
Model Identification and Control of a Low-cost Mobile Robot with
Omnidirectional Wheels using Differentiable Physics

Edgar Granados, Abdeslam Boularias, Kostas Bekris and Mridul Aanjaneya

Abstract— We present a new data-driven technique for pre-
dicting the motion of a low-cost omnidirectional mobile robot
under the influence of motor torques and friction forces.
Our method utilizes a novel differentiable physics engine for
analytically computing the gradient of the deviation between
predicted motion trajectories and real-world trajectories. This
allows to automatically learn and fine-tune the unknown friction
coefficients on-the-fly, by minimizing a carefully designed loss
function using gradient descent. Experiments show that the
predicted trajectories are in excellent agreement with their real-
world counterparts. Our proposed approach is computationally
superior to existing black-box optimization methods, requiring
very few real-world samples for accurate trajectory prediction
compared to physics-agnostic techniques, such as neural net-
works. Experiments also demonstrate that the proposed method
allows the robot to quickly adapt to changes in the terrain.
Our proposed approach combines the data-efficiency of classical
analytical models that are derived from first principles, with the
flexibility of data-driven methods, which makes it appropriate
for low-cost mobile robots. Project website: https://go.
rutgers.edu/mqxn2x6h

I. INTRODUCTION

With the availability of affordable micro-controllers such
as Arduino [1] and Beaglebone Black [2], light-weight high-
performance computing platforms such as Intel’s Next Unit
of Computing (NUC), there is interest in low-cost robots.
Motivated by this, the long-term goal of the present work
is to develop affordable mobile robots that can be easily
assembled using off-the-shelf components. Affordable robots
can be used for exploration and scene understanding in
unstructured environments. They can also be augmented with
end effectors for object manipulation. The ultimate goal is
to remove the economic barrier of entry that has limited
research in robotics. To that end, we present mobile robot
(see Figure 1), for exploration and scene understanding.

High-end robots can be easily controlled by software
tools provided by manufacturers. Physical properties, such
as inertial and frictional parameters, are precisely measured,
eliminating need for further calibrations. Robots assembled
and fabricated in-house are significantly more difficult to
control due to uncertainties in manufacturing. Due to this,
hand-crafting precise and shared models for these robots is
challenging. For example, the wheels of the robot in Figure 1
cannot be precisely modeled manually because of the com-
plex structure and unknown material properties. Moreover,

This work was supported in part by an NSF HDR TRIPODS
award 1934924, NSF awards IIS 1734492 and IIS 1846043. The
authors are with the Department of Computer Science, Rutgers
University, NJ 08901, USA. Email: eg585, ab1544, kb572,
ma635@cs.rutgers.edu.

Fig. 1. (Left) A low-cost mobile robot with omnidirectional wheels
(cost approximately $1200). We propose a differentiable physics engine
for automatically inferring unknown friction coefficients on-the-fly, and a
control algorithm that allows for autonomously driving the robot along pre-
specified curves. (Right) A virtual 3D model of the robot using Autodesk’s
Fusion 360 suite.
friction between the wheels and terrain vary largely when
the robot is deployed on unknown non-uniform terrain.

An alternative actively promoted by several research
groups [3]–[8] is to first train robots in simulation, and
subsequently transfer the learned control policies to the
real world – the sim2real process. The virtual simulation
environment provides a safe environment where (potentially)
an unlimited number of experiments can be conducted while
learning effective control policies. To this end, we built a
virtual 3D model of the robot (Figure 1 (right)). However,
to the best of our knowledge, none of the available rigid
body physics engines are able to produce stable trajectories
for this model that could reliably reproduce the acquired
ground-truth. While a deeper investigation of this requires
further research, we believe this arises due to the complex
nature of the omnidirectional wheels1. Thus, one of the main
contributions of our work is a differentiable physics engine
that can be effectively used for learning unknown friction
coefficients between the wheels and the ground that allow
the simulation to match ground-truth training data.

