000 Hz and a scanning
radius of approximately 30 meters. The overall configuration of the setup is depicted in Figure 4.

Demonstrations and Execution Prior to the evaluation process, we employed an Intel RealSense
D455 camera and ORB-SLAM3 [33] to generate a comprehensive map of the environment. This
generated both the RGB-D and pose data, which could be subsequently fed into the Open-vocabulary
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pipeline. For the demonstration of locating with the Open-Vocabulary 3D Scene Graph (OVSG), we
developed a 3D to 2D conversion tool. This tool takes the point cloud from the comprehensive
3D map and converts it into a 2D map by selecting a layer of points at the height of the lidar.
The resultant 2D map could then be utilized by the ROSMASTER R2 Ackermann Steering robot
for navigation. To achieve goal-oriented navigation, we incorporated the Robot Operating System
(ROS) Navigation stack and integrated it with the Timed Elastic Band (TEB) planner. The initial
step involved establishing a pose within the environment. Subsequently, the Adaptive Monte Carlo
Localization (AMCL) leveraged lidar scan inputs and IMU data to provide a robust estimate of the
robot’s pose within the map. The move base node, a key component of the ROS navigation stack,
used the converted map and the item’s position provided by the OVSG and conversion tool to for-
mulate a comprehensive global plan targeting the goal position. Concurrently, the TEB local planner
consolidated information about ROSMASTER R2’s kinematics and lidar input to generate a short-
term trajectory. The result was a locally optimized, time-efficient plan that adhered to the robot’s
pre-set velocity and acceleration limits. The plan also included obstacle avoidance capabilities,
enabling the robot to identify and circumvent barriers detected by the lidar system.

Object navigation task To evaluate the application of OVSG in real-world navigation problems,
a language-based object navigation task is proposed. We selected seven different objects inside a
laboratory. Each object is paired with three different queries. All queries for three objects are listed
in Table 6.

Vocab Set Top1 Grounding Success RateBB Top3 Grounding Success RateBB

OVIR-3D OVSG-J OVSG-S OVSG-L (Ours) OVIR-3D OVSG-J OVSG-S OVSG-L (Ours)

#1 35.14 23.71 42.29 47.14 53.14 40.86 55.71 57.14
#2 35.71 27.43 45.43 51.71 58.86 46.86 62.57 62.57
#3 32.29 26.00 43.43 48.86 58.86 47.71 60.57 62.00
#4 33.14 20.29 42.29 44.86 55.71 42.86 57.14 56.57
#5 42.86 29.71 52.57 57.43 62.57 52.29 65.71 65.43

Overall 35.83 25.43 45.20 50.00 57.83 46.12 60.34 60.74
Top1 IoUBB Top3 IoUBB

OVIR-3D OVSG-J OVSG-S OVSG-L (Ours) OVIR-3D OVSG-J OVSG-S OVSG-L (Ours)

#1 0.31 0.18 0.36 0.42 0.50 0.39 0.51 0.53
#2 0.31 0.22 0.38 0.44 0.53 0.43 0.55 0.56
#3 0.29 0.21 0.37 0.43 0.52 0.43 0.54 0.56
#4 0.30 0.17 0.36 0.40 0.51 0.39 0.52 0.52
#5 0.38 0.24 0.44 0.50 0.57 0.47 0.59 0.60

Overall 0.32 0.20 0.38 0.44 0.53 0.42 0.54 0.56

Table 7: Performance comparison against five different varied open-
vocabulary sets

Relationship Set Top1 Grounding Success RateBB Top3 Grounding Success RateBB

OVIR-3D OVSG-J OVSG-S OVSG-L (Ours) OVIR-3D OVSG-J OVSG-S OVSG-L (Ours)

#1 35.14 19.50 36.00 41.38 54.12 40.88 53.88 58.12
#2 35.71 21.50 36.75 44.62 59.12 47.62 62.38 62.88
#3 32.29 23.25 38.25 42.12 58.88 49.88 61.12 59.88
#4 33.14 18.75 36.50 40.38 56.38 43.12 55.38 56.38
#5 42.86 22.75 43.25 47.88 62.38 52.38 65.12 65.38

