
Learning to Slide Unknown Objects
with Differentiable Physics Simulations

Changkyu Song and Abdeslam Boularias
Department of Computer Science, Rutgers University

Abstract—We propose a new technique for pushing an un-
known object from an initial configuration to a goal configuration
with stability constraints. The proposed method leverages recent
progress in differentiable physics models to learn unknown
mechanical properties of pushed objects, such as their dis-
tributions of mass and coefficients of friction. The proposed
learning technique computes the gradient of the distance between
predicted poses of objects and their actual observed poses, and
utilizes that gradient to search for values of the mechanical
properties that reduce the reality gap. The proposed approach
is also utilized to optimize a policy to efficiently push an object
toward the desired goal configuration. Experiments with real
objects using a real robot to gather data show that the proposed
approach can identify mechanical properties of heterogeneous
objects from a small number of pushing actions.

I. INTRODUCTION

Nonprehensile manipulation of objects is a practical skill
used frequently by humans to displace objects from an initial
configuration to a desired final one with a minimum effort. In
robotics, this type of manipulation can be more advantageous
than the traditional pick-and-place approach when an object
cannot be easily grasped by the robot, due to the design of
the end-effector and the size of the object, or the obstacles
surrounding the manipulated object. For example, combined
pushing and grasping actions have been shown to succeed
where traditional grasp planners fail, and to work well under
uncertainty [18, 16, 27, 28, 26, 44, 49].

The mechanics of planar pushing was extensively explored
in the past [37]. Large datasets of images of planar objects
pushed by a robot on a flat surface were also recently
presented [41, 35]. Recent techniques for planar sliding me-
chanics focus on learning data-driven models for predicting
the motions of the pushed objects in simulation. While this
problem can be solved to a certain extent by using generic end-
to-end machine learning tools such as neural networks [35],
model identification methods that are explicitly derived from
the equations of motion are generally more efficient [53].
A promising new direction is to directly differentiate the
prediction error with respect to the model of the object’s
mechanical properties, such as its mass and friction distri-
butions, and to use standard gradient descent algorithms to
search for values of the properties that reduce the gap between
simulated motions and observed ones. Unfortunately, most
popular physics engines do not natively provide the derivatives
of the predicted poses [19, 2, 4, 1, 3], and the only way
to differentiate them is through numerical finite differences,
which are expensive computationally.

t=0 t=1 t=2 t=3

Fig. 1. Robotic setup used in the experiments. In this scenario, the robot
pushes a hammer into a desired final pose through two consecutive pushes,
one on each side. The choice of contact points and pushing directions is non-
trivial as it depends on the mass distribution and the friction coefficients of
different parts of the object, which are unknown a priori. This work proposes
a method for identifying these parameters from a small number of observed
motions of the object.

In the present work, we propose a method for safely sliding
an unknown object from an initial configuration to a target
one. The proposed approach integrates a model identification
algorithm with a planner. To account for non-uniform surface
properties and mass distributions, the object is modeled as a
large set of small cuboids that may have different material
properties and that are attached to each other with fixed rigid
joints. A simulation error function is given as the distance
between the centers of the objects in simulated trajectories and
the true observed ones. The gradient of the simulation error is
used to search for the object’s mass and friction distributions.

The main contribution is the derivation of the analytical
gradient of the simulation error with respect to the mass and
friction distributions using the proposed cuboid representation
of objects. The second contribution is the use of the derived
analytical gradients for identifying models of unknown objects
by using a robotic manipulator, and demonstrating the com-
putational and data efficiency of the proposed approach. The
last contribution is the use of the proposed integrated method
for pre-grasp sliding manipulation of thin unknown objects.

II. RELATED WORK

Algorithms for Model-based reinforcement learning explic-
itly learn the unknown dynamics, often from scratch, and
search for an optimal policy accordingly [15, 31, 46, 51, 5].
The unknown dynamics are often modeled using an off-the-
shelf statistical learning algorithm, such as a Gaussian Process

(GP) [34, 14, 9, 36, 7, 43], or a neural network [42, 10, 20, 21].
This approach was recently used to collect images of pushed
objects and build models of their motions [30, 34, 40, 35].
While the proposed method belongs to the category of model-
based RL, it differs from most related methods by the explicit
use of the dynamics equations, which drastically improves its
data-efficiency. The identified mass distribution can also be
used to predict the balance and stability of the object in new
configurations that are not covered in the training data. For
instance, a GP or a neural net cannot predict if an object
remains stable when pushed to the edge of a support table,
unless such an example is included in the training data, with
the risk dropping the object and losing it.

The mechanics of pushing was explored in several past
works [37, 33, 32, 25, 17, 50, 54, 52, 48], from both a theoreti-
cal and algorithmic point of view. Notably, Mason [37] derived
the voting theorem to predict the rotation and translation of an
object pushed by a point contact. A strategy for stable pushing
when objects remain in contact with an end-effector was
also proposed in [33]. Yoshikawa and Kurisu [48] proposed
a regression method for identifying the support points of a
pushed object by dividing the support surface into a grid and
approximating the measured frictional force and torque as the
sum of unknown frictional forces applied on the grid’s cells. A
similar setup was considered in [32] with a constraint to ensure
positive friction coefficients. The limit surface is a convex
set of all friction forces and torques that can be applied on
an object in quasi-static pushing. The limit surface is often
approximated as an ellipsoid [25], or a higher-order convex
polynomial [50, 54, 52]. An ellipsoid approximation was also
used to simulate the motion of a pushed object to perform
a push-grasp [17]. In contrast with our method, these works
identify only the friction parameters, and assume that the mass
distribution is known or irrelevant in a quasi-static regime.