We propose a hybrid data-driven approach combining the
versatility of machine learning with the data-efficiency of
physics-based models. The key contribution is a self-tuning
differentiable physics simulator of the robot. Taking as input
the pose, the generalized velocity and a sequence of controls,
returning a predicted trajectory. Ground-truth trajectories,
collected by executing controls on the real robot, are recorded
and systematically compared to the predicted ones. The
difference between predicted and ground-truth trajectories is
used to identify the unknown coefficients of friction between
each wheel and the present terrain (Figure 2). Since the
identification process must happen on the fly, black-box
optimization tools cannot be effectively used. Instead, we
show how to analytically compute the derivatives of the
reality gap with respect to each unknown coefficient of
friction. The proposed method is shown to be more efficient

1https://pybullet.org/Bullet/phpBB3/viewtopic.php?t=12966&p=42863

Friction Parameters

Actions

Simulated trajectory

Simulation-to-reality gap

Real Robot

Gradient
Descent

Differentiable Physics
Simulator Real trajectory

Fig. 2. Framework for identifying unknown friction coefficients of
the robot wheels by minimizing the difference between simulated
and real trajectories using differentiable physics simulation.

computationally than black-box methods, and more accurate
than a neural network trained with the same small amount
of data to predict velocities from control signals.

Dynamic (kinetic) friction coefficients identified using
analytical gradients vary as a function of different motor
controls. Frictions coefficients are identified per wheel due to
the use of a low-cost mecanum wheel . Instead of identifying
individual friction values, we identify a function that maps
the desired wheel velocity to a friction coefficient. First,
we collect few trajectories with various velocities. Then,
the friction values are automatically identified per trajectory
using the differentiable physics engine. Finally, the collected
data is generalized by training a small neural network that
captures the dependence between the friction coefficients
and desired wheel velocities. Once identified, the dynamic
friction functions are used within the simulator to compute
control signals (Figure 3) allowing the robot to drive along
pre-specified curves. We refer the reader to our supplemental
video for all our experiments reported in Section VII.

Derivative-based
Optimization

of Control Signals

Nominal Path

Predicted
Trajectory

(", $, %)

Output

Control Signals

Velocity	Derivatives
Loss

("', $', %')
Loss Computation

Differentiable
Simulator

Real Robot

Execution

Dynamic	Friction
Desired	Wheel	
Velocities

Fig. 3. Overview of our approach for computing control signals
that drive the robot along pre-specified curves.

II. RELATED WORK

The problem of learning dynamic and kinematic models
of skid-steered robots has been explored in the past. Vehicle
model identification by integrated prediction error minimiza-
tion was proposed in [9]. A similar approach was used in [10]
for calibrating a kinematic wheel-ground contact model for
slip prediction. Our work builds on the model for feedback
control of an omnidirectional wheeled mobile robot [11].

A learning-based Model Predictive Control (MPC) is used
in [12] to control a robot in challenging outdoor environ-
ments. It uses a priori model and a learned disturbance
model, which is modeled as Gaussian Process and learned
from local data. A MPC technique is used for autonomous
racing in simulation in [13], which consists on decomposing
the dynamics as the sum of a known deterministic function
and noisy residual. Our approach shares some similarities
with [14], wherein the dynamics equations of motion are
used to analytically compute the mass of a manipulator. Un-
like in the present work that considers a full body simulation,

[15] considered only a rigid wheel on deformable terrains. A
dynamic model is also presented in [16] for omnidirectional
wheeled mobile robots, including surface slip. However, the
friction coefficients in [16] were experimentally measured.

Classical system identification builds a dynamics model by
minimizing the difference between the model’s output and
real-world response data for the same input [17], [18]. A
similar approach is the use of natively differentiable physics
engines. In [3] the Theano framework is used to develop one
for differentiate model and control parameters. First princi-
ples from numerical integration of rigid and flexible body
dynamics were used to design a differentiable physics engine
for tensegrity robots [19], shown to be more data-efficient
than prior works [20]. A combination of a learned and a
differentiable simulator was used to predict action effects
on planar objects in [21]. Differentiable physics simulations
were also used for manipulation planning and tool use in [5].
In [22], a differentiable contact model was used to allow for
optimization of several tasks. The present work is another
step toward the adoption of self-tuning differentiable physics
engines as both a data-efficient and time-efficient tool for
learning and control in robotics.

III. ROBOT DESIGN

The design of our mobile robot consists of the hardware
assembly, and the software drivers to provide the controls
for the motors. These two components are described below.

