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Abstract—Active learning typically aims at minimizing the
number of labeled samples to be included in the training set to
reach a certain level of classification accuracy. Standard methods
do not usually take into account the real annotation procedures
and implicitly assume that all samples require the same effort to be
labeled. Here, we consider the case where the cost associated with
the annotation of a given sample depends on the previously labeled
samples. In general, this is the case when annotating a queried
sample is an action that changes the state of a dynamic system, and
the cost is a function of the state of the system. In order to minimize
the total annotation cost, the active sample selection problem is
addressed in the framework of a Markov decision process, which
allows one to plan the next labeling action on the basis of an
expected long-term cumulative reward. This framework allows us
to address the problem of optimizing the collection of labeled sam-
ples by field surveys for the classification of remote sensing data.
The proposed method is applied to the ground sample collection
for tree species classification using airborne hyperspectral images.
Experiments carried out in the context of a real case study on
forest inventory show the effectiveness of the proposed method.

Index Terms—Active learning (AL), field surveys, forest inven-
tories, hyperspectral data, image classification, Markov decision
process (MDP), support vector machine (SVM).

I. INTRODUCTION

IN supervised classification, the amount and quality of train-
ing samples are crucial for obtaining accurate results. Fur-

thermore, considering that sample labeling is usually expensive
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and time-consuming, tools for selecting the most informative
samples can significantly reduce the effort associated with the
labeling of redundant or unnecessary samples. Active learning
(AL) methods provide a way to iteratively select the samples
that are expected to lead to the highest gain in predictive per-
formances, once they are labeled and added to the training set.
An expert is guided in the collection of an effective training set
reducing the annotation cost compared to a passive approach.
The aim is typically to minimize the number of samples to be
labeled and added to the training set in order to reach a certain
level of accuracy. AL has been applied to a variety of real-world
problem domains, including text classification, information ex-
traction, video classification and retrieval, speech recognition
[1], and recently also to remote sensing (RS) classification
problems [2], [3]. However, most of the AL methods have been
developed for general purposes and do not take into account the
real annotation procedures and costs, which usually depend on
the application.

In this paper, we consider problems where the annotation cost
for a given sample is a function of previously collected samples.
This type of scenario occurs, for instance, when a human expert
has to visit different locations to retrieve the labels of the
queried samples, and the cost is thus a function of the travelled
distance from the previous sample location. In this situation,
our goal is to optimize the sample selection not just with
respect to the number of labelings but considering the total cost
of the annotation procedure. The considered scenario models
the problem of optimizing the collection of labeled samples
through field surveys for RS data classification. In this context,
several classification problems require the collection of a train-
ing set through ground sample collection. This is typically the
case of hyperspectral image classification, where sample labels
cannot usually be obtained by visual inspection of false color
image compositions. In contrast to photointerpretation, in situ
surveys are typically very expensive and need to be performed
by human experts. In such applications, the advantage of using
an effective AL strategy that can guide the human expert in an
optimized sequence of site visits is particularly important, given
the significant savings in terms of time and money.

In view of this, we propose a novel cost-sensitive active
learning (CSAL) method, i.e., an AL strategy that explicitly
takes into account the cost for obtaining sample labels in the
selection process. This strategy is used in guiding the user in
the annotation procedure for selecting the most informative

0196-2892 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



PERSELLO et al.: COST-SENSITIVE ACTIVE LEARNING WITH LOOKAHEAD 6653

Fig. 1. Graphical representation of the traveling annotator problem. The
human expert has to decide on the next sample to collect starting from the
current position. Samples are depicted as gray balls, whose expected prediction
utility is associated with their size (and gray level). Collecting the sample that
maximizes the immediate expected utility (gray dashed arrow) would be a
myopic and suboptimal strategy in view of a long-term reward, which considers
both the prediction utility and the traveling cost. A better decision can be taken
by looking ahead (for three steps in this example) and performing the action
that optimizes the long-term cumulative reward (black solid arrow).

samples while minimizing the cost. It is worth noting that, in
standard AL methods, the query function usually selects the
sample that maximizes an immediate utility, i.e., the expected
gain in predictive performances at the very next iteration. As
opposed to this, the considered cost-sensitive setting requires
us to plan the sample labeling procedure by taking into ac-
count several steps ahead. For this reason, we modeled the
CSAL problem in the framework of a Markov decision process
(MDP), which allows us to optimize the next labeling action
on the basis of an expected long-term cumulative reward. The
considered problem, which we call here the traveling annotator
problem, is depicted in Fig. 1: the human expert has to decide
on the next sample to collect starting from the current position.
Collecting the sample that maximizes the immediate expected
utility would be a myopic strategy. A better decision can be
taken by “looking ahead” and optimizing a long-term cumu-
lative reward that considers both the prediction utility and the
traveling cost.

As an application of particular interest, we consider here
the use of hyperspectral data for forest inventory purposes.
The introduction of very high geometrical resolution RS im-
ages allows one to improve the spatial resolution of RS-
based forest inventories, and much research effort is currently
devoted to individual tree crown (ITC) level inventories [4],
[5]. ITC inventories provide information about stem volume,
height, species, etc., for trees present in the dominant layer
of the canopy. Regarding the species classification, airborne
hyperspectral sensors, owing to their very high spectral and
spatial resolution, can be powerful instruments for these kinds
of inventories. Several studies have showed their effectiveness
in distinguishing very similar tree species in various environ-
ments (e.g., [6]–[8]). However, an expensive part of a forest
inventory at ITC level is represented by the ground sample
collection. Usually, the sample collection is carried out inside
field plots (circular areas of a given radius) distributed over
the area of interest according to a predefined sampling strategy
(e.g., systematic sampling strategy, random sampling strategy,
stratified sampling strategy, etc.) [9]. Inside each field plot,

trees are measured according to a predefined rule. Usually, trees
for which the diameter at breast height (DBH) is higher than
a certain threshold are measured. Obviously, this procedure
is largely time-consuming, and it represents the main cost of
an inventory. Thus, effective tools that can reduce the cost of
the ground sample collection, without losing accuracy in the
inventory, are needed.

The main contributions of this study include the following:
1) modeling the problem of optimizing the collection of labeled
samples for the classification of RS data as the described trav-
eling annotator problem; 2) proposing a novel CSAL method
with lookahead to effectively solve the problem; and 3) apply-
ing the proposed method to a real study on forest inventory
using airborne hyperspectral images. In particular, we propose
two different query functions with lookahead to address the
considered problem. The remainder of this paper is organized as
follows. The next section reviews basic concepts about AL and
about its use for RS image classification. Section III introduces
MDP. Section IV presents the proposed CSAL method and two
query functions with lookahead. Sections V and VI report the
considered data set and the experimental analysis, respectively.
Finally, Section VII draws the conclusion of this paper.