Overall 35.83 21.15 38.15 43.28 58.18 46.76 59.58 60.53
Top1 IoUBB Top3 IoUBB

OVIR-3D OVSG-J OVSG-S OVSG-L (Ours) OVIR-3D OVSG-J OVSG-S OVSG-L (Ours)

#1 0.30 0.17 0.31 0.36 0.50 0.38 0.48 0.53
#2 0.30 0.19 0.32 0.39 0.54 0.43 0.55 0.56
#3 0.29 0.20 0.33 0.38 0.53 0.45 0.54 0.54
#4 0.30 0.16 0.30 0.36 0.52 0.40 0.50 0.52
#5 0.38 0.20 0.37 0.42 0.57 0.48 0.58 0.60

Overall 0.32 0.18 0.33 0.38 0.53 0.43 0.53 0.55

Table 8: Performance comparison against five different varied relationship
sets

D Open-Vocabulary Analysis

Having presented insights on our system’s performance on natural language queries for DOVE-G (as
shown in Table 2), we proceed to deepen our investigation into the system’s resilience across diverse
query sets. To accomplish this, we instead average the results from all scenes for each of the five
vocabulary sets (refer to Table 7). By doing so, we aim to provide a robust evaluation of our system’s
performance across a variety of query structures and word choices, simulating the varied ways in
which users may interact with our system. In addition to experimenting with object vocabulary
variations (a ‘coffee maker’ to ‘espresso machine’ or ‘coffee brewer’), and altering the order of
entity referencing in the query, we also studied the impact of changing relationship vocabulary.
In this experimental setup, the LLM is not bound to map relationships to a pre-determined set as
before. Instead, the graph-based query contains a variety of relationship vocabulary. To illustrate,
consider the queries “A is to the left back corner of B” and “A is behind and left to B”. Previously,
these relationships would map to a fixed relation like ‘left and behind’. Now, ‘front and left’ as
interpreted by the LLM can variate to ‘leftward and ahead’, ‘northwest direction’, or ‘towards the
front and left’, offering a broader range of relationship descriptions. The evaluation results for these
query sets are presented in Table 8.

Varying object names Across all evaluated vocabulary sets, OVSG-L demonstrates the highest
Top1 and Top3 Grounding Success RatesBB, outperforming the remaining methods. This pattern
also persists for scores in the IoUBB category. Notably, OVSG-L’s Grounding Success Rates span
from 44.86% to 57.43% for Top1, and 56.57% to 65.43% for Top3. All in all, contextual under-
standing of the target again proves to improve results from 35.83% (OVIR-3D) to 50% (OVSG-L)
for Top1 Grounding Success RateBB and 0.32 to 0.44 for the Top1 IoUBB.
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Varying relationships As shown in Table 8, we observe a noticeable decrease in performance for
the methods under the OVSG framework (compared to Table 7). This is likely due to the increased
complexity introduced by the varied word choices for edges (relationships) in the sub-graph being
matched. Despite this, two of the OVSG methods still outperform the OVIR-3D method, with the
OVSG-L method delivering the strongest results.

E More on ScanNet

E.1 Synthetic Query Generation for ScanNet

In the ScanNet dataset, each scene comes with ground-truth labels for its segmented instances or
objects. We began by calculating the spatial relationships between these ground-truth objects or
entities. Subsequently, agents were instantiated into the scene, and abstract relationships were ran-
domly established between the agents and the entities present in the scene. After generating the
OVSG for each scene, our next step involved the creation of graph-based queries (refer to syntax
and details in Appendix A) for evaluation purposes. For each of these queries, we randomly selected
reference entities from the OVSG that shared a relationship with the target entity. This formed the
basis of the synthetic generation of the graph-based queries for the ScanNet dataset.

E.2 Grounding Success RateBB

Figure 5: Performance of OVSG w.r.t Grounding Success RateBB on ScanNet Scenes

In this section, we provide the number of ScanNet scenes that correspond to various success rate
thresholds (at 15%, 25%, 50%, and 75%). We provide four-fold results containing Top1 and Top3
scores for ‘Object-only’ and ‘Whole Query’ categories (as shown in Figure 5).