A. Hardware Assembly
The robot is built from various hardware components, as

shown in Figure 4(left), which comprise: (a) a central chassis
with four Mecanum omnidirectional wheels that are run by
12V DC motors, (b) two rail mount brackets for Arduino,
(c) two Arduino, (d) Arduino shield for DC motors, (e)
servo motor shield for Arduino, (f) two MG996R servos, (g)
two 2DOF servo mount brackets, (h) Intel Realsense D435,
(i) Intel NUC5i7RYH, and (j) two 1300mAh, 11.1V DC
batteries. One battery powers the DC motors and the other
the onboard electronics. The servo motors are powered with
a separate 6V DC source.

Fig. 4. (Left) Hardware components for the mobile robot. All
hardware and electronic designs were developed in-house. (Right)
Top view of the mobile robot.
B. Control Software

Arduinos (driving the motors) are connected to the CPU
via USB. To send commands, the Serial protocol [23] is
used. Each message is encoded as a byte, the limited buffer
size is accounted for by using “acknowledge” messages.
We have generalized the implementation in [23] to support
two Arduinos, two servo motors, and the differential drive
mechanism for the wheels.

IV. ANALYTICAL MODEL
T=Ts(1− ω

ωs
)

Mg
4

µN=µMg4

R

ω

Fig. 5. Motor torque
and friction on a
simplified wheel.

Consider a simplified cylindrical
model for the wheel. Let J be the
scalar component of its 3 × 3 (di-
agonal) inertia tensor matrix about
the rotational axis of the motor shaft
(discarding the components in the
plane orthogonal to this axis). Mak-
ing the common assumption that the
weight remains unchanged, balanced
uniformly by all wheels, the equation
of motion is:

J
dω

dt
= Ts

(
1− ω

ωs

)
− µMg

4
R

where Ts is the motor stall torque, ω the wheel’s angular
velocity, ωs the desired angular velocity, µ the coefficient of
friction, g the gravity, R the wheel radius, and M the robot’s
mass. The first term on the right hand side was derived
in [24]. The equation is integrated to obtain:

ω = ωs

(
1− µMgR

4Ts

)(
1− exp

(
− Tst
Jωs

))
(1)

Since we are interested in large time spans for mobile
robot navigation, only the steady state terms in equation (1)
are important. Thus, we can discard the transient terms:

ω = ωs

(
1− µMgR

4Ts

)
(2)

which is an expression for the wheel’s angular velocity as
a function of ground friction forces. Assume the friction
coefficient µj for each wheel j is different. The chassis of
our mobile robot is similar to that of the Uranus robot [11]
which linear and angular velocities using the wheel angular
velocities as input is:

 vx
vy
ωz

 =
R

4lab

 −lab lab −lab lab
lab lab lab lab
1 −1 −1 1

︸ ︷︷ ︸

B

ω1

ω2

ω3

ω4

 (3)

where lab = la+ lb (see Figure 4(right)). vx, vy are the linear
velocities along the X and Y axes, and ωz is the angular
velocity about the Z axis. Equations (2) and (3) define a
model for the robot with the effects of friction.

V. LOSS FUNCTION

Let (xi, yi, θi) be the generalized position of the mobile
robot at time ti, and (vix, v

i
y, ω

i
z) be its generalized velocity.

Then, its predicted state at time ti+1 can be computed as:

 xi+1

yi+1

θi+1

 =

 xiyi
θi

+ ∆t

 cos θi -sin θi 0
sin θi cos θi 0

0 0 1

 vix
viy
ωiz

 (4)

µ=(.2,.2,.2,.2)
µ=(1,.2,.2,.2)

µ=(1,.2,.2,1)
µ=(1,.2,1,.2)

Fig. 6. Trajectories generated using the wheel friction coefficients
(top of Eq (2)). Note that, ceteris paribus, with higher friction the
angular velocity of the wheel should decrease. Thus, the motion
model matches the intuition of how the robot moves under the
influence of friction forces.

where ∆t = ti+1 − ti. The simulation-reality gap is com-
puted as follows:

Lgt =

N∑
k=1

(
|xk − xkgt|2 + |yk − ykgt|2

)1/2
, (5)

where (xkgt, y
k
gt) are the ground-truth position values at time-

step k. (xk, yk) are the predicted positions using Equation (4)
and the same sequence of controls provided to the real robot.
The video is recorded using the overhead camera at 60fps,
whereas the PWM signal is sent to the motor at a 3-4× higher
frequency (mostly determined by the network bandwidth).
Thus, there are several simulation time steps between two
consecutive ground-truth position values.