II. ACTIVE LEARNING

AL is an iterative procedure where the user is repeatedly
asked to annotate new samples that are selected by a query
function. In the pool-based setting, the query function is used
to select the samples from a pool U = (xi)ni=1 of n candidate
unlabeled samples that are expected to lead to the highest gain
in predictive performances once they are labeled and added
to the training set. The classification algorithm is retrained
using the training set that contains the new samples, and this
procedure is repeated until a stopping criterion is met. Most
of existing works have focused on the selection of one sample
to be labeled in each iteration. To this end, different criteria
have been adopted for selecting the (expected) most informative
sample. One of the first strategies introduced in the literature is
based on uncertainty sampling [10], which aims at selecting the
closest sample to the decision boundary. The same principle
has also been used in the context of support vector machine
(SVM) classification [11]–[13]. Other strategies are query by
committee [14] and expected error reduction [15]. A survey of
several existing methods is available in [1].

Other studies have focused on the selection of batches of
samples at each iteration, which allow one to speed up the
learning process. In this latter setting, the overlap of infor-
mation among the selected samples has to be considered in
order to evaluate their expected information content. Brinker
introduced an SVM-based batch approach, which selects a
batch of samples that minimizes the margin while maximizing
their diversity [16]. The diversity is assessed by considering
the kernel cosine-angular distance between points. Another
approach to consider the diversity in the query function is
the use of clustering [17], [18]. In [17], an AL heuristic is
presented, which explores the clustering structure of samples
and identifies uncertain samples avoiding redundancy. In [19],
the authors chose the batch of instances that maximizes the
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Fisher information of the classification model, which leads to
a trade-off between uncertainty and diversity. In [20], batch
AL is formulated as an optimization problem that maximizes
the discriminative classification performance while taking into
consideration the unlabeled examples. Azimi et al. [21] used
Monte Carlo simulation to estimate the distribution of unla-
beled examples selected by a sequential policy and query the
samples that best matched such a distribution.

In recent years, AL has attracted the interest of the RS
community, and it has mainly been applied to the classification
of multispectral and hyperspectral images [2], [3], [22]. In [2],
an AL technique is presented, which selects the unlabeled sam-
ple that maximizes the information gain between the posterior
probability distribution estimated from the current training set
and the training set obtained by including that sample into
it. The information gain is measured by the Kullback–Leibler
divergence. In [23], two AL techniques for multiclass RS
classification problems are proposed. The first technique is
margin sampling by the closest support vector, which selects the
most uncertain unlabeled samples that do not share the closest
support vector. In the second technique, samples are selected
according to the maximum disagreement between a committee
of classifiers, which is obtained by bagging: different training
sets are drawn with replacement from the original training data
and used in training different supervised classifiers. In [24], a
supervised Bayesian approach to hyperspectral image segmen-
tation with AL is presented. The adopted AL method is based
on a multinomial logistic regression model, which is used to
learn the class posterior probability distributions. In [3], differ-
ent batch-mode AL techniques for the multiclass classification
of RS images with SVM are investigated. The investigated
techniques exploit different query functions, which are based
on both the uncertainty and diversity criteria. One of the inves-
tigated techniques is called multiclass-level uncertainty–angle-
based diversity, which effectively extends the method presented
in [16] to deal with multiclass classification problems. More-
over, a query function that is based on a kernel-clustering
technique for assessing the diversity of samples and a strategy
for selecting the most informative representative sample from
each cluster is proposed. Such a technique is called multiclass-
level uncertainty with enhanced clustering-based diversity.
Di et al. [25] investigate AL methods based on the idea of query
by committee, where the committee of classifiers is derived by
using multiple views, i.e., different disjoint subsets of features.
The paper investigates different approaches for view genera-
tion from hyperspectral images, including clustering, random
selection, and uniform slicing methods. Recent studies adopt
AL to address domain adaptation problems [26]–[28], i.e.,
for adapting the supervised classifier trained on a given RS
image to classify another similar image acquired on a different
geographical area. The method presented in [28] iteratively
selects the most informative samples of the target image to be
included in the training set, while the source-image samples are
reweighted or possibly removed from the training set on the
basis of their disagreement with the target-image classification
problem. In this way, the consistent information of the source
image can be effectively exploited for the classification of the
target image and for guiding the selection of new samples to be

labeled, whereas the inconsistent information is automatically
detected and removed.

Very few studies addressed the AL problem in a cost-
sensitive setting for optimizing the ground sample collection.
Moreover, the use of AL in the context of forest inventory
applications was not yet investigated. In [29], the CSAL prob-
lem was modeled as a traveling salesman problem with profits,
where the profit for visiting a given sample is its uncertainty
score. Nevertheless, the proposed heuristics are suboptimal,
and the overlap of information between subsequent samples
is not taken into account. In [30], a batch-mode AL method
that considers uncertainty, diversity, and cost in the definition
of the query function is proposed. The proposed heuristic is,
however, suboptimal, given that the selection in the first step is
based only on the uncertainty. Moreover, the optimal parameter
values of the method are difficult to be set in advance in the
real application. To the best of our knowledge, state-of-the-art
methods focus on selecting the sample(s) that maximize(s) an
immediate reward, i.e., an estimate of the accuracy gain at the
very next iteration. However, considering that AL is actually
a sequential decision-making problem, it appears natural to
consider the reward of a decision after a finite number of steps
in view of a long-term optimization. In the standard setting,
where the labeling cost is not taken into account or does
not depend on previously labeled samples, the advantage of
looking ahead, beyond the next iteration, may not be evident.
Nevertheless, its advantage becomes particularly important in
the considered traveling annotator problem, where a reward
function can be defined on the basis of both the annota-
tion cost and the expected prediction utility of the selected
sample.

III. MARKOV DECISION PROCESS

MDPs [31] are a powerful tool that provides a natural mathe-
matical formalization of sequential decision-making problems.
MDPs are used in a variety of areas, including robotics, auto-
mated control, manufacturing, games, and economics. A survey
of applications of MDPs can be found in [32]. In this paper, we
formalize the problem of sample selection in AL as an MDP.
We start by briefly recalling MDPs in the remainder of this
section.

Formally, a bounded-horizon MDP is defined by a tuple
(S,A, T,R,H, γ), where S is a set of states and A is a set
of actions. T is a transition function that returns a next state s′

when action a is executed in state s. In general, T is a stochastic
function, and T (s, a, s′) denotes the probability of going to
state s′ after applying action a in state s, i.e., T (s, a, s′) =
P (st+1 = s′|st = s, at = a). T can also be deterministic, in
which case s′ = T (s, a) denotes the next state after choosing
action a in state s. R is a reward function where R (s, a) is
the numerical reward given for choosing action a in state s.
H ∈ N

+ is a planning horizon, i.e., the number of future time-
steps considered in choosing an action, and γ ∈ [0, 1] is a
discount factor used to weigh less rewards received further
in the future. A policy π is a function that returns an action
a = π(s) for each state s. The expected value of policy π in
state s is the expected sum of rewards that will be received
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when starting from s and following policy π for H time-steps.
The value function is denoted by V π

H and defined as

V π
H(s) =

H−1∑
t=0

γtIEst [R(st, at)|s0 = s, at = pi(st)] . (1)

An optimal policy π∗ is one satisfying π∗ ∈ argmaxπ V
π
H(s),

∀s ∈ S . The expected value of executing action a in state s and
then following policy π for the next H steps is called a Q-value
and defined as

Qπ
H(s, a) = R(s, a) + γ

∑
s′∈S

T (s, a, s′)V π
H−1(s

′). (2)

Therefore, π∗(s) = argmaxa∈A Qπ∗
H (s, a). An optimal policy

π∗ can be found by using dynamic programming techniques,
such as policy iteration or value iteration [32]. The computa-
tional complexity of these methods is exponential in the number
of states [33], which is not suited for applications with large
state spaces. However, given a fixed initial state s0, an optimal
policy for a bounded horizon can be found in polynomial time
using a lookahead tree search.