E.3 Grounding Success Rate3D

In this section, we provide the various success rates for different IoU3D thresholds (at 0.15, 0.25,
0.5, and 0.75). We provide two-fold results containing scores for ‘Object-only’ and ‘Whole Query’
categories (as shown in Figure 6).

18



Figure 6: Performance of OVSG w.r.t Grounding Success Rate3D on ScanNet Queries

F More on DOVE-G

F.1 Grounding Success RateBB

Figure 7: Performance of OVSG w.r.t Grounding Success RateBB on DOVE-G Scenes

In this section, we provide the number of DOVE-G scenes that correspond to various success rate
thresholds (at 15%, 25%, 50%, and 75%). We provide four-fold results containing Top1 and Top3
scores for ‘Object-only’ and ‘Whole Query’ categories (as shown in Figure 7).

F.2 Grounding Success Rate3D

In this section, we provide the various success rates for different IoU3D thresholds (at 0.15, 0.25,
0.5, and 0.75). We provide two-fold results containing scores for ‘Object-only’ and ‘Whole Query’
categories (as shown in Figure 8).
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Figure 8: Performance of OVSG w.r.t Grounding Success Rate3D on DOVE-G Queries

F.3 Performance of the OVSG Framework on Various Scenes in DOVE-G

Scene Top1 Grounding Success RateBB Top3 Grounding Success RateBB

OVIR-3D OVSG-J OVSG-S OVSG-L (Ours) OVIR-3D OVSG-J OVSG-S OVSG-L (Ours)

Room #1 44.4 36.8 61.2 79.6 88.4 72.8 98.4 99.6
Kitchenette 31.0 24.0 36.0 49.0 65.0 51.0 71.0 71.0
Bathroom 44.8 23.2 57.2 58.0 59.6 41.2 66.0 69.6
Kitchen 44.8 36.0 51.2 55.6 53.6 50.8 55.2 56.8

Room #2 18.0 26.0 40.0 41.6 62.0 48.0 65.2 62.8
Computer Lab 38.0 30.8 38.0 41.6 54 41.2 50.4 49.2

Room #3 32.8 16.8 40.4 40.4 47.2 34.4 47.2 47.2
Hallway 28.0 8.4 28.4 33.2 40.0 34.4 40.0 40.0
Overall 35.2 25.2 45.4 51.1 63.6 47.1 64.8 65.7

Top1 IoUBB Top3 IoUBB

OVIR-3D OVSG-J OVSG-S OVSG-L (Ours) OVIR-3D OVSG-J OVSG-S OVSG-L (Ours)

Room #1 0.26 0.18 0.36 0.47 0.55 0.39 0.60 0.61
Kitchenette 0.28 0.23 0.34 0.42 0.59 0.47 0.62 0.62
Bathroom 0.30 0.13 0.36 0.36 0.41 0.30 0.44 0.46
Kitchen 0.35 0.28 0.38 0.42 0.47 0.42 0.46 0.48

Room #2 0.15 0.21 0.31 0.34 0.51 0.41 0.53 0.52
Computer Lab 0.32 0.22 0.33 0.39 0.49 0.39 0.45 0.46

Room #3 0.34 0.13 0.37 0.39 0.50 0.36 0.49 0.50
Hallway 0.27 0.10 0.24 0.31 0.37 0.34 0.38 0.41
Overall 0.28 0.18 0.34 0.39 0.49 0.39 0.49 0.50

Table 9: Performance of the OVSG framework on natural language scene queries in DOVE-G

In Table 9, we present the performance of our OVSG framework on natural language scene queries
in DOVE-G.

F.4 50 Sample Natural Language Queries for Scenes in DOVE-G

In Table 10, we provide a list of 50 sample queries for scenes in DOVE-G.