In practice, the predicted state often “lags behind” the
ground truth values (Figure 7(Left)), even when the robot
is exactly following the overall path, leading to a high loss
value. Thus, we fit a spline curve to the ground truth data and
compute another loss function that uses the point (xksp, y

k
sp)

closest to this curve from the predicted state at time-step k:

Lsp =

N∑
k=1

(
|xk − xksp|2 + |yk − yksp|2

)1/2
(6)

Note that the loss Lsp alone is not sufficient either, as it does
not penalize the simulated robot for not moving at all from
its starting position. Thus, a weighted linear combination of
Lgt and Lsp is proposed as the actual loss function:

L = w1 · Lsp + w2 · Lgt (7)

Where the weights are empirically determined as w1 =
0.8, w2 = 0.2 and using the parameters M = 4, r =
0.03, and Ts = 0.6 for equation (2) . The pseudocode for
loss computation is shown in Algorithm 1, vectors shown
in bold. B is defined in Equation 3, and µ is a vector
of the friction coefficients of the different wheels. Line
4 uses component-wise vector multiplication. T the total
time-steps, and ti the time the control was applied to the

Input ωs

Output µj

Fig. 7. (Left) Predicted positions (blue) can often “lag behind”
the ground-truth (red), even when closely following the correct
trajectory, leading to a high loss value (green). (Right) A small
neural network learns the map between controls ωs and learned
friction coefficients µj .

motor at time-step i. Since there can be multiple simulation
time steps between two consecutive ground-truth observa-
tions, the function IsGroundTruthSample checks if a
ground truth position exists at time ti, if so, the function
GroundTruthIndex returns its index.

Algorithm 1 LossComputation(B,µ)
1: Initialize l← 0, p← (x0

gt, y
0
gt, θ

0
gt)

2: for i = 1 . . . T do
3: Compute ∆t← ti+1 − ti
4: Compute ω ← ωs (1− µMgr/4Ts)
5: Compute (vx, vy, ωz)← Bω
6: if IsGroundTruthSample(i) then
7: k ← GroundTruthIndex(i)
8: (∆px,∆py)← (p0 − xkgt, p1 − ykgt)
9: (∆qx,∆qy)← (p0 − xksp, p1 − yksp)

10: l += w1

(
∆q2

x + ∆q2
y

)1/2
+w2

(
∆p2

x + ∆p2
y

)1/2
11: end if
12: p += ∆t (cp2vx − sp2vy, sp2vx + cp2vy, ωz)
13: end for
14: return l

VI. DIFFERENTIABLE PHYSICS

To minimize the loss function in equation (7) with respect
to unknown friction coefficients µj for all wheels, we derive
analytical expressions for the gradient of the loss with
respect to µj :

∂L

∂µj
= w1 ·

∂Lsp

∂µj
+ w2 ·

∂Lgt

∂µj
(8)

Let (∆xkgt,∆y
k
gt) = (xk − xkgt, y

k − ykgt) and dk denote

the length
(
|∆xk|2 + |∆yk|2

)1/2
. Then the second term in

equation (8) can be expanded using the chain rule as follows:

∂Lgt

∂µj
=

N∑
k=1

1

dk

(
∆xkgt ·

∂xk

∂µj
+ ∆ykgt ·

∂yk

∂µj

)
(9)

The derivatives in equation (9) can be computed using
equations (3), (4) at the higher frequency of the PWM signal
sent to the motors, used for predicting the next state, as:

∂xi+1

∂µj
= ∂xi

∂µj
+∆tcθib1j

∂ωi

∂µj
−∆tsθib2j

∂ωi

∂µj
−∆t(vixsθi+v

i
ycθi)