IV. COST-SENSITIVE ACTIVE LEARNING

WITH LOOKAHEAD

The goal of the proposed CSAL method is to optimize the
sample collection process in order to maximize the long-term
classification accuracy while minimizing the total annotation
cost. The annotation cost takes into account the expected trav-
eling cost (e.g., time) to reach the location of the next sample
and a cost for obtaining its label. This defines a multiobjective
optimization problem. In order to address this problem, we
propose two possible strategies to define the cost-sensitive
query function. The first strategy consists in maximizing a long-
term reward that is defined as a trade-off between the expected
prediction utility of the samples and the associated annota-
tion cost. The trade-off between the two terms is regulated
by predefined parameters. This strategy results in modeling
the query function as a bounded-horizon MDP. The second
strategy addresses the problem by maximizing a long-term
reward, which is defined as the expected prediction utility of
the samples, while constraining the total annotation cost to be
smaller than a predefined budget B. This second strategy results
in modeling the query function as an MDP where the number
of future steps is not bounded by a fixed horizon H , but the
looking-ahead procedure is stopped when the accumulated cost
exceeds the available budget B. We refer to the two query
functions as the following: 1) query with bounded horizon and
2) query with constrained budget. Both strategies share the
same formalization based on MDP, which is described in the
next subsection.

A. Query Functions as MDP

We model the proposed query functions on the basis of an
MDP (S,A, T,R), where the state st ∈ S is the sequence
of labeled samples x0y0x1y1 . . . xtyt that contains the last
collected sample x0y0 when the query was called and those that

are planned to be selected and labeled in the future up to time-
step t. The samples x0 . . . xt ∈ X are vectors that contain both
the features used for the classification task and for computing
the annotation cost of the sample, e.g., the spectral signatures
and the geographical positions of the samples, which are neces-
sary to compute the traveling cost. Both sets of features can
be extracted from georeferenced RS data. The label y0 ∈ Y
is the last actually annotated label, whereas y1 . . . yt ∈ Y can
just be predicted during the planning procedure by a transition
function, which can be considered a prior probability on the
distribution of the labels. An action a ∈ A corresponds to
inquiring the label of a sample x; therefore, A = U . Any
action is associated with the following: 1) a prediction utility
u(st, xt+1) that evaluates the expected gain in predictive per-
formance of the classifier after labeling the selected sample
xt+1 in state st and including it in the training set and 2) an
annotation cost Θ(st, xt+1) that evaluates the actual cost for
obtaining the label of sample xt+1 in state st. The transition
function T (st, xt+1, st+1) is the probability of labeling sam-
ple xt+1 with yt+1 given the sequence of labeled examples
st, i.e., T (st, xt+1, st+1) = P (yt+1|x0y0 . . . xtyt, xt+1). The
action of annotating the sample xt+1 in state st is associated
with a reward R(st, xt+1). Different definitions of the reward
function will be considered in the next subsections for the two
proposed queries.

The aforementioned general model theoretically casts the
query problem into a stochastic MDP. However, the probability
of future labels P (yt+1|x0y0 . . . xtyt, xt+1) represented by the
transition function T can hardly be estimated and used in the
design of the query function. For this reason, we consider here
an agnostic approach, where a uniform distribution is used
for the transition function. We also do not use the predicted
labels in the reward function. This results in an equivalent
representation of the MDP, where the transition function is
a deterministic function and the state st ∈ S is the sequence
of only unlabeled samples x0x1 . . . xt. The prediction utility
u(st, xt+1) and the annotation cost Θ(st, xt+1) are functions
of both the selected sample xt+1 and the current sequence of
samples st = x0x1 . . . xt. In order to estimate the prediction
utility u(st, xt+1), the overlap of information between xt+1

and the samples in the sequence x1 . . . xt is taken into account
by considering a trade-off between uncertainty and diversity.
Different strategies usually adopted for batch-mode AL can be
employed for this purpose in the proposed architecture.

B. Query With Bounded Horizon

In the query with bounded horizon, the reward is defined
on the basis of both the expected prediction utility u(st, xt+1)
and the annotation cost Θ(st, xt+1). Using a linear model, the
reward function is defined as

R(st, xt+1) = αu(st, xt+1)− βΘ(st, xt+1) (3)

where α and β are user-defined parameters that tune the trade-
off between prediction utility and annotation cost.

The proposed query function requires the exploration of a
decision tree in order to select the action that leads to the
maximum expected long-term cumulative reward. Fig. 2 shows
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Fig. 2. Decision tree for sample selection with the proposed query function
with bounded horizon.

an example of such a tree. The tree exploration starts with the
last annotated sample, which is always denoted by x0 and used
in calculating the reward function. The value of labeling each
sample xi ∈ U is calculated by summing the reward R(x0, x

i),
given in (3), and the subsequent discounted rewards for H − 1
steps, which are found by exploring the subtree starting from
state x0x

i. Finally, the query function selects the sample x̂ ∈ U
that maximizes the cumulative reward, i.e.,

x̂ = argmax
xi∈U

[
R(x0, x

i) + γV ∗
H−1(x0x

i)
]

(4)

where V ∗
H−1(x0x

i) is the value of the maximum cumulative re-
ward that can be obtained starting from state x0x

i and summing
the discounted rewards for the subsequent H − 1 steps.

Algorithm 1 illustrates the recursive planning procedure used
in computing the query function with bounded horizon.

C. Query With Constrained Budget

In the second proposed strategy, the reward is defined as
only the expected prediction utility of the selected sample
u(st, xt+1). In this case, we do not use a bounded-horizon MDP
with a fixed number of future time-steps to explore. Instead,
we stop the planning when the accumulated cost exceeds the
available budget B. In this way, we maximize the long-term
classification accuracy with respect to the available budget. This

strategy is more appropriate in real applications, where fixing
a priori a good trade-off between the prediction utility and the
annotation cost can be difficult. Also in this case, the query
requires the exploration of a decision tree. The value of labeling
each sample x ∈ U in state st = x0x1 . . . xt is calculated by
summing the reward R(st, x) and the subsequent rewards that
are found by the exploration of the subtree until the cumulative
cost exceeds the available budget. The depth of each subtree
depends on B but is not the same for all subtrees (as in the
previous case). Finally, the query function selects the sample
x̂ = argmaxx∈U Q(s0, x). Algorithm 2 illustrates the recursive
planning procedure used by the query with constrained budget.