There has been a recent surge of interest in developing
natively differentiable physics engines [13, 6]. A combination
of a learned and a differentiable simulator was used to predict
effects of actions on planar objects [29], and to learn fluid
parameters [45]. Differentiable physics simulations were also
used for manipulation planning and tool use [47]. Recently,
it has been observed that a standard physical simulation,
formulated as a Linear Complementary Problem (LCP), is
also differentiable and can be implemented in PyTorch [12].
In [39], a differentiable contact model was used to allow for
optimization of several locomotion and manipulation tasks.

III. PROBLEM SETUP AND NOTATION

We consider the problem of displacing a rigid object on
a flat homogeneous surface from an initial pose x0 to a
desired final pose xdT . The object has an unknown shape and
material properties. We assume that a depth-sensing camera
provides a partial 3D view of the object. The partial view
contains only the object’s upper surface. A 3D shape is
then automatically constructed by assuming that the occluded
bottom side is flat. Most of the objects used in our experiments
are not flat. However, the autonomously learned friction model

simply assigns near-zero friction coefficients to the regions
of the bottom surface that do not actually touch the tabletop.
Thus, learned near-zero friction forces compensate for wrongly
presumed flat regions in the occluded bottom part of the object.

We approximate the object as a finite set of small cuboids.
The object is divided into large number of connected cells
1, 2, . . . , n, using a regular grid structure. Each cell i has
its own local mass and coefficient of friction that can be
different from the other cells. The object’s pose xt at time
t ∈ [0, T] is a vector in [SE(2)]n corresponding to the
translation and rotation in the plane for each of the n cells.
In other terms, xt = [p1x,t, p

1
y,t, θ

1
t , . . . , p

n
x,t, p

n
y,t, θ

n
t]
T , where

(pix,t, p
i
y,t) is the ith cell’s 2D position on the surface, and θit

is its angle of rotation. Similarly, we denote the object’s gen-
eralized velocity (a twist) at time t by ẋt = [ṗix,t, ṗ

i
y,t, θ̇

i
t]
n
i=0,

where (ṗix,t, ṗ
i
y,t) is the ith cell’s linear velocity on the

surface, and θ̇it is its angular velocity. The object’s mass
matrix M is a diagonal 3n × 3n matrix, where the diag-
onal is [I1,M1,M1, I2,M2,M2, . . . , In,Mn,Mn], Ii is
the moment of inertia of the ith cell of the object, and
Mi is its mass. Ii = 1

6Miw
2 where w is the width

of a cuboid. µ is a 3n × 3n diagonal matrix, where the
diagonal is [µ1, µ1, µ1, µ2, µ2, µ2, . . . , µn, µn, µn]. µi is the
coefficient of friction between the ith cell of the object and
the support surface. We assume that: ∀i ∈ {1, . . . , n} :
µi ∈ [0, µmax], where µmax is a given upper bound. An
external generalized force (a wrench) denoted by F is an
1×3n vector [f1x , f

1
y , τ

1, . . . , fnx , f
n
y , τ

n]T , where [f ix, f
i
y] and

τn are respectively the force and torque applied on cell i.
External forces are generated from the contact between the
object and a fingertip of the robotic hand used to push the
object. We assume that at any given time t, at most one
cell of the object is in contact with the fingertip. Therefore,
F = [0, 0, 0, . . . , f

c(t)
x , f

c(t)
y , τ c(t), . . . , 0, 0, 0]T where c(t) ∈

{0, . . . , n} is the index of the contacted cell at time t.
A ground-truth trajectory T g is a state-action sequence

(xg0, ẋ
g
0, F0, . . . , x

g
T−1, ẋ

g
T−1, FT−1, x

g
T , ẋ

g
T), wherein

(xgt , ẋ
g
t) is the observed pose and velocity of the pushed

object, and Ft is the external force applied at time t, as
defined above. A corresponding simulated trajectory T
is obtained by starting at the same initial state x̂0 in the
corresponding real trajectory, i.e., x̂0 = x0, and applying
the same control sequence (F0, F1, . . . , FT−1). Thus, the
simulated trajectory T results in a state-action sequence
(xg0, ẋ

g
0, F0, x1, ẋ1, F1, . . . , xT−1, ẋT−1, FT−1, xT , ẋT),

where xt+1 = xt + ẋtdt is the predicted next pose. Velocity
ẋt is a vector corresponding to translation and angular
velocities in the plane for each of the n cells, it is predicted
in simulation as ẋt+1 = V (xt, ẋt, Ft,M, µ). The goal is to
identify mass distribution M and friction map µ that result
in simulated trajectories that are as close as possible to the
real observed ones. Therefore, the objective is to solve the
following optimization problem,

(M∗, µ∗) = argmin
M,µ

loss(M, µ), (1)

loss(M, µ)
def
=

T−2∑
t=0

‖xgt+2 −
(
xgt+1 + V (xgt , ẋ

g
t , Ft,M, µ)dt

)
‖2.