∂θi

∂µj

(10)
∂yi+1

∂µj
= ∂yi

∂µj
+∆tsθib1j

∂ωi

∂µj
+∆tcθib2j

∂ωi

∂µj
+∆t(vixcθi−v

i
ysθi)

∂θi

∂µj

(11)
∂θi+1

∂µj
= ∂θi

∂µj
+∆tb3j

∂ωi

∂µj

(12)

where brs is the (r, s) entry in the matrix B, (see equation 3),
cθ = cos(θ) and similarly for sin. The derivative ∂ωi/∂µj is
computed using equation (2). The expression for ∂Lsp/∂µj
in equation (8) can be derived similarly. Note that, the closest
point (xksp, y

k
sp) on the spline curve is a function of the

point (xk, yk). However, we have empirically found that
estimating its derivative can be ignored when computing the
term ∂Lsp/∂µj , for j ∈ {1 . . . 4}.

Algorithm 2 GradientComputation(B,µ)
1: Initialize g ← [0]4×1, J ← [0]3×4, p← (x0

gt, y
0
gt, θ

0
gt)

2: for i = 1 . . . T do
3: Compute ∆t← ti+1 − ti
4: Compute ω ← ωs (1− µMgr/4Ts)
5: Compute (vx, vy, ωz)← Bω
6: Compute dω ← −ωsMgr/4Ts
7: for j = 0 . . . 3 do
8: J0j += ∆t{dωj(cB0j−sB1j)−(vxs+vyc)J2j}

9: J1j += ∆t{dωj(sB0j+cB1j)+(vxc+vys)J2j}

10: J2j += ∆tB2jdωj

11: end for
12: if IsGroundTruthSample(i) then
13: k ← GroundTruthIndex(i)
14: (∆px,∆py)← (p0 − xkgt, p1 − ykgt)
15: (∆qx,∆qy)← (p0 − xksp, p1 − yksp)

16: dgt ←
(
∆p2

x + ∆p2
y

)1/2
17: dsp ←

(
∆q2

x + ∆q2
y

)1/2
18: g += J [{0, 1}, :]T

(
w1

dsp

[
∆qx
∆qy

]
+ w2

dgt

[
∆px
∆py

])
19: end if
20: p += ∆t (cp2vx − sp2vy, sp2vx + cp2vy, ωz)
21: end for
22: return g

As shown in Section VII, using the gradients derived
in Section VI to minimize the loss function in equation
(7) yields friction parameters that give good agreements
with the observed trajectory. However, the computed friction
parameters can differ in values for two different trajectories
(with different control signals). This implies that the friction
µj for each wheel is not a constant, but a function µj(ωs) of
the applied control signal. Thus, we first generate a sequence
of trajectories with fixed control signals, and estimate friction
parameters for each of them by separately minimizing the
loss function using gradient descent. We then train a small
neural network with 4 input nodes, 16 hidden nodes, and
4 output nodes. The input to the neural network are the
applied control signals to the wheels, and the output are
the friction parameters estimated via gradient descent using
our differentiable physics engine (see Figure 7(Right)). As
shown in Section VII, a sequence of only 8 input trajectories
is enough to obtain reasonable predictions from the neural
network, and allowed us to autonomously drive the mobile
robot along an “eight curve” with high precision.

The pseudocode for computing the gradient of the loss
function is in Algorithm 2. Matrix J stores the accumu-
lated gradients for the generalized position. The notation
J [{0, 1}, :] refers to the first two rows of J .

VII. EXPERIMENTAL RESULTS

The robot was driven in a 3 × 5 m2 area with an
Apriltag [25] attached on top of it. An overhead camera is
used to record the motion. We remotely controlled the robot

for 6-8 seconds and collected 8 different trajectories, with 2
samples for each trajectory, as shown in Figure 9 in red and
blue. For simplicity, the applied controls were constant for
the entirety of each trajectory, but different per trajectory.