D. CSAL With Lookahead

The workflow of the proposed CSAL is described in
Algorithm 3 for both of the proposed query functions. At every
iteration of the AL loop, the human expert is requested to travel
to the location of the queried sample (e.g., tree) and provide its
label. The sample x is then removed from the set of unlabeled
samples U and added to the training set D. At the next iteration,
the classifier is retrained using the updated training set, and the
query function is called again. In this way, the CSAL method
effectively guides the human expert in the field survey. Note
that the looking-ahead procedure is used in selecting only the
next sample (not in planning the whole future path in advance),
and it is repeated at each iteration of the AL loop.

Algorithm 3 CSAL with lookahead

1: Train the classifier using the initial training set D
2: Initialize the state s to the last collected sample
3: repeat
4: x = Query(s,U , H) or x = Query(s,U , B)
5: The user labels the selected sample x with y
6: D ← D ∪ {(x, y)}, U ← U − {x}, s ← x
7: Retrain the supervised classifier with D
8: until a stopping criterion is satisfied
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Fig. 3. Map of the study area showing the location of the 23 sample plots and
hyperspectral data coverage. Inset map shows the location of the study area (red
rectangle) in the map of northwestern Europe.

V. DATA SET DESCRIPTION

We applied the proposed CSAL methods to the optimization
of the ground sample collection for tree species classification in
the context of a real case study. In this section, we describe the
data set that we used for our experiments. The same area and
data set were previously used in [8].

A. Study Area

The study area is located in the municipality of Aurskog-
Høland, southeastern Norway, 120–390 m above sea level
(Fig. 3). Approximately three quarters of the total land area
(890 km2) is characterized by managed productive forests
dominated by Pinus sylvestris L. (Scots pine; 50%), Picea abies
(L.) Karst (Norway spruce; 35%), and deciduous tree species
(15%), such as Betula spp. L. (birch) and Populus tremula L.
(aspen).

B. RS Data

Hyperspectral images were acquired simultaneously with
two different sensors: the HySpex VNIR-1600 and HySpex
SWIR 320i sensors. The visible and near infrared (VNIR)
sensor acquired data for 160 bands between 400 and 990
nm, with a spatial resolution of 0.4 m. The short-wavelength
infrared (SWIR) sensor acquired data for 147 bands between
930 and 1700 nm, with a spatial resolution of 1.5 m. The
sensors were mounted on a Piper Chieftain PA-31-350 fixed-
wing aircraft flying at an altitude of 1500 m above ground level
at a speed of 70 m/s. The two hyperspectral sensors are both
line (pushbroom) scanners. Three hyperspectral images were
acquired with each sensor.

Fig. 4. False color representation of HySpex VNIR-1600 data acquired over
a plot. The manually delineated ITCs appear in yellow.

C. Field Data

Tree species labels were collected through ground surveys
on the basis of 23 circular sample plots. Among them, 11 were
located in spruce-dominated forest, and the remaining 12 were
in pine-dominated forest. The size of each plot was 1000 m2,
except for one located in young forest, where the plot size
was reduced to 500 m2 due to a very high stem density. Tree
species, DBH, and tree coordinates were recorded for all trees
with DBH ≥ 5 cm. For the purpose of this study, only the
annotated tree species and coordinates are used. Tree positions
were determined by measuring the azimuth and distance of
the trees from the plot center with a total station (Topcon
SokkiaSET5F). Plot center coordinates were determined using
differential Global Navigation Satellite Systems with two
Topcon Legacy E+ receivers as base and rover receivers,
respectively. A total of 2407 trees were measured inside the
23 plots. The field surveys took approximately one day per plot
involving the work of two experts.

D. Data Preprocessing

The hyperspectral images were orthorectified using a digital
terrain model, atmospherically corrected [34] and normalized
[35] in order to reduce the spectral differences among the
images. The SWIR images were resampled at 0.4 m in order
to have the same spatial resolution of the VNIR ones.

Starting from the tree positions measured on the ground,
ITCs were manually identified and delineated on the hyperspec-
tral data (see Fig. 4). A total of 1001 out of the 2407 field-
measured trees were identified in the hyperspectral images. It
is worth noting that, during the field measurements, also trees
located in the undercanopy were measured, and thus, these
trees were not visible in the hyperspectral data. The ITCs were
grouped into the following classes according to tree species:
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TABLE I
NUMBER OF LABELED ITCs

1) pine; 2) spruce; 3) birch; and 4) other species. The samples
were divided into a training set and a test set (see Table I). The
two sets were defined in order to have a similar composition
in terms of tree species and spatial distribution within the
images. The values of the pixels inside each ITC segment were
averaged in order to obtain a single spectral signature for each
ITC. All of the available bands were used in the classification
process.

VI. EXPERIMENTAL ANALYSIS

In this section, we present the experimental analysis that
we carried out with the proposed CSAL method using both
of the proposed strategies: 1) query with bounded horizon and
2) query with constrained budget.

A. Experimental Setting

The annotation cost Θ(st, x) was defined as the sum of two
terms: 1) the traveling cost T for reaching the location of the
tree x (starting from the location of the last annotated tree xt)
and 2) the labeling cost L for assigning the correct label to it

Θ(st, x) = T (xt, x) + L(x). (5)

The traveling cost T considers the traveling time required by
the human expert to reach the location of x, depending on the
distance from xt and the speed of the considered transportation
mode. Two transportation modes are considered: by car or
foot. A precise evaluation of the traveling cost may also take
into account fuel expenses as well as any other costs. The
labeling cost L defines the cost of acquiring the right label
for x once the human expert is already on the site. This cost
does not depend on previously collected samples, and here,
we assume that it is the same for all of the samples, i.e.,
L(x) = L. In the most general framework, the different costs
may be expressed in monetary terms. For simplicity, in our
experiments, we expressed them in terms of elapsed time. We
considered a labeling time L of 10 min, and the traveling time T
was calculated according to the distance between samples and
the speed of the transportation mode. The human expert walks
from a tree to the next one if they are both in the same plot,
whereas he travels by car for moving to another plot.

It is worth noting that the considered annotation cost Θ(st, x)
represents a prediction of the expected real cost for labeling
sample x. Several unexpected factors related to the acces-
sibility of certain areas may affect the real annotation cost.
Nevertheless, reasonable estimation of the annotation cost can
be obtained by considering the distance between samples,
the mean traveling speed, and some prior information about
the considered geographical area. One can also consider the

altitude of the samples for obtaining a better estimate of the
traveling cost by considering a digital elevation model of the
area. Since the area considered in our experiments is relatively
flat, the altitude information was not taken into account.

The classification was performed using an SVM with a
one-against-all (OAA) multiclass architecture. Feature vectors
associated with ITCs contain the VNIR and SWIR spectral
channels as well as the position coordinates. All of the exper-
iments were performed in ten trials with initial training sets
made up of 54 labeled samples (ITCs) randomly selected from
three adjacent plots. Here, 456 and 439 samples taken from the
other 20 plots were used as pool U and test set, respectively.
The model selection of the SVM was carried out on the basis of
the accuracy obtained on a validation set made up of 52 samples
taken from the same plots of the initial training sets.