Since xt is a vector containing all cells’ positions, the loss is

0
0
ρ
ξ

+

M J Te (xt) J Tf (ẋt) 0

Je(xt) 0 0 0
Jf (ẋt) 0 0 −I

0 0 I 0

−ẋt+dt
λe
λf
γ

 =

−Mẋt − dtFt

0
0

µdiag(M)

 s.t.
[
ρ
ξ

]
≥ 0,

[
λf
γ

]
≥ 0,

[
ρ
ξ

] [
λf
γ

]
= 0

Fig. 2. Equations of Motion as a Linear Complementarity Problem (LCP)

the sum of distances between each cell’s ground-truth pose and
its predicted pose, which is equivalent to the average distance
(ADD) metric as proposed in [24]. In the following, we explain
how velocity function V is computed.

IV. FORWARD SIMULATION

We adopt here the formulation presented in [11, 8, 12]. We
adapt and customize the formulation to exploit the proposed
grid-structure representation, and we extend it to include fric-
tional forces between a pushed object and a support surface.
The transition function is given as ẋt+1 = xt + ẋtdt where
dt is the duration of a constant short time-step. Velocity ẋt
is a function of force Ft and mechanical parameters M and
µ. To find ẋt+1, we solve the system of equations of motion
that we present in Figure 2, where xt and ẋt are inputs, [ρ, ξ]
are slack variables, [ẋt+dt, λe, λf , γ] are unknown vectors, and
[M, µ] are hypothesized mass and friction matrices. diag(M)
is a 1× 3n vector corresponding to the main diagonal of M.
Je(xt) is a global Jacobian matrix of all the adjacency

constraints in the grid structure. These constraints ensure that
the different cells of the object move together with the same
velocity. Je(xt) is an m×n matrix where n is the number of
cells, and m is the number of pairs of adjacent cells.

Je(xt) =

J 1,1
e (xt) . . . J 1,n

e (xt)
... . . .

...
Jm,1e (xt) . . . Jm,ne (xt)

 ,
If cell i, whose four sides have length l, is one of the two
adjacent cells in the pair indexed by k, then

J k,ie (xt) =

[
− l

2
sin θit 1 0

l
2
cos θit 0 1

]
.Else,J k,ie (xt) =

[
0 0 0
0 0 0

]
.

λe is a 2m×1 variable vector that is multiplied by the Jacobian
Je(xt) to generate the vector of impulses J Te (xt)λe, which
are time-integrals of internal forces that preserve the rigid
structure of the object.
Jf (ẋt) is an n×n Jacobian matrix related to the frictional

forces between the object’s cells and the support surface, and
the corresponding constraints. The main block-diagonal of
Jf (ẋt) is [J 1

f (ẋt),J 2
f (ẋt), . . . ,J nf (ẋt)], wherein

J if (ẋt) =

[
−sign(θ̇it) 0 0

0
ṗix,t√

(ṗix,t)
2+(ṗiy,t)

2

ṗiy,t√
(ṗix,t)

2+(ṗiy,t)
2

]
,

and the remaining entries of Jf (ẋt) are all zeros. λf is a 2n×1
variable vector. Jf (ẋt) is multiplied by λf to generate a vector
of the frictional forces and torques between the support surface

and each cell of the object. Jf (ẋt) defines the direction of
the frictional forces and torques as the opposite of its current
velocity ẋt = [θ̇it, ṗ

i
x,t, ṗ

i
y,t]

n
i=1, whereas λf defines the scalar

magnitudes of the frictional forces and torques.
The friction terms have complementary constraints, stated

in Fig. 2. These constraints are used to distinguish between
the cases when the object is moving and friction magnitudes
λf are equal to µdiag(M), and the case when the object
is stationary and the friction magnitudes λf are smaller than
µdiag(M). When the object moves, and assuming that the
change in the direction of motion happens smoothly, we have
Jf (ẋt)ẋt+dt < 0. Therefore, γ > 0 because of the constraints
ρ = Jf (ẋt)ẋt+dt + γI and ρ ≥ 0 and γ ≥ 0. Then
ξ = 0 because of the constraint γξ = 0. We conclude that
λf = µdiag(M) from the constraint ξ + λf = µdiag(M).
Similarly, one can show that λf < µdiag(M) if ẋt+dt = 0.

To simulate a trajectory (x0, ẋ0, F0, x1, ẋ1, F1, . . .), we iter-
atively find velocities ẋt+dt by solving the equations in Fig. 2
where (xt, ẋt, Ft, µ,M) are fixed inputs and the remaining
variables are unknown. The solution is obtained, after an
initialization step, by iteratively minimizing the residuals from
the equations in Fig. 2, using the convex optimizer of [38].

V. MASS AND FRICTION GRADIENTS

To obtain material parameters [M, µ], a gradient descent on
the loss function in Equation 1 is performed. A first approach
to compute the gradient is to use the Autograd library for
automatic derivation in Python. We propose here a second
simpler and faster approach based on deriving analytically the
closed forms of the gradients ∂loss(M,µ)

∂µ and ∂loss(M,µ)
∂M .

Let us denote by (ẋ∗t+1, λ
∗
e, λ
∗
f , γ
∗) the solutions for

(ẋt+1, λe, λf , γ) in the system in Fig. 2. Let us also use
D(x) to denote a matrix that contains a vector x as a main
diagonal and zeros elsewhere. Finally, let diag(M) refer
to the main diagonal of M. In other terms, diag(M) =
[I1,M1,M1, . . . , In,Mn,Mn]. Then,
−Mẋ∗t+1 + J Te (xt)λ∗e + J Tf (ẋt)λ∗f +Mẋt + Ftdt = 0,

−Je(xt)ẋ∗t+1 = 0,

D(λ∗f)(−Jf (ẋt)ẋ
∗
t+1 − γ∗) = 0,

D(γ∗)(λ∗f − µdiag(M)) = 0.