A. Model Identification

We use the L-BFGS-B method to estimate the unknown
friction coefficients, where the gradient is computed using
equation (8), as shown in green in Figure 9. Additionally, we
imposed the constraints that estimated friction values should
lie in [0, 2]. Our chosen values for M, g, r, Ts ensure that
ωj → 0 as µj → 2 for j ∈ {1 . . . 4}. For comparison,
we show the result of the Uranus model [11] (does not
account for friction), and a neural network trained using the
same small amount of data to directly predict velocities from
applied control signals. For each control signal, we use the
remaining 14 trajectories in our data set from Figure 9 that
correspond to different control signals for training the neural
network, and 2 trajectories corresponding to the current
control signal for testing. We only show the best result
for each control signal in Figure 9. To ensure that our
minimization problem is well-defined in an unconstrained
setting, we slightly modified equation (2) as follows:

ω = ωs

(
1− σ(µ)MgR

2Ts

)
(13)

where σ(µ) ∈ [0, 1]∀µ ∈ (−∞,∞) is the sigmoid function.
As shown in Figure 9, our model has the best agreement
with the ground-truth values.

The total run-time and iteration counts for our method,
Nelder-Mead, and CMA-ES [26], two derivative-free opti-
mization methods, are shown in Figure 10(right). Our method
requires very few iterations to converge, and is generally
faster than both Nelder-Mead and CMA-ES. We did not show
the trajectories predicted using CMA-ES and Nelder-Mead
in Figure 9, as they both converge to the same answer as L-
BFGS-B, just take longer. The top portion of Figure 10(right)
shows the loss value with increasing iteration counts of L-
BFGS-B. The use of accurate analytic gradients allows for
rapid progress in the initial few iterations. The bottom portion
of Figure 10(right) shows the effect on loss when the training
data is reduced according to the percentage on the X-axis.
As can be seen, our method converges to almost the final
loss value with only 40% of the total data, making it data-
efficient, and potentially applicable in real-time settings for
dynamically detecting changes in the friction of the terrain.
B. Path Following

We also used our learned model to compute control
signals, such that the robot could autonomously follow pre-
specified curves within a given time budget T . Taking as
input the total way-points n the robot should pass in a sec-
ond, and discretize the given curve with nT way-points. We
assume the controls are constant between consecutive way-
points, which is reasonable provided the sampling density
of the way points is high enough. To compute the control
signals, we again use L-BFGS-B, but optimize for the control
signals ωs, instead of the friction coefficients µ, when

minimizing equation (7). Apart from changing the primary
variable from µ to ωs, the only other change required is to
use the derivative of equation (2) with respect to ωs.

Note that the function µ(ωs) is crucial for path following.
Once the control signal ωs is fixed, equations (2) and (3)
can be used to predict the generalized velocity, which can
be integrated in time to predict the position and orientation
of the mobile robot in the next time step.

Figure 11 illustrates our results when the specified path
is a circle and a “figure 8”. Shown are the reference path
and the real robot trajectory after applying control signals
that were computed using our method. Our differentiable
framework is accurate enough that the robot follows the
specified path closely. To test the robustness of our method,
we parametrized the 8-curve such that the robot drives the
right lobe backwards, and the left lobe forwards. The robot
overshoots the specified path because our method only op-
timized for position constraints, not for velocity constraints,
when computing the control signals.

C. Terrain Adaptation

To demonstrate the ability of our method to quickly adapt
to changes in the terrain, we conducted experiments driving
the robot in one author’s home (due to the pandemic) using
the trained model. As shown in Figure 12(left), the executed
path deviates from the reference path. To correct for this,
we repeat model identification on this recorded trajectory
by minimizing equation (7) again (see Figure 12(middle)),
add the computed friction values to our training set from
Figure 9, and retrain the neural network for approximating
the function µ(ωs). (Note that the recorded trajectory from
Figure 12(left) does not have constant applied controls. How-
ever, using the timestamps of each control, and the robot’s
position, the recorded trajectory is segmented into curves
with constant controls and minimized the loss equation on
each one. This approach has the additional advantage of
single executed path generating many new data points in
the training set.) Figure 12(right) shows the executed path
after applying control signals computed from the retrained
model, which is much closer to the reference path. Although
not tried in our experiments, it is conceivable that the slight
deviation in Figure 12(right) can be further reduced by
repeating the steps above for a few iterations.