The prediction utility was calculated by considering a trade-
off between uncertainty and diversity. The uncertainty criterion
was evaluated by considering a confidence measure defined for
the multiclass case as

c(x) = f1(x)− f2(x) (6)

where f1(x) and f2(x) are the first and second highest output
scores of the binary SVMs in the OAA architecture. Querying
the sample that minimizes c(x) results in the selection of the
closest sample to the boundary between the two most probable
classes. The diversity was computed by considering the kernel
cosine-angular similarity between points [16]

k∗(x, xi) =
k(x, xi)√

k(x, x)k(xi, xi)
(7)

where k(·, ·) is a positive semidefinite kernel function. In our
experiments, we adopted an RBF kernel function for both the
diversity assessment and the SVM classification.

B. Query With Bounded Horizon: Results

In the experiments with the bounded-horizon query, the
immediate prediction utility was computed as

u(st, x) = −
(
(1− ρ)c(x) + ρ

t∑
i=1

k∗(x, xi)

)
(8)

where ρ ∈ [0, 1] tunes the trade-off between uncertainty and
diversity and st = x0 . . . xt. The reward function was finally
calculated as

R(st, xt+1) = (1− λ)u(st, xt+1)− λΘ(st, xt+1) (9)

with λ ∈ [0, 1]. The values of c(x),
∑t

i=1 k
∗(x, xi), and

Θ(st, xt+1) for all samples in the pool were normalized be-
tween 0 and 1 to make them comparable.

It is worth noting that a full exploration of the general deci-
sion tree as described in Algorithm 1 can be computationally
prohibitive (for a large pool and horizon), and moreover, we
should consider that the query function is run in real time,
i.e., while the human expert is on the field. For this reason,
one should use a very fast heuristic to explore the decision
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Fig. 5. Average OA versus the number of labeled samples added to the initial
training set.

Fig. 6. Average OA versus the time spent by the human annotator to travel
and collect sample labels in the field.

tree. Here, we considered a heuristic for pruning samples from
the decision tree in order to speed up the query function. The
heuristic is based on restricting the search to the set of samples
with the m highest immediate rewards.

We compared the results of the proposed CSAL method us-
ing the query with bounded horizon (CSAL horizon lookahead)
with the following baseline methods: 1) random selection (ran-
dom); 2) selection by minimum confidence (uncertainty); 3) se-
lection of the closest geographical sample (minimum distance);
and 4) myopic CSAL (myopic CSAL horizon). One sample
is selected for labeling at each iteration. The myopic CSAL
selects the next sample according to just the immediate reward,
as defined in (9), without looking ahead. This is equivalent to

Fig. 7. Time spend by the human expert in the annotation process versus the
number of collected samples.

the proposed query with bounded horizon imposing H = 1.
Note that baselines 2 and 3 are special cases of the myopic
CSAL by setting λ = 1 and λ = 0, respectively. Selection of
the closest geographical sample represents a simulation of tra-
ditional (passive) sampling procedures, which are not making
use of the learner’s feedback. For the CSAL methods (with
and without lookahead), the value of the parameter λ, tuning
the trade-off between prediction utility and annotation cost,
was set to 0.2. For the proposed CSAL with lookahead, we
set the planning horizon H = 3, the discount factor γ = 0.9,
the parameter tuning the trade-off between uncertainty and
diversity ρ = 0.8, and the parameter for heuristic pruning of
the tree search m = 100.

Fig. 5 shows the obtained curves of the overall accuracy
(OA), averaged over the ten trials starting from the initial
training sets, versus the number of labeled samples added to the
original training set. Not surprisingly, the standard AL method
based on uncertainty (i.e., not considering the annotation cost)
resulted in the best performances in this case. However, it is
more important to consider Fig. 6, which reports the average
OA with respect to the time spent by the human annotator to
travel and collect sample labels in the field. The learning curves
are reported up to 80 h of field work in order to highlight
the difference between the proposed method and the other
baselines. These results show that the proposed method sub-
stantially improves the classification accuracy of the considered
baselines with respect to the annotation cost. The myopic CSAL
improves the other baselines; CSAL with lookahead further
improves the classification accuracy with respect to the myopic
method. The advantage is particularly evident in the first 30 h
of the simulations. It is worth noting that the proposed CSAL
method leads to the top accuracy of 92.6% in 50 simulated
hours, whereas a traditional approach like minimum distance
requires approximately 80 h to get the same accuracy. Since
the minimum distance approach reasonably represents how the
real field campaigns are carried out with a standard sampling
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Fig. 8. Average OA versus the number of labeled samples added to the initial
training set.

approach, the difference between the learning curve obtained
with that approach and of the proposed CSAL method gives
a quantitative evaluation of the potential improvement that the
proposed method can offer in real applications. Uncertainty-
based method and random selection take much longer to con-
verge to the top accuracy (150 and 340 h, respectively). Fig. 7
reports the graphs of the time spend by the human expert
to travel and collect samples versus the number of collected
samples. As one can observe from these graphs, using the
uncertainty-based method and random selection, the human
expert takes, in average, much longer to reach the location of
the next sample, leading to very high traveling costs.

C. Query With Constrained Budget: Results

In the experiments with the constrained-budget query, the
immediate prediction utility was computed as

u(st, x) = max

(
0, 1− c(x)− ρ

t∑
i=1

k∗(x, xi)

)
(10)

where ρ ∈ [0, 1] tunes the trade-off between uncertainty and
diversity and st = x0 . . . xt. The reward was defined as the pre-
diction utility, i.e., R(st, xt+1) = u(st, xt+1). This particular
definition of the prediction utility was considered in order to
have only positive reward values and for stopping the recursive
tree exploration when R(st, xt+1) = 0. This results in an addi-
tional stopping criterion for the lookahead planning that speeds
up the computation of Algorithm 2.

We compared the results of the proposed CSAL method
using the query with constrained budget (CSAL budget looka-
head) with the following baseline methods: 1) random selection
(random); 2) selection by maximum uncertainty (uncertainty);
3) selection of the closest geographical sample (minimum
distance); and 4) myopic CSAL (myopic CSAL budget). One
sample is selected for labeling at each iteration. The myopic

Fig. 9. Average OA versus the time spent by the human annotator to travel
and collect sample labels in the field.

Fig. 10. Average PAs of the classes obtained with the proposed query with
constrained budget versus the time spent by the human annotator to travel and
collect sample labels in the field.

CSAL method selects the most uncertain sample among the
ones whose immediate cost does not exceed the budget B. We
set B = 30 min for both the myopic and nonmyopic CSAL
methods. We set the tuning parameter ρ = 0.3.