F.5 More on Scenes in DOVE-G

In Figure 9 and Figure 10, we display eight different scenes included in our DOVE-G dataset.
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Query No. Natural Language Query
1 Locate the vanity sink, which is positioned to the right side of a door latch.
2 Identify the hand basin that has a face cleanser situated in front of it.
3 Is there a hand basin that has both a facial scrub and hand soap placed in front of it?
4 I’m looking for a wash-hand basin with a facial scrub directly in front of it and a door latch to

its right.
5 Locate the shower jet that Nami loves, with a mirrored surface to its right and a hair cleanser in

front of it.
6 Can you find the shower sprayer with a face cleanser positioned behind it?
7 Search for the shower sprayer that has a facial scrub behind it and a vanity mirror to its right.
8 Identify the travel suitcase located to the right of a backpack and ahead of a water bottle.
9 Look for a travel suitcase Zoro dislikes, it should be to the right of a book and a water bottle.

10 Can you find a book positioned to the left of a backpack?
11 Nami’s preferred book should be positioned in front of a chair, can you find it?
12 Can you identify Zoro’s liked book that’s situated ahead of a water bottle and another book?
13 Locate a Carry-on Luggage for me, please. It should have both a water bottle and a rucksack in

front.
14 Is there a trolley bag with a water bottle and a backpack up front, and also a desk chair in its

rear?
15 Find an ergonomic chair for me, but it has to have a textbook situated to its left.
16 Can you find the workbook that Luffy dislikes and is right of a desk chair?
17 Is there a headrest that has a reference book positioned in front of it?
18 Where’s the cushion with a coursebook and an ergonomic chair up front?
19 I’m searching for a backpack with a coursebook on its left.
20 Where’s the table fan with a desk chair behind it?
21 Can you find a table fan with a computer chair and a reference book behind it?
22 Where’s the reading lamp that’s to the left of a travel bag?
23 Can you spot the reading lamp that’s to the left of a travel bag and behind a computer chair?
24 Is there a reading lamp that’s behind a reference book?
25 Can you find a pedestal fan with a desk chair and a coursebook behind it?
26 Locate the headrest that’s disliked by Nami, but Luffy is indifferent to.
27 How about a cushion that Nami dislikes, Luffy is neutral to, and Zoro takes a liking to?
28 Where’s the reading lamp that’s to the left of a knapsack?
29 Can you spot the reading lamp that’s to the left of a knapsack and behind an ergonomic chair?
30 Is there a desk lamp that’s behind a workbook?
31 Where’s the reading lamp that Nami is fond of?
32 Can you locate a backpack with a table fan to its left?
33 Where’s the knapsack with a tower fan on its left and Luffy behind?
34 Can you find a travel bag that has a water bottle on its left?
35 I’m searching for a backpack with a textbook on its left.
36 Where’s the pedestal fan with a computer chair behind it?
37 Where is the cup that’s nestled to the right of the coffee maker, to the left of the coffee kettle,

and in front of the poster?
38 Identify the toy that’s to the right of the espresso machine and to the left of the trash can.
39 Where’s the doll with a cup positioned behind it?
40 Can you show me the water bottle that Luffy loves and has a coffee cup behind it?
41 Locate the water bottle that’s to the left of the checkerboard.
42 I want to know about the coffee cup that Zoro loves, which is also behind the keyboard that

Nami is behind.
43 Can you identify the chair that the CPU machine is behind?
44 Locate the chair that Nami likes and is also behind the CPU machine.
45 Can you identify the teacup that Luffy loves and is behind the CPU machine?
46 Is there a computer chair that Zoro doesn’t prefer?
47 Identify a coursebook located ahead of a water bottle.
48 Is there a workbook sandwiched between two water sipper bottles?
49 Nami’s preferred coursebook should be positioned in front of a desk chair, can you find it?
50 Zoro’s liked reading book, is it placed in front of a water beverage bottle?

Table 10: List of 50 sample queries for scenes in DOVE-G
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Figure 9: Four of the scenes in DOVE-G

G More on ICL-NUIM

G.1 Grounding Success RateBB

In this section, we provide the number of ICL-NUIM scenes that correspond to various success rate
thresholds (at 15%, 25%, 50%, and 75%). We provide four-fold results containing Top1 and Top3
scores for ‘Object-only’ and ‘Whole Query’ categories (as shown in Figure 11).

G.2 Grounding Success Rate3D in comparison to ConceptFusion

In this section, we provide the various success rates for different IoU3D thresholds (at 0.15, 0.25,
0.5, and 0.75). We provide two-fold results containing scores for ‘Object-only’ and ‘Whole Query’
categories (as shown in Figure 12).