D. Motion Planning

We also performed motion planning using the learned
model. First, a set of 8 primitives were defined (front, back,
right, left and diagonals). Then, ground-truth trajectories per
primitive were collected in a high friction environment (fig-
ure 13 left and center), using the proposed method to learn a
friction coefficients per primitive. The learned model is used
by the AORRT [27] algorithm from the ML4KP library [28]
to compute plans (ordered sequence of piecewise-constant
controls) to drive the robot to the desired location. The
computed plans were tested on an open-loop setting and
the trajectories recorded for visualization. As a comparison,
AORRT was also used to plan using primitives with zero

Fig. 9. Robot trajectories for 8 different motor control signals. Ground truth values estimated with Apriltags are shown in red and blue.
Our method uses L-BFGS-B to estimate friction parameters, the result is shown in green. For comparison, also shown the result of the
Uranus model [11] and a neural network. Note that ground truth overlaps with our method in most cases.

Fig. 10. (Left) Run-time (seconds) and total iterations for estimating
friction coefficients for 8 trajectories using CMA-ES, L-BFGS-B
with the gradient function, and Nelder-Mead method. All methods
use the analytical model, but only L-BFGS-B makes use of the
analytical gradients. (Right) Loss value vs iteration (top), making
rapid progress in the initial iterations. Efficiency of our method with
less training data (bottom), according to the percentage.

values for the friction coefficients. The resulting trajectories
are shown in figure 13 (right). Note that the planner generates
different plans for the zero friction values and the learned
vectors due to: a) the predicted trajectories being different,
and b) the planner being asymptotically-optimal. Note that
the diagonal trajectories are shorter for the same execution
time, therefore the planner prefers the other primitives for
the learned system. This result in the robot being able to
execute a plan that drives it towards the goal faster.

VIII. CONCLUSION AND FUTURE WORK

We presented an analytical model that closely describes
real-world recorded trajectories of a low-cost mobile robot
designed in our lab. To estimate unknown friction coefficients
for the robot wheels, we designed a differentiable physics
engine, and showed that it is computationally efficient and
more accurate than existing methods. To autonomously drive

Fig. 11. Reference path highlighted as tire tracks (cyan) and
snapshots of real-world recorded trajectory using control signals
computed by our method are shown for a circular path (left) and a
“figure 8” (right).

Fig. 12. (Left) Executed (red) and reference (blue) paths when
driving the mobile robot in one author’s home, using the model
trained in the lab. The new terrain causes deviations from the
reference path. (Middle) Recorded (blue) and predicted (red) paths
after model identification on the previous path to get friction values
that minimize equation (7). (Right) Executed path after retraining
the model on the newly computed friction values and controls.

Fig. 13. Ground truth trajectories for front (left) and diagonal (cen-
ter) primitives, executed for the same duration. Note the difference
in length. (Right) Trajectories planned with AORRT: when using
the learned friction coefficients (green) the robot is able to reach
the goal vs not using the learned values (blue)

the robot along pre-specified paths, we also designed a
hybrid approach that uses a neural network to approximate
the function µ(ωs), where the training set is generated by
our model identification pipeline. Our method combines the
data-efficiency of differentiable physics engines with the
flexibility of data-driven neural networks. Finally, we showed
that our method can quickly adapt to changes in the terrain.

In the future, we would like to improve our analytical
model to also account for control signals that are not pow-
erful enough to induce rotation of the wheels. In such cases,
the wheel is not completely static and can still turn during
robot motion, due to inertia. This causes the robot to change
orientations in a manner that cannot be predicted by our
current model. Accounting for such control signals would
allow for more versatile autonomous control of our robot.
Additionally, improving the method’s run-time is needed
interleave execution and motion planning which would help
keeping a small error rate.

REFERENCES

[1] M. Banzi, Getting Started with Arduino. Sebastopol, CA: Make Books
- Imprint of: O’Reilly Media, ill ed., 2008.

[2] C. A. Hamilton, BeagleBone Black Cookbook. Packt Publishing, 2016.
[3] J. Degrave, M. Hermans, J. Dambre, and F. Wyffels, “A dif-

ferentiable physics engine for deep learning in robotics,” CoRR,
vol. abs/1611.01652, 2016.

[4] F. de Avila Belbute-Peres and Z. Kolter, “A modular differentiable rigid
body physics engine,” in Deep Reinforcement Learning Symposium,
NIPS, 2017.