Fig. 8 shows the obtained average OA versus the number
of labeled samples added to the original training set. Fig. 9
reports the average OA as a function of the time spent by
the human annotator to collect sample labels in the field.
The obtained learning curves confirm the effectiveness of the
proposed method, which results in significantly higher classi-
fication accuracies with respect to the traveling cost compared
with the considered baselines. We observe that, also in this case,
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TABLE II
AVERAGE PAs AND OAs OBTAINED AT DIFFERENT TIMES WITH THE PROPOSED METHOD CSAL BUDGET WITH LOOKAHEAD (CSLA) AND THE

MYOPIC CASE (CSMY), AVERAGED OVER THE TEN TRIALS (MEAN VALUES AND STANDARD DEVIATIONS ARE REPORTED)

the proposed CSAL method leads to an OA of 92% in 50 h
of field work, whereas a traditional approach like minimum
distance requires approximately 80 h to reach the same accu-
racy. Fig. 10 shows the averaged producer’s accuracies (PAs)
of the classes obtained with the proposed CSAL method with
lookahead versus the time spent by the human annotator for the
sample collection. Table II reports the averaged accuracies of
the classes obtained at different times with the proposed method
CSAL with lookahead and the myopic strategy. Accuracies are
reported in terms of PAs for the single classes [36] and OA
(mean values and standard deviations are reported). Results
show that the proposed method leads, in general, to better
accuracies with a lower standard deviation on the ten trials. The
practical usefulness of the proposed method in the context of
tree species classification is remarkable. As underlined in the
introduction, a reduction of the time for the field measurements
can noticeably reduce the inventory costs. From Table II, it is
clear that, if only a detailed classification of pine and spruce
species is needed, 30 h of field work is enough for obtaining
accurate classification results, i.e., PAs higher than 90%. These
two species represent in Norway more than 80% of the total
forest volume [37] and 99% of the total harvested volume [38],
and thus, their proper distinction is very important. The clas-
sification of classes “birch” and “other species” is problematic
because very few samples are available for those classes and the
classifier cannot therefore accurately discriminate them from
the other classes (species different from pine, spruce, and birch
are very rare in boreal forests).

D. Operational Considerations

The choice between the two proposed query functions may
depend on the available prior information that can be used in
setting the free parameters of the methods. In case of using
the query with bounded horizon, the λ parameter can be set
by taking into account prior information about the expected
average traveling cost (time) E{T } and the fixed labeling cost
L. If L 	 E{T }, the effect of using the cost Θ in the query
function becomes negligible. If L 
 E{T }, we expect that
the optimal λ should be closer to one. On the basis of this
observation, a possible heuristic to choose λ is the following:

λ̂ =
E{T }

E{T }+ L . (11)

Fig. 11 reports the learning curves obtained using the query
with bounded horizon setting different values for the parameter
λ. These graphs show that the results are not particularly
sensitive to the parameter value. However, in several real ap-
plications, the query with constrained budget might be more

Fig. 11. Average OA versus the annotation time obtained by the query with
bounded horizon using different values for the trade-off parameter λ.

appropriate. In such a case, the trade-off between immediate
utility and annotation cost should not be fixed in advance. The
value of the budget B can be set not critically by considering
mainly the minimum annotation cost (time) and computational
issues. Fig. 12 reports the learning curves obtained by the query
with constrained budget using different values for B. Better
accuracies are obtained with small values of B because the
estimation of the expected prediction utility becomes obviously
less reliable after several time-steps planned in the future.
Typical values are on the order of few (e.g., two or three) times
the minimum annotation time. The same consideration applies
to the choice of H in the query with bounded horizon (typical
values are two or three in that case). Typical values of the
parameter ρ are between 0.3 and 0.7. However, the choice of
this parameter does not also significantly affect the performance
of the proposed method. This behavior is confirmed by the
graphs reported in Fig. 13, which reports the learning curves of
the proposed CSAL method with budget constraint for different
values of such parameter.

Regarding the selection of the initial training set, several
possible sampling procedures can be adopted, which depends
on the application field. In the specific case of forest inventories,
the field data collection is usually carried out inside field
plots. The initial training samples can therefore be collected by
annotating tree labels from few (e.g., two or three) sample plots.
This is the procedure adopted in our experimental analysis. The
proposed interactive CSAL method is independent from the
sampling strategy adopted for selecting the initial plots. The au-
thors in [39] introduces an unsupervised method for plot or tree
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Fig. 12. Average OA versus the annotation time obtained by the query with
constrained budget using different values of budget B.

Fig. 13. Average OA versus the annotation time obtained by the query with
constrained budget using different values of ρ.

selection that can be adopted as the initial step of the proposed
interactive CSAL method. It is worth noting that the size of the
initial training set is usually substantially smaller than the size
of the training set at convergence. In our experiments, the initial
training set is made up of 52 samples, while the convergence is
reached with approximately 200 training samples. Moreover,
the initial training set is collected from three adjacent plots,
for a cost of 9.2 h of field work (calculated according to the
collection with a minimum distance approach). The size and
the quality of the initial training set are not particularly critical
for the subsequent selection process. We carried out additional
experiments, considering initial trainings sets collected in only
2 adjacent plots (41 labeled samples) corresponding to 7 h of
field work (calculated as in the previous case). Fig. 14 shows the
learning curves obtained by the CSAL with constrained budget
and the baselines, starting from these smaller initial training
sets. From these results, we can observe that the size of the

Fig. 14. Average OA versus the time spent by the human annotator to travel
and collect sample labels in the field. Initial training sets are collected on 2
adjacent plots (41 initial training samples) corresponding to 7 h of field work.

TABLE III
MEAN QUERY AND ANNOTATION TIMES FOR THE CONSIDERED

SELECTION STRATEGIES. QUERY TIMES CONSIDER THE MEAN

COMPUTATIONAL TIME FOR RETRAINING THE SVM WITH THE LAST

LABELED SAMPLE AND FOR SELECTING THE NEXT ONE. THE

ANNOTATION TIMES REFER TO THE MEAN TIME TAKEN BY

THE HUMAN EXPERT TO REACH THE LOCATION OF

THE SELECTED SAMPLE AND TO LABEL IT

initial training set does not affect the convergence capability of
the proposed CSAL method. This result is in agreement with
other studies about AL reported in the literature (e.g., [3], [25],
and [26]).

Table III reports the mean query and annotation times for
the considered selection strategies, respectively. The query time
considers the mean computational time for retraining the SVM
with the last labeled sample and for selecting the next one.
The experiments have been carried out using a laptop computer
with a 2.2-GHz CPU and 8 GB of RAM. The annotation
time refers to the mean time taken by the human expert to
reach the location of the selected sample and to label it. The
computational time required by query with bounded horizon is
obviously higher than the one of the myopic method and the
other competing strategies, but it is still negligible with respect
to the annotation time. The implementation of the query with
constrained budget resulted in a very fast computation. Both
of the proposed methods are therefore suitable (in terms of
computational requirements) for the considered application.



PERSELLO et al.: COST-SENSITIVE ACTIVE LEARNING WITH LOOKAHEAD 6663

VII. CONCLUSION

In this paper, we have proposed a novel CSAL method that
allows one to plan the sequential annotation process in order to
maximize the long-term classification accuracy while minimiz-
ing the total annotation cost. To this end, the AL problem was
modeled in the framework of an MDP. Two possible strategies
to address the optimization problem have been proposed, giving
rise to the definition of two different query functions: 1) query
with bounded horizon and 2) query with limited budget. The
proposed method was applied to the problem of optimizing the
ground sample collection by a human expert for the classifi-
cation of forest tree species using hyperspectral images. The
experimental results show the effectiveness of the proposed
query functions with lookahead and their significative improve-
ments over myopic strategies and other baseline methods. We
have observed that the proposed queries converge to a high
classification accuracy with a significant lower cost compared
to state-of-the-art methods.

