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Aim: Learning to grasp unknown objects

(a) Barrett robot hand (b) Unknown object

• A grasp quality (or reward) depends on the configuration of
the hand, and the shape of the object in the contact region.

• Defining shapes, e.g. handles, using local geometrical features
is not a trivial task.

• Features acquired through sensors are often subject to noise.
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Apprenticeship Learning via Inverse Reinforcement Learning

Reward Model of the Dynamics Policy

Optimal Control

Reinforcement Learning

Inverse Reinforcement Learning Examples

Behavioral Cloning
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Apprenticeship Learning via Inverse Reinforcement Learning

Given:

• A Markov Decision Process without a reward function

• A demonstration {(si, ai)}

1 Learn a reward function R such that the demonstrations are
generated by an optimal policy

2 Use the learned reward to find an optimal policy
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Notations

A Markov Decision Process (MDP) is defined by:

• S: states set

• A: actions set

• T : transition function defined as T (s, a, s′) = P (s′|s, a)
• R: reward function where R(s, a) is the reward given for

executing action a in state s

• µ0: initial state distribution

• γ ∈ [0, 1[: discount factor

A policy π is a function that selects an action for each state.
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Reward features

• The reward is defined as a function of state-action features

R(s, a)
def
=

n∑
k=1

θkφk(s, a).

• The expected value of feature φk given policy π is defined as

φπk
def
= E

[ ∞∑
t=0

γtφk(st, at)|µ0, π, T

]
.

• The expected value of policy π is a linear function of the
expected feature values

V (π) =

n∑
k=1

θkφ
π
k .
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Structured Apprenticeship Learning- Key Insights

7 Reward features are often obtained from empirical
measurements and are subject to noise.

7 Features of complex reward functions, such as a grasp quality,
cannot be easily defined.

3 In practice, optimal policies are often structured: states that
are close to each other tend to have similar optimal actions.

å Create a graph that connects similar states together, by using
the Euclidean distance, for example, as a similarity measure.
Notation: E is the edge set and ψk are the edge features.

å Constrain the learned policy to select similar actions in
neighboring states.
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Structured Apprenticeship Learning- Key Insights

7 Reward features are often obtained from empirical
measurements and are subject to noise.

7 Features of complex reward functions, such as a grasp quality,
cannot be easily defined.

3 In practice, optimal policies are often structured: states that
are close to each other tend to have similar optimal actions.

å Create a graph that connects similar states together, by using
the Euclidean distance, for example, as a similarity measure.
Notation: E is the edge set and ψk are the edge features.

å Constrain the learned policy to often select similar actions in
neighboring states.
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Problem Statement

Structured Apprenticeship Learning is formulated as the problem of
maximizing the entropy of a distribution on policies P ,

max
P,µπ

(
−
∑

π∈A|S|
P (π) logP (π)

)
,

subject to the following constraints∑
π∈A|S|

P (π) = 1,

∀φk :
∑

π∈A|S|

P (π)
∑
s∈S

µπ(s)φk(s, π(s)) = φ̂k,

∀ψk :
∑

(si,sj)∈E

ψk(si, sj)
∑

π,π(si)=π(sj)

P (π) = ψ̂k.

φ̂ and ψ̂ are the empirical values of the reward and edge features
respectively, calculated from the demonstration.
µπ(s) = µ0(s) + γ

∑
s′ T (s, π(s), s

′)µπ(s′).
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Solution

P (π) ∝ exp
(∑

s

µπ(s)
∑
k

θkφk(s, π(s))︸ ︷︷ ︸
usual value function

+

structure reward︷ ︸︸ ︷∑
(si,sj)∈E

s.t. π(si)=π(sj)

∑
k

λkψk(si, sj)
)
.

• θ and λ are learned by maximizing the likelihood of the
demonstration.

• This distribution corresponds to a Markov Random Field

P (π) =
1

Z

∏
s∈S

fπ(s)
∏

(si,sj)∈S2
gπ(si, sj).

• A policy π∗ = argmaxπ P (π) is found by reducing the
planning problem to a sequence of inference in MRFs
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Grasping as a Markov Decision Process

(c) Barrett hand (d) Object seen through a depth camera

t = 0
Action : reaching

t = 1
Action : preshaping

t = 2
Action : grasping
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Results

Regression

AMN

MaxEnt IRL

Structured AL
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Learned Q-values at t = 0. Each point on an object corresponds to a

reaching action. The dashed arrow indicates the approach direction in

the optimal policy according to the learned reward function.
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Figure : Percentage of grasps labeled as successful (out of 7 objects).

14 / 15



Future work

• Efficient inference algorithms

• Other applications: autonomous mobile manipulation

Thank you
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