The differentials of the system are given as
−∂Mẋ∗t+1 −M∂ẋt+1 + J Te (xt)∂λe + J Tf (ẋt)∂λf + ∂Mẋt = 0,

−Je(xt)∂ẋt+1 = 0,

D(−Jf (ẋt)ẋ∗t+1 − γ∗)∂λf +D(λ∗f)(−Jf (ẋt)∂ẋt+1 − ∂γ) = 0,

D(λ∗f−µ diag(M))∂γ+D(γ∗)(∂λf−∂µdiag(M)−µ∂ diag(M)) = 0,

wherein ∂xt, ∂ẋt, ∂J Te (xt), ∂J Tf (ẋt) are all zero matrices
and vectors because xt and ẋt are fixed and treated as a
constant since they are set to xgt and ẋgt in Equation 1. Also,
∂Ft = 0 because the applied force at time t is given as a
constant in the identification phase. The differentials can be
arranged in the following matrix form: GX = Y ,

G=

 M J Te (xt) J Tf (ẋt) 0

Je(xt) 0 0 0
D(λ∗f)Jf (ẋt) 0 D(−Jf (ẋt)ẋ∗t+1 − γ∗) −D(λ∗f)

0 0 D(γ∗) D(λ∗f − µdiag(M))

X = [−∂ẋt+1, ∂λe, ∂λf , ∂γ]

T ,

Y = [∂M(ẋ∗t+1 − ẋt),0,0, D(γ∗)∂(µdiag(M))]T .

Also,
∂loss

∂(−ẋt+1)
(−∂ẋt+1) = [

∂loss

∂(−ẋt+1)
,0,0,0]X

= [
∂loss

∂(−ẋt+1)
,0,0,0]G−1Y = [α1, α2, α3, α4]Y,

wherein [α1, α2, α3, α4] is defined as [∂loss
∂(−ẋt+1)

,0,0,0]G−1.
We use the blockwise matrix inversion to compute G−1,[
A B
C D

]−1
=
[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

g(A,B,C,D) h(A,B,C,D)

]
where A and D are square matrices, and D and (A−BD−1C)
are invertible. Notice that to compute [α1, α2, α3, α4], we only
need the upper quarter of G−1, because the remaining raws
will be multiplied by 0. Consequently, terms g(A,B,C,D)
and h(A,B,C,D) do not matter here, and we only need the
terms (A − BD−1C)−1 and −(A − BD−1C)−1BD−1. The
first term (A−BD−1C)−1 corresponds to([

M J T
e (xt)

Je(xt) 0

]
−
[
J T

f (ẋt) 0
0 0

][
D(−Jf (ẋt)ẋ

∗
t+1 − γ

∗) −D(λ∗f)
D(γ∗)D(λ∗f − µ diag(M))

]−1
[
D(λ∗)Jf (ẋt) 0

0 0

])−1
.

In the model identification phase, we only utilize data points
where the object actually moves when pushed by the robot.
Thus, −Jf (ẋt)ẋ∗t+1 − γ∗ = 0 and λ∗f − µdiag(M) = 0, and

(A−BD−1C)−1 =
[
M J Te (xt)
Je(xt) 0

]−1
=
[
X1,1 X1,2

X2,1 X2,2

]
.

Using the blockwise matrix inversion, we find that

X1,1 =M−1+M−1J Te (xt)(−Je(xt)M−1J Te (xt))
−1Je(xt)M−1.

We will see in the following that the remaining matrices,
X1,2, X2,1 and X2,2, will not be needed. Similarly, the top
right of G−1 is −(A−BD−1C)−1BD−1. It is given as

−
([

X1,1 X1,2

X2,1 X2,2

] [
J T

f (ẋt) 0
0 0

] [
0 D−1(γ∗)

−D−1(λ∗f) 0

])
=
[
0 X1,1J T

f (ẋt)D
−1(γ∗)

0 X2,1J T
f (ẋt)D

−1(γ∗)

]
.

Therefore,

G−1 =

X1,1 X1,2 0 X1,1J Tf (ẋt)D−1(γ∗)

X2,1 X2,2 0 X2,1J Tf (ẋt)D−1(γ∗)

X3,1 X3,2 X3,3 X3,4

X4,1 X4,2 X4,3 X4,4

 .

The first term in [α1, α2, α3, α4] is then

α1 =
∂loss

∂(−ẋt+dt)
X1,1,

and the fourth term is

α4 =
∂loss

∂(−ẋt+1)

(
−X1,1J Tf (ẋt)D

−1(γ∗)
)
.

Since ∂loss
∂(−ẋt+1)

(−∂ẋt+1) = [α1, α2, α3, α4][∂M(ẋ∗t+1 −
ẋt),0,0, D(γ∗)∂(µdiag(M))]T , then

∂loss

∂(−ẋt+1)
(−∂ẋt+1) =

∂loss

∂(−ẋt+1)

(
X1,1∂M(ẋ∗t+1 − ẋt)

+
(
−X1,1J Tf (ẋt)D

−1(γ∗)
)
D(γ∗)∂

(
µ diag(M)

))
=

∂loss

∂(−ẋt+1)

(
X1,1∂M(ẋ∗t+1 − ẋt) +

(
−X1,1J Tf (ẋt)

)
∂
(
µ diag(M)

))
In the following, we show how to use the equation above to

derive ∂loss
∂M and ∂loss

∂µ and use them in a coordinate descent
algorithm to identify (M∗, µ∗) from data.