It is worth noting that the implementation of the proposed
method in the considered scenario of forest inventories requires
a change in the standard protocols used for ground surveys.
New and more effective protocols can be defined by leveraging
the information of georeferenced hyperspectral images to ex-
tract tree features and coordinates. The information of the tree
coordinates extracted from RS data is generally not considered
in standard protocols but can be effectively considered by
the CSAL method. Field surveys can then be guided by the
proposed strategy to interactively classify the species of the
trees identified in the hyperspectral image with the aid of a
portable computer or a tablet. This may reduce significantly the
costs of the inventory.

In general, the proposed method can be applied to any learn-
ing problem where the cost associated with the annotation of a
given sample depends on the previously labeled samples. This
is the case when annotating a queried sample is an action that
changes the state of a dynamic system, and the cost is a function
of the state of the system. We are currently investigating the use
of the proposed method for different applications.

REFERENCES

[1] B. Settles, “Active Learning Literature Survey,” University of Wisconsin-
Madison, Madison, WI, USA, Comput. Sci. Tech. Rep. 1648, 2009.

[2] S. Rajan, J. Ghosh, and M. M. Crawford, “An active learning approach
to hyperspectral data classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 46, no. 4, pp. 1231–1242, Apr. 2008.

[3] B. Demir, C. Persello, and L. Bruzzone, “Batch-mode active-learning
methods for the interactive classification of remote sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014–1031, Mar. 2011.

[4] T. Brandtberg, T. A. Warner, R. E. Landenberger, and J. B. McGraw, “De-
tection and analysis of individual leaf-off tree crowns in small footprint,
high sampling density LiDAR data from the eastern deciduous forest in
North America,” Remote Sens. Environ., vol. 85, no. 3, pp. 290–303,
May 2003.

[5] J. Holmgren and A. Persson, “Identifying species of individual trees using
airborne laser scanner,” Remote Sens. Environ., vol. 90, no. 4, pp. 415–
423, Apr. 2004.

[6] M. Clark, D. Roberts, and D. Clark, “Hyperspectral discrimination of
tropical rain forest tree species at leaf to crown scales,” Remote Sens.
Environ., vol. 96, no. 3/4, pp. 375–398, Jun. 2005.

[7] M. Dalponte, L. Bruzzone, and D. Gianelle, “Tree species classification
in the Southern Alps based on the fusion of very high geometrical resolu-

tion multispectral/hyperspectral images and LiDAR data,” Remote Sens.
Environ., vol. 123, pp. 258–270, Aug. 2012.

[8] M. Dalponte, H. Ørka, T. Gobakken, D. Gianelle, and E. Næsset, “Tree
species classification in boreal forests with hyperspectral data,” IEEE
Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2632–2645, May 2013.

[9] T. G. Gregoire and H. Valentine, Sampling Strategies for Natural
Resources and the Environment. Boston, MA, USA: Chapman &
Hall/CRC, 2008.

[10] D. D. Lewis and W. A. Gale, “A sequential algorithm for training text
classifiers,” in Proc. 17th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 1994, pp. 3–12.

[11] G. Schohn and D. Cohn, “Less is more: Active learning with support
vector machines,” in Proc. Int. Conf. Mach. Learn., 2000, pp. 839–846.

[12] C. Campbell, N. Cristianini, and A. Smola, “Query learning with
large margin classifiers,” in Proc. 17th Int. Conf. Mach. Learn., 2000,
pp. 111–118.

[13] S. Tong and D. Koller, “Support vector machine active learning with
applications to text classification,” J. Mach. Learn. Res., vol. 2, pp. 45–66,
Mar. 2002.

[14] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,” in
Proc. 5th Annu. Workshop COLT , 1992, pp. 287–294.

[15] N. Roy and A. McCallum, “Toward optimal active learning through sam-
pling estimation of error reduction,” in Proc. Int. Conf. Mach. Learn.,
2001, pp. 441–448.

[16] K. Brinker, “Incorporating diversity in active learning with support vector
machines,” in Proc. Int. Conf. Mach. Learn., 2003, pp. 59–66.

[17] Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang, “Representative sampling for
text classification using support vector machines,” in Proc. 25th ECIR,
2003, pp. 393–407.

[18] H. T. Nguyen and A. Smeulders, “Active learning using pre-clustering,”
in Proc. 21st ICML, New York, NY, USA, 2004, p. 79.

[19] S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu, “Batch mode active learning
and its application to medical image classification,” in Proc. Int. Conf.
Mach. Learn., 2006, pp. 417–424.

[20] Y. Guo and D. Schuurmans, “Discriminative batch mode active learning,”
in Proc. Neural Inf. Process. Syst., 2007, pp. 593–600.

[21] J. Azimi, A. Fern, X. Z. Fern, G. Borradaile, and B. Heeringa, “Batch ac-
tive learning via coordinated matching,” in Proc. Int. Conf. Mach. Learn.,
2012, pp. 1199–1206.

[22] W. Di and M. M. Crawford, “Active learning via multi-view and local
proximity co-regularization for hyperspectral image classification,” IEEE
J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 618–628, Jun. 2011.

[23] D. Tuia, F. Ratle, F. Pacifici, M. Kanevski, and W. Emery, “Active learning
methods for remote sensing image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 47, no. 7, pp. 2218–2232, Jul. 2009.

[24] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Hyperspectral image segmenta-
tion using a new Bayesian approach with active learning,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 10, pp. 3947–3960, Oct. 2011.

[25] W. Di and M. M. Crawford, “View generation for multiview maximum
disagreement based active learning for hyperspectral image classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1942–1954,
May 2012.

[26] C. Persello and L. Bruzzone, “Active learning for domain adaptation in the
supervised classification of remote sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 50, no. 11, pp. 4468–4483, Nov. 2012.

[27] G. Matasci, D. Tuia, and M. Kanevski, “SVM-based boosting of active
learning strategies for efficient domain adaptation,” IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 5, no. 5, pp. 1335–1343,
Oct. 2012.

[28] C. Persello, “Interactive domain adaptation for the classification of remote
sensing images using active learning,” IEEE Geosci. Remote Sens. Lett.,
vol. 10, no. 4, pp. 736–740, Jul. 2013.

[29] A. Liu, G. Jun, and J. Ghosh, “Spatially cost-sensitive active learning,” in
Proc. SIAM Int. Conf. Data Mining, 2009, pp. 814–825.

[30] B. Demir, L. Minello, and L. Bruzzone, “A cost-sensitive active
learning technique for the definition of effective training sets for super-
vised classifiers,” in Proc. IEEE Int. Conf. Geosci. Remote Sens., 2012,
pp. 1781–1784.

[31] M. L. Puterman, Markov Decision Processes Discrete Stochastic Dynamic
Programming. Hoboken, NJ, USA: Wiley, 2005.

[32] W. Powell, Approximate Dynamic Programming: Solving the Curses of
Dimensionality. Hoboken, NJ, USA: Wiley, 2007.

[33] Y. Mansour and S. Singh, “On the complexity of policy iteration,” in Proc.
15th Int. Conf. Uncertainty Artif. Intell., 1999, pp. 401–408.

