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Aim: Learning to grasp unknown objects

(a) Barrett robot hand (b) Unknown object

e A grasp quality (or reward) depends on the configuration of
the hand, and the shape of the object in the contact region.

e Defining shapes, e.g. handles, using local geometrical features
is not a trivial task.

e Features acquired through sensors are often subject to noise.
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Apprenticeship Learning via Inverse Reinforcement Learning

Reward Model of the Dynamics

Reinforcement Learning
Optimal Control

Behavioral Cloning

A

Inverse Reinforcement Learning

@D




Apprenticeship Learning via Inverse Reinforcement Learning

Given:

e A Markov Decision Process without a reward function

e A demonstration {(s;,a;)}

@ Learn a reward function R such that the demonstrations are
generated by an optimal policy

@ Use the learned reward to find an optimal policy
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Notations

A Markov Decision Process (MDP) is defined by:

e S: states set

e A: actions set

T: transition function defined as T'(s,a,s’) = P(s'|s, a)

R: reward function where R(s,a) is the reward given for
executing action a in state s

to: initial state distribution

v € [0, 1]: discount factor

A policy 7 is a function that selects an action for each state.
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Reward features

e The reward is defined as a function of state-action features
def o
€
R(s,a) = > Oeou(s, a).
k=1
e The expected value of feature ¢, given policy 7 is defined as

df
= 27 Ok (st; ar)|po, ™, T
t=0

e The expected value of policy 7 is a linear function of the
expected feature values

)= Oty
k=1

6
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Structured Apprenticeship Learning- Key Insights

X Reward features are often obtained from empirical
measurements and are subject to noise.

X Features of complex reward functions, such as a grasp quality,
cannot be easily defined.
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X Reward features are often obtained from empirical
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X Features of complex reward functions, such as a grasp quality,
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In practice, optimal policies are often structured: states that
are close to each other tend to have similar optimal actions.
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Structured Apprenticeship Learning- Key Insights

X

X

Reward features are often obtained from empirical
measurements and are subject to noise.

Features of complex reward functions, such as a grasp quality,
cannot be easily defined.

In practice, optimal policies are often structured: states that
are close to each other tend to have similar optimal actions.

Create a graph that connects similar states together, by using
the Euclidean distance, for example, as a similarity measure.
Notation: £ is the edge set and i are the edge features.

Constrain the learned policy to often select similar actions in
neighboring states.
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Problem Statement

Structured Apprenticeship Learning is formulated as the problem of
maximizing the entropy of a distribution on policies P,

max ( — Z s P(m)log P(m) ),
P,u ( neAlS| )

subject to the following constraints

> P(m) = 1,

wcAlS|
Vor: Y P(m)Y @ (s)dr(s,m(s) = ok,
reAlS| seS
Vor: Y wklsis) >, P(m) = i
(Si,Sj)Eg 7r,7r(si)=ﬂ'(3j)

qg and @@ are the empirical values of the reward and edge features
respectively, calculated from the demonstration.

17 (s) = po(s) + 7 Xy (s, w(s), )™ (5.
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Solution

structure reward

P(r) cexp (3o u7(s) 3 Gronlsm(s) + D D Mo sy) )
s k (siysj)€€ kK

vV .t. )= .
usual value function st m(si)=m(s;)

e 6 and X are learned by maximizing the likelihood of the
demonstration.

e This distribution corresponds to a Markov Random Field
1
P =2 [1/6) T oelsicsy).
seS (s4,85)€S?

e A policy 7* = argmax, P(m) is found by reducing the
planning problem to a sequence of inference in MRFs
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Grasping as a Markov Decision Process

(c) Barrett hand (d) Object seen through a depth camera

t=20
Action : reaching -

t=1
Action : preshaping -~

f—9 - b P

Action : grasping
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Results

Regression

AMN

MaxEnt IRL

4

Learned Q-values at ¢ = 0. Each point on an object corresponds to a
reaching action. The dashed arrow indicates the approach direction in

the optimal policy according to the learned reward function.
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Results

Percentage of successful grasps

Regression  AMN  MaxEntIRL  SAL

Figure : Percentage of grasps labeled as successful (out of 7 objects).
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Future work

o Efficient inference algorithms

e Other applications: autonomous mobile manipulation

Thank you
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