[5] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum,
“Differentiable physics and stable modes for tool-use and manipulation
planning,” in Proc. of Robotics: Science and Systems (R:SS 2018),
2018.

[6] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley,
and F. Durand, “Difftaichi: Differentiable programming for physical
simulation,” ICLR, 2020.

[7] W. Yu, V. Kumar, G. Turk, and C. Liu, “Sim-to-real transfer for biped
locomotion,” 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3503–3510, 2019.

[8] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski, and
S. Coros, “Add: Analytically differentiable dynamics for multi-body
systems with frictional contact,” ACM Trans. Graph., vol. 39, no. 6,
2020.

[9] N. Seegmiller, F. Rogers-Marcovitz, G. A. Miller, and A. Kelly, “Vehi-
cle model identification by integrated prediction error minimization,”
International Journal of Robotics Research, vol. 32, pp. 912–931, July
2013.

[10] N. Seegmiller and A. Kelly, “Enhanced 3d kinematic modeling of
wheeled mobile robots,” in Proceedings of Robotics: Science and
Systems, July 2014.

[11] P. F. Muir and C. P. Neuman, “Kinematic modeling for feedback
control of an omnidirectional wheeled mobile robot,” in Autonomous
Robot Vehicles, 1987.

[12] C. Ostafew, J. Collier, A. Schoellig, and T. Barfoot, “Learning-based
nonlinear model predictive control to improve vision-based mobile
robot path tracking,” Journal of Field Robotics, vol. 33, 06 2015.

[13] U. Rosolia, A. Carvalho, and F. Borrelli, “Autonomous racing using
learning model predictive control,” CoRR, vol. abs/1610.06534, 2016.

[14] C. Xie, S. Patil, T. Moldovan, S. Levine, and P. Abbeel, “Model-
based reinforcement learning with parametrized physical models and
optimism-driven exploration,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2016.

[15] K. Iagnemma, Shinwoo Kang, H. Shibly, and S. Dubowsky, “Online
terrain parameter estimation for wheeled mobile robots with appli-
cation to planetary rovers,” IEEE Transactions on Robotics, vol. 20,
no. 5, pp. 921–927, 2004.

[16] R. L. Williams, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic
model with slip for wheeled omnidirectional robots,” IEEE Transac-
tions on Robotics and Automation, vol. 18, no. 3, pp. 285–293, 2002.

[17] J. Swevers, C. Ganseman, D. B. Tukel, J. De Schutter, and
H. Van Brussel, “Optimal robot excitation and identification,” IEEE
TRO-A, vol. 13, no. 5, pp. 730–740, 1997.

[18] L. Ljung, ed., System Identification (2nd Ed.): Theory for the User.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999.

[19] K. Wang, M. Aanjaneya, and K. Bekris, “A first principles approach
for data-efficient system identification of spring-rod systems via differ-
entiable physics engines,” Proceedings of Machine Learning Research,
vol. 120, pp. 1–15, 2020.

[20] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al., “Interaction net-
works for learning about objects, relations and physics,” in Advances
in neural information processing systems, pp. 4502–4510, 2016.

[21] A. Kloss, S. Schaal, and J. Bohg, “Combining learned and analytical
models for predicting action effects,” CoRR, vol. abs/1710.04102,
2017.

[22] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex be-
haviors through contact-invariant optimization,” ACM Trans. Graph.,
vol. 31, pp. 43:1–43:8, July 2012.

[23] A. Raffin, “Autonomous racing robot with an arduino and a raspberry
pi,” Nov. 2017.

[24] R. Rojas, “Models for DC motors.” Unpublished Document, 2004.
[25] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial

detection,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), October 2016.

[26] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evol. Comput., vol. 11, p. 1–18, Mar.
2003.

[27] M. Kleinbort, E. Granados, K. Solovey, R. Bonalli, K. E. Bekris, and
D. Halperin, “Refined analysis of asymptotically-optimal kinodynamic
planning in the state-cost space,” in ICRA, 2020.

[28] E. Granados, A. Sivaramakrishnan, T. McMahon, Z. Littlefield,
and K. E. Bekris, “Machine learning for kinodynamic planning
(ml4kp).” https://github.com/PRX-Kinodynamic/ML4KP,
2021–2021.