G.3 Scene by Scene Grounding Success Rate3D of OVSG & ConceptFusion on ICL-NUIM

Table 11 showcases the 3D Grounding Success Rate of various methods on different scenes in the
ICL-NUIM dataset, highlighting the performance metrics across different IoU3D thresholds.

G.4 Qualitative Performance Comparison between ConceptFusion and OVSG-L

In this section, we are providing qualitative results on sample queries for the methods ConcepFusion
and OVSG-L in Figure 13 and Figure 14 respectively.
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Figure 10: Four of the other scenes in DOVE-G

Figure 11: Performance of OVSG w.r.t Grounding Success RateBB on ICL-NUIM Scenes
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Figure 12: Performance of OVSG & ConceptFusion w.r.t Grounding Success Rate3D on ICL-NUIM Queries

ICL-NUIM Scene # Queries Method Grounding Success Rate3D
IoU3D > 0.15 IoU3D > 0.25 IoU3D > 0.50 IoU3D > 0.75

living room traj0 frei png 18

ConceptFusion (w/o rel) 88.89 88.89 0 0
ConceptFusion 16.67 5.56 0 0

OVIR-3D 83.34 83.34 50 22.23
OVSG-J 5.56 5.56 5.56 0
OVSG-S 94.45 94.45 61.12 22.23

OVSG-L (Ours) 100 100 66.67 22.23

living room traj1 frei png 34

ConceptFusion (w/o rel) 61.77 50 41.18 0
ConceptFusion 26.48 26.48 14.71 0

OVIR-3D 70.59 70.59 67.65 0
OVSG-J 38.24 38.24 29.42 0
OVSG-S 58.83 58.83 55.89 11.77

OVSG-L (Ours) 79.42 79.42 70.59 14.71

living room traj2 frei png 28

ConceptFusion(w/o rel) 46.43 14.29 0 0
ConceptFusion 3.58 0 0 0

OVIR-3D 50 50 50 28.58
OVSG-J 42.86 35.72 3.58 0
OVSG-S 82.15 82.15 50 28.58

OVSG-L (Ours) 92.86 92.86 53.58 28.58

living room traj3 frei png 17

ConceptFusion(w/o rel) 0 0 0 0
ConceptFusion 0 0 0 0

OVIR-3D 11.77 11.77 0 0
OVSG-J 23.53 23.53 23.53 0
OVSG-S 41.18 23.53 11.77 11.77

OVSG-L (Ours) 82.36 64.71 52.95 29.42

office room traj0 frei png 29

ConceptFusion(w/o rel) 0 0 0 0
ConceptFusion 0 0 0 0

OVIR-3D 65.52 65.52 65.52 0
OVSG-J 44.83 44.83 41.38 0
OVSG-S 65.52 65.52 65.52 0

OVSG-L (Ours) 100 100 96.56 0

office room traj1 frei png 19

ConceptFusion(w/o rel) 0 0 0 0
ConceptFusion 0 0 0 0

OVIR-3D 68.43 68.43 68.43 31.58
OVSG-J 42.11 42.11 42.11 21.06
OVSG-S 73.69 73.69 73.69 36.85

OVSG-L (Ours) 100 100 94.74 57.9

office room traj2 frei png 12

ConceptFusion(w/o rel) 0 0 0 0
ConceptFusion 0 0 0 0

OVIR-3D 83.34 83.34 33.34 8.34
OVSG-J 0 0 0 0
OVSG-S 83.34 83.34 33.34 8.34

OVSG-L (Ours) 100 100 41.67 16.67

office room traj3 frei png 25

ConceptFusion(w/o rel) 12 0 0 0
ConceptFusion 0 0 0 0

OVIR-3D 44 44 44 0
OVSG-J 48 48 28 8
OVSG-S 60 60 60 16

OVSG-L (Ours) 100 100 80 32

Table 11: Grounding Success Rate3D of OVSG & ConceptFusion on ICL-NUIM
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Figure 13: Performance of ConceptFusion on sample ICL-NUIM Queries

Figure 14: Performance of OVSG-L (Our method) on sample ICL-NUIM Queries
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