A. Mass Gradient

We calculate ∂loss
∂M while setting ∂µ = 0.

∂loss

∂(−ẋt+1)
(−∂ẋt+1) =

∂loss

∂(−ẋt+1)

(
X1,1∂M(ẋ∗t+1 − ẋt)

+
(
−X1,1J Tf (ẋt)

)
µ∂ diag(M)

)
Then,

∂loss

∂(−ẋt+1)

(−∂ẋt+1)

∂M
=

∂loss

∂(ẋt+1)
X1,1

(
J Tf (ẋt)µ−D(ẋ∗t+1 − ẋt)

)
From the definition of the loss function in Equation 1, we

can see that ∂loss
∂(ẋt+1)

= 2dt
∑T−1
t=1 D

(
xt+1 − xgt+1

)
, wherein

xgt+1 is the observed ground-truth pose of the object and xt+1

is its predicted pose, computed as xt+1 = xgt + ẋ∗t dt. Finally,

∂loss

∂M
= 2dt

T−1∑
t=1

(
D
(
xt+1 − xgt+1

)
X1,1

(
J Tf (ẋt)µ−D(ẋ∗t+1 − ẋt)

))
.

B. Friction Gradient

We calculate ∂loss
∂µ while setting ∂M = 0.

∂loss

∂(−ẋt+1)
(−∂ẋt+1) =

∂loss

∂(−ẋt+1)

(
−X1,1J Tf (ẋt)∂µ diag(M)

)
Then,

∂loss

∂(−ẋt+1)

(−∂ẋt+1)

∂µ
=

∂loss

∂(−ẋt+1)

(
−X1,1J Tf (ẋt)M

)
Finally,

∂loss

∂µ
= 2dt

T−1∑
t=1

(
D
(
xt+1 − xgt+1

)
X1,1J Tf (ẋt)M

)

Algorithm 1: Learning Mass and Friction with Differen-
tiable Physics Simulations

Input: A set of real-world trajectories D = {(xgt , ẋ
g
t , Ft)

T
t=0};

a learning rate αrate; and initial mass matrix M and
friction map µ; Maximum mass and friction
mmax, umax ∈ R ;

Output: Updated mass matrix M and friction map µ
1 repeat
2 foreach T g = (xgt , ẋ

g
t , Ft)

T
t=0 ∈ D do

3 (x0, ẋ0)← (xg0, ẋ
g
0);x1 ← xg1;

4 for t ∈ {0, T − 2} do
5 ẋt+1 ← V (xt, ẋt, Ft,M, µ) ; . Solving the LCP

6 xt+2 ← xt+1 + ẋt+1dt; . Predicting next pose

7 X ←M−1 +

M−1J Te (xt)(−Je(xt)M−1J Te (xt))−1Je(xt)M−1

Wµ ← XJ Tf (ẋt)M;
8 WM ← X

(
J Tf (ẋt)µ−D(ẋt+1 − ẋt)

)
;

9 µ← µ− αrateD
(
xt+1 − xgt+1

)
Wµ;

10 M←M− αrateD
(
xt+1 − xgt+1

)
WM;

11 µ← argminµ′∈[0,Iumax] ‖µ′ − µ‖∞;
12 M← argminM′∈]0,Immax] ‖M′ −M‖∞ ;

. Projecting the gradients

13 end
14 end
15 until timeout;

C. Mass and Friction Identification Algorithm

The gradient of the loss function with respect to the mass
and friction matrices M and µ are used in Algorithm 1 to
search for the ground-truth mass and friction. We present here
the stochastic version where the gradient is computed for each
trajectory separately. The gradient can also be computed in
a batch mode from all trajectories. {(xgt , ẋ

g
t , Ft)

T
t=0} of data

collected by the robot. The mass and friction are increased
or decreased depending on the signs in the error vector(
xt+1−xgt+1

)
, which corresponds to the reality gap. The main

computational bottleneck is in computing weights WM and
Wµ, which is linear in the number of cells n because M
is a diagonal matrix, and Je(xt) is block diagonal thanks to
the regular grid structure of the cells. Finally, we project the
updated mass and friction matrices by rounding their values
down to upper limits mmax, umax ∈ R. The provided upper
limits are the same for every cell in the object, whereas the
mass and friction distributions learned by the algorithm are
highly heterogenous, as will be shown in the experiments.

VI. POLICY GRADIENT

After identifying the mass distribution M and friction map
µ using Algorithm 1, we search for a new sequence of forces
(Ft)

T−1
t=0 to push the object toward a desired terminal goal

configuration xdT . Algorithm 2 summarizes the main steps of
this process. We start by creating a rapidly exploring random
tree (RRT ∗) to find the shortest path from x0 to xdT . While
searching for the shortest path, we eliminate from the tree
object poses that are unstable (based on the identified mass
distribution M) or that are in collision with other objects.
RRT ∗ returns a set of waypoints Xwaypoint. At each iteration

of the main loop of the algorithm, we find the nearest waypoint
in Xwaypoint and search for actions that would push the object
toward it. A pushing force is parameterized by a contact point,
a direction and a magnitude, as discussed in Section III. We
focus here on optimizing the contact point, and we keep the
magnitude constant. The direction of the force is chosen to be
always horizontal. It is given as the opposite of the surface
normal of the object at the contact point, projected down on
the 2D plane of the support surface. This choice is made to
avoid slippages and changes in contact points during a push.