[34] L. Bernstein, R. Sundberg, R. L. T. Perkins, and A. Berk, “A new method
for atmospheric correction and aerosol optical property retrieval for
VIS-SWIR multi- and hyperspectral imaging sensors: QUAC (QUick



6664 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 10, OCTOBER 2014

Atmospheric Correction),” in Proc. IEEE Int. Conf. Geosci. Remote Sens.,
2005, pp. 3549–3552.

[35] B. Yu, I. Ostland, P. Gong, and R. Pu, “Penalized discriminant analysis
of in situ hyperspectral data for conifer species recognition,” IEEE Trans.
Geosci. Remote Sens., vol. 37, no. 5, pp. 2569–2577, Sep. 1999.

[36] R. G. Congalton and K. Green, Assessing the Accuracy of Remotely
Sensed Data: Principles and Practices. Boca Raton, FL, USA: CRC
Press, 1999.

[37] J. Y. Larsson and G. Hylen, “Statistics of forest conditions and forest
resources in Norway,” Viten fra Skog og landskap, 2007. [Online]. Avail-
able: http://www.skogoglandskap.no/filearchive/viten-1-07.pdf

[38] Statistics Norway, “Skogstatistikk 2008,” Oslo-Kongsvinger, 2008.
[39] M. Dalponte, L. T. Ene, H. Ørka, T. Gobakken, and E. Næsset, “Unsu-

pervised selection of training plots and trees for tree species classification
with hyperspectral data,” in Proc. IEEE Int. Conf. Geosci. Remote Sens.,
2013.

Claudio Persello (S’07–M’11) received the Laurea
(B.S.) and Laurea Specialistica (M.S.) degrees in
telecommunications engineering and the Ph.D. de-
gree in communication and information technologies
from the University of Trento, Trento, Italy, in 2003,
2005, and 2010, respectively.

He is currently a Marie Curie Research Fellow
with the project “Machine learning techniques for
the analysis and classification of the last generation
of remote sensing data,” supported by the Euro-
pean Commission and the Province of Trento. From

September 2011 to June 2013, he conducted his research activity at the
Max Planck Institute for Intelligent Systems, department of Empirical Infer-
ence, Tübingen, Germany. Since June 2013, he is with the Remote Sensing
Laboratory, Department of Information Engineering and Computer Science,
University of Trento. His main research interests are on the analysis of remote
sensing data, machine learning, image classification and pattern recognition.

Dr. Persello is a Referee for the IEEE TRANSACTIONS ON GEOSCIENCE

AND REMOTE SENSING, IEEE GEOSCIENCE AND REMOTE SENSING LET-
TERS, IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING,
IEEE TRANSACTIONS ON IMAGE PROCESSINg, IEEE JOURNAL OF SE-
LECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENS-
ING, Canadian Journal of Remote Sensing, Pattern Recognition Letters, and
Remote Sensing. He served on the Scientific Committee of the Sixth Interna-
tional Workshop on the Analysis of Multi-temporal Remote-Sensing Images
(MultiTemp 2011). His Ph.D. thesis was awarded with the prize for the best
Ph.D. thesis on pattern recognition published between 2010 and 2012 by the
GIRPR, i.e., the Italian branch of the International Association for Pattern
Recognition (IAPR).

Abdeslam Boularias received the engineering de-
gree in computer science from the École Na-
tionale Supérieure d’Informatique (ESI), Algiers,
Algeria, in 2004, the Master’s degree in computer
science from Paris-Sud University, Orsay, France, in
2005, and the Ph.D. degree from Laval University,
Quebec, Canada, in 2010.

He has been a Postdoctoral Fellow with Carnegie
Mellon University, Pittsburgh, PA, USA, since May
2013. During his studies at Paris-Sud, he was a
Research Assistant with the INRIA Saclay Institute,

where he worked on fault tolerance in grid computing. In January 2006, he
joined the group of Prof. B. Chaib-draa at Laval University, Quebec, QC,
Canada, where he worked on decision making in partially observable dynamical
systems. From August 2010 to April 2013, he was a Research Scientist
with the Empirical Inference Department, Max Planck Institute for Intelligent
Systems, Tübingen, Germany. His main research interests include planning
under uncertainty, reinforcement learning, and robotics.

Michele Dalponte received the M.S. degree in
telecommunications engineering and the Ph.D. de-
gree in information and communication technologies
from the University of Trento, Trento, Italy, in 2006
and 2010, respectively.

He is currently a Marie-Curie COFOUND Outgo-
ing Postdoc grantholder, and he is with the Forests
and Biogeochemical Cycles Group, Research and
Innovation Center, Edmund Mach Foundation, Italy,
and the Department of Ecology and Natural Re-
source Management (INA), Norwegian University

of Life Sciences, Ås, Norway. His work has been published in international
journals and has been presented at international conferences. He is a reviewer
for many remote sensing journals. His research interests are in the field of
remote sensing, particularly the analysis of hyperspectral, multispectral, and
light detection and ranging data for forest monitoring.

Terje Gobakken received the M.Sc. and Ph.D. de-
grees from the Agricultural University of Norway,
Ås, Norway, in 1995 and 2001, respectively.

He has been with the Norwegian National Forest
Inventory, and he is currently a Professor with the
Norwegian University of Life Sciences, Ås. He is
teaching courses in GIS and long-term forest plan-
ning. His major field of research is forest inventory
and airborne light detecting and ranging.

Erik Næsset received the M.Sc. degree in forestry
and the Ph.D. degree in forest inventory from the
Agricultural University of Norway, Ås, Norway, in
1983 and 1992, respectively.

He has played a major role in developing and
implementing airborne light detection and ranging
(LiDAR) in operational forest inventory. He has
been the leader and coordinator of more than 50
research programs funded by the Research Council
of Norway, the European Union, and private forest
industry. He has published more than 100 papers

in international peer-reviewed journals. His teaching includes lectures and
courses in forest inventory, remote sensing, geographic information systems,
forest planning, and sampling techniques. His major field of research is forest
inventory and remote sensing, with particular focus on operational management
inventories, sample surveys, photogrammetry, and airborne LiDAR.

Bernhard Schölkopf was born in Stuttgart,
Germany, on February 20, 1968. He received the
M.Sc. degree in mathematics from the University
of London, London, U.K., in 1992, the Diploma in
physics from Eberhard-Karls-Universität, Tübingen,
Germany, in 1994, and the Ph.D. degree in computer
science from the Technical University Berlin, Berlin,
Germany, in 1997.

He was a Researcher at AT&T Bell Laboratories,
at GMD FIRST, Berlin, at the Australian National
University, Canberra, Australia, and at Microsoft

Research Cambridge (U.K.). His scientific interests are machine learning and
perception.

Dr. Schölkopf became a Scientific Member of the Max Planck Society
in July 2001. He received the J. K. Aggarwal Prize of the International
Association for Pattern Recognition in 2006, he received the Max Planck
Research Award in 2011, and he was awarded the Academy Prize 2012 of
the Berlin-Brandenburg Academy of Sciences and Humanities. He received the
Lionel Cooper Memorial Prize from the University of London in 1992, and
he won the annual dissertation prize of the German Association for Computer
Science (GI).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