A contact point is always located on the outer side of a
cuboid (cell). Therefore, we limit the search to the outer cells
of the grid. The objective of this search is to select a contact
point that reduces the gap between the predicted pose of the
object after pushing it, and the nearest waypoint xtarget that
has not been reached yet. We select the initial contact point
as the outer cell that is most aligned to the axis x̂ − xtarget,
where x̂ is the estimated center of mass. The gradient of the
gap with respect to the contact point is computed by using
the finite-difference method. The contact point is moved in
the direction that minimizes the gap until a local optimum is
reached. Force Ft is then defined based on the selected contact
point. The pose and velocity of the object are replaced by
the predicted ones that result from applying force Ft. This
process is repeated until the object reaches the desired goal
configuration. The time duration of each pushing action is also
optimized by using finite differences. This part is omitted for
simplicity’s sake.

The surface of the object often contains non-differentiable
parts where the analytical gradient with respect to the contact
point is undefined. Even on smooth parts, there is no clear
advantage of computing the analytical gradient here, because
the space of contact points is uni-dimensional, in contrast to
the high-dimensional space of non-uniform mass and fric-
tion distributions. In low-dimensional search spaces, finite-
difference methods are computationally efficient.

VII. MAIN ALGORITHM

Algorithm 3 summarizes the main steps of the proposed
approach and the protocol followed in the experiments. In
summary, the robot first “plays” with the unknown object by
applying random short-lasting horizontal forces for a safe and
local exploration. A mass and friction model is then inferred
from the gathered data by using Algorithm 1. Based on the
inferred mass distribution, a safe goal configuration is sampled
from a desired goal region. For example, a pregrasp sliding
manipulation can be used to grasp a thin object that cannot be
directly grasped from a flat surface. In [22], a known object is
pushed to the edge of a table and then grasped from there.
Pushing an unknown object to the edge of a table results
often in losing the object. Our method avoids this issue by
sampling a goal configuration that allows a sufficient part of
the object to be graspable, while keeping the object balanced
on the edge thanks to the identified mass distribution. Once a
goal is selected, Algorithm 2 is used to generate a sequence
of actions to push the object to the goal.

Algorithm 2: Planning and Control
Input: Identified mass and friction M and µ, and presumed

3D shape S of the object; initial ground-truth
configuration x0; desired final configuration xdT ;

Output: A sequence of pushing forces (Ft)
T−1
t=0 ;

1 Find a set Xwaypoint of waypoints by calling
RRT ∗(S, x0, xdT);

2 ẋ0 ← 0; t← 0;
3 while Xwaypoint 6= ∅ do
4 repeat

5 x̂←
∑

i∈{1,...,n}(Mi)(p
i
x,t,p

i
y,t)∑

i∈{1,...,n}Mi
; . center of mass

6 xtarget ← argminx∈Xwaypoint ‖x− xt‖2;

7 i∗ ← argmaxi∈{1,...,n}

(
x̂−xtarget

)(
(pix,t,p

i
y,t)−x̂

)T
‖x̂−xtarget‖2‖(pix,t,p

i
y,t)−x̂‖2

;

. Initializing the contact point

8 improvement ← true;
9 repeat

10 Let i∗left and i∗right be two cells that are adjacent to i∗ and
that are also on the outer envelope of the object;

11 for i ∈ {i∗, i∗left, i
∗
right} do

12 Choose the direction of the force (f ix, f
i
y) as the

opposite of the object’ surface normal at cell i.
F i ← [0, 0, 0, . . . , f ix, f

i
y, 0, . . . , 0, 0, 0];

13 gapi ←
‖xt+ẋtdt+V (xt, ẋt, F

i,M, µ)dt−xtarget‖2;
14 end
15 i∗ ← argmini∈{i∗,i∗left,i

∗
right} gapi;

16 Ft ← [0, 0, 0, . . . , f i
∗
x , f

i∗
y , 0, . . . , 0, 0, 0];

17 ẋt+1 ← V (xt, ẋt, F
i∗ ,M, µ); xt+1 ← xt + ẋtdt;

18 if i∗ 6= i∗left ∧ i∗ 6= i∗right then
19 improvement ← false;
20 end
21 until improvement = false;
22 t← t+ 1;
23 until minx∈Xwaypoint ‖x− xt‖2 ≤ ε;
24 Xwaypoint ← Xwaypoint\{argminx∈Xwaypoint ‖x−xt‖2};
25 end

VIII. EVALUATION

We report here the results of three sets of experiments to
evaluate the proposed approach. The most important set is the
one related to mass and friction identification. A video of the
experiments is uploaded to https://bit.ly/2S3TpFS.

A. Experimental Setup

The experiments are performed on both simulated and real
robot and objects. In the real robot setup, a Robotiq 3-
finger hand mounted on a Kuka robot is repeatedly moved
to collide with a rigid object that is set on a table-top and
to push it forward, as shown as Figure 1. The initial, final
and intermediate point clouds of the object are recorded. The
simulation experiments are performed using the physics engine
Bullet and models of the robot and objects. The experiments
are performed on five real objects: a book, a hammer, a snack,
a toolbox and a spray gun, and eight simulated objects: a box,
a hammer, a book, a crimp, a snack, a ranch, a spray gun and
a toothpaste. The number of cells per object varies from 28
to 88 depending on the size of the object.

Algorithm 3: Learning to Slide Unknown Objects with
Differentiable Physics Simulations

Input: Point cloud of an object’s upper surface; Maximum mass
and friction mmax, umax ∈ R; Desired goal region G;

1 Create a 3D shape S of the object by projecting its upper
surface down on the support surface;

2 Decompose the 3D shape into a regular grid of n small cuboids;
3 Let xg0 be the vector of ground-truth positions and rotations of

the n cuboids at time 0; ẋg0 = 0;
4 Initialize mass matrix M and friction map µ uniformly with a

random value;
5 Sample a small number Texploration of contact points and

horizontal pushing directions ; . For a safe local exploration

6 Use the robot’s end-effector to apply forces on the sampled
contact points and along the sampled directions for short
periods of time dt, and record the resulting trajectories in
D = {(xgt , ẋ

g
t , Ft)

Texploration
t=0 };

7 Use Algorithm 1 to identify M and µ from dataset D ;
8 Sample a goal configuration xd ∈ G where the object is

predicted to remain stable under gravity, according to the
identified mass distribution M;

9 Use Algorithm 2 to obtain a new sequence of forces
(Ft)

Texecution
t=0 to push the object to xd;

10 Execute the sequence (Ft)
Texecution
t=0 with the robot’s end-effector;

B. Tasks

Model Identification. Each real and simulated object is
pushed by the robot randomly 10 times on the table. Half of
the recorded trajectories are used for learning a mass matrix
M and friction map µ. The other half is used for testing
the identified models. Since the ground-truth values of mass
and friction are unknown, the identified models are evaluated
in terms of the accuracy of the predicted pose of each cell
after applying the sequence of actions provided in the test
set. The experiments on the real objects are repeated with 25
randomized splits into training and testing sets. The simulation
experiments are repeated with 10 different models per object.

Planning and Control. For each one of the eight objects
in simulation, we randomly sample 10 values for their mass
and friction matrices, and 10 random goal configurations in a
disk of a radius of 1m around the initial configuration. The
rotations of the goal configurations are also selected randomly.
The number of settings is then 8 × 10 × 10. The task is to
generate, in each setting, a sequence of forces that pushes the
object from the initial configuration to the goal. The objective
is to asses the computational efficiency of Algorithm 2.

Pre-grasp Sliding Manipulation. Finally, we evaluate the
entire system (Algorithm 3) on the task of sliding an object
from a random initial pose on a table to a desired goal region
at the edge of the table where the object can be grasped. The
object cannot be directly grasped from a flat surface, the goal
is to push it to the edge where part of it sticks out of the
table and becomes graspable. Since the mass distribution of the
object is highly heterogeneous and unknown, the object often
becomes unbalanced at the edge and falls from the table if the
identified model is incorrect. We report here the percentage
of experiments where the object is successfully pushed to

https://bit.ly/2S3TpFS

the edge and grasped without losing it. The experiments on
this task are performed using the real Kuka robot and a
real hammer. The exploration phase contains only 5 random
pushing actions that are used for model identification. The
reported results are averaged over 16 independent runs, with
a different initial pose in each run.

Fig. 3. Learned mass distributions. Red color means higher mass
value while blue color means lower mass value. The middle column
shows the initial uniform mass distributions provided to Algorithm 1
and the right column shows the mass distributions returned by the
algorithm after only five iterations of gradient descent.

C. Compared Methods

Model Identification. Algorithm 1 is compared against the
following methods. Random search is a baseline method that
repeatedly samples random values of the mass and friction
matrices and returns the best sampled values that minimize
loss(M, µ). Weighted sampling search generates random
values uniformly in the first iteration, and then iteratively
generates normally distributed random values around the best
parameter obtained in the previous iteration. The standard
deviation of the random values is gradually reduced over time,
to focus the search on the most promising region of the search
space. The finite differences gradient is an approximation of
the analytical gradient. We add or subtract a small amount
to the current parameter values and simulate the trajectories
using the neighboring parameter values to approximate the
derivatives ∂loss

∂M and ∂loss
∂µ . Because a large number of sim-

ulations is required to compute the gradient for all the cells,
the parameters of each cell are updated using the coordinate
gradient descent. Finally, we compare the proposed method
with two black-box optimization methods: CMA-ES [23] and

Nelder-Mead. The same minimum and maximum bounds of
mass and frictional forces are provided to all methods and are
also used for all cells of objects.

Planning and Control. We perform an ablation study where
we substitute the finite-difference gradient in Algorithm 2 with
an exhaustive search of the optimal contact point.

Pre-grasp Sliding Manipulation. We compare Algorithm 3
to two alternatives. The first one assumes a uniform and
homogenous mass and friction values, and uses directly Al-
gorithm 2 to push the object to the goal without model iden-
tification. The second alternative is identical to Algorithm 3,
except that no upper limit on the friction coefficients is used.

D. Results

Model Identification. Figure 3 shows mass distributions
identified using Algorithm 1. The mass distributions of the
book, the hammer, the snack, the toolbox and the spray
gun are all identified using the real objects and robot. The
experiments on the remaining objects were performed in
simulation because they were too thin for a safe robotic ma-
nipulation. The results show that the identified models quickly
converge to the ground-truth models. Figure 4 (a)-(m) shows
the average distance between the predicted cell positions and
the ground-truth ones in the test data as a function of the
number forward physics simulations used by the different
identification methods. In our method, the number of physics
simulations is the same as the number of steps of the gradient-
descent, since one simulation is performed after each update
of M and µ. Note that the physics simulations dominate
the computation time, with 1.3448(±0.5604) second per a
simulation, while the computation of the gradient using the
proposed algorithm takes only 0.0069(±0.0024) second. The
results demonstrate that global optimization methods suffer
from the curse of dimensionality due to the combinatorial
explosion in the number of possible parameters for all cells.
The results also demonstrate that the proposed method can
estimate the parameters within a surprisingly small number
of gradient-descent steps and a short computation time (30
seconds). The average error of the predicted cell positions
using the identified mass and friction distributions is less than
1.53cm in simulation and 2.27cm in the real experiments.
Note that the error in real experiments is higher due to sensing
and control errors. The finite differences approach also failed
to converge to an accurate model due to the high computational
cost of the gradient computation, as well as the sensitivity of
the computed gradients to the choice the grid size. Figure 4
(o) shows that the number of training actions improves the
accuracy of the model learned by Algorithm 1. Increasing
the number of training actions allows the robot to uncover
properties of different parts of the object more accurately.

Planning and Control. Figure 4 (p) shows the number of
physics simulations used to optimize the contact location. The
proposed policy gradient algorithm requires a small fraction of
the exhaustive search’s computation time, while both methods
attained a 100% success rate in finding a sequence of pushes
that reaches the goal in simulation.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (o) (p) (q)
Fig. 4. Average predicted cell position error (in meters) for each object as a function of the number of performed physics simulations. Figures (a)-(h)
correspond to the simulation experiments and (i)-(m) correspond to the real experiments. Figure (o) shows the average predicted cell position error with
different numbers of training examples. Figure (p) shows the predicted cell position error with different numbers of training examples. Figure (q) shows the
success rate for the sliding and grasping task.

Pre-grasp Sliding Manipulation. This task integrates the
two previous tasks and evaluates the entire proposed system.
Figure 4 (q) shows that in all of the 16 trials with random
initial poses, the robot successfully identified the hammer’s
mass and friction distributions using Algorithm 1, selected
a physically stable goal configuration in the desired goal
region based on the identified model, planned and executed
a sequence of pushing actions using Algorithm 2, and grasped
the object from the part pushed out of the table. Only 12
trials resulted in successful grasps when the mass distribution
was not learned and was assumed to be uniform. The upper
bound on the dynamic coefficient of friction is set to 1.00 in
Algorithm 1. The success rate drops to 13/16 when no upper
bound limit is set on the friction in Algorithm 1.

IX. FINAL REMARK

The decline in the success rate in Figure 4 (q) when no
upper limit on the friction is used is an important observation.
The algorithm attributed most of the rotations to unrealistically
high frictions in certain regions, instead of an uneven mass
distribution. Despite identifying a wrong model of mass and
friction, the predicted motion of the object was accurate as
long as the object was entirely on the table. But once pushed
to the edge, and its heavy side is not anymore supported by
the table’s surface, the object falls. This clearly demonstrates
the importance of identifying not only the friction, but also the
accurate mass distribution of objects for a safe manipulation.
The upper bound can be seen as an inductive bias that is
necessary for learning from limited data.

REFERENCES

[1] Bullet physics engine. [Online]. Available: www.
bulletphysics.org.

[2] DART physics egnine. [Online]. Available: http://
dartsim.github.io.

[3] Open dynamics engine. [Online]. Available: http://ode.
org.

[4] PhysX physics engine. [Online]. Available: www.
geforce.com/hardware/technology/physx.

[5] Pieter Abbeel, Morgan Quigley, and Andrew Y Ng.
Using inaccurate models in reinforcement learning. In
Proc. of ICML. ACM, 2006.

[6] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi,
Christof Angermüller, Dzmitry Bahdanau, Nicolas Bal-
las, Frédéric Bastien, Justin Bayer, Anatoly Be-
likov, Alexander Belopolsky, Yoshua Bengio, Ar-
naud Bergeron, James Bergstra, Valentin Bisson,
Josh Bleecher Snyder, Nicolas Bouchard, Nicolas
Boulanger-Lewandowski, Xavier Bouthillier, Alexandre
de Brébisson, Olivier Breuleux, Pierre Luc Carrier,
Kyunghyun Cho, Jan Chorowski, Paul F. Christiano,
Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté,
Aaron C. Courville, Yann N. Dauphin, Olivier Delal-
leau, Julien Demouth, Guillaume Desjardins, Sander
Dieleman, Laurent Dinh, Melanie Ducoffe, Vincent Du-
moulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye
Fan, Orhan Firat, Mathieu Germain, Xavier Glorot,
Ian J. Goodfellow, Matthew Graham, Çaglar Gülçehre,
Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng,
Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean,
Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb,
Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee,
Simon Lefrançois, Simon Lemieux, Nicholas Léonard,
Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah
Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier
Mastropietro, Robert McGibbon, Roland Memisevic,
Bart van Merriënboer, Vincent Michalski, Mehdi Mirza,
Alberto Orlandi, Christopher Joseph Pal, Razvan Pas-
canu, Mohammad Pezeshki, Colin Raffel, Daniel Ren-
shaw, Matthew Rocklin, Adriana Romero, Markus Roth,
Peter Sadowski, John Salvatier, François Savard, Jan
Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad
Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne
Simon, Sigurd Spieckermann, S. Ramana Subramanyam,
Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder,
Joseph P. Turian, Sebastian Urban, Pascal Vincent,
Francesco Visin, Harm de Vries, David Warde-Farley,
Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue,
Li Yao, Saizheng Zhang, and Ying Zhang. Theano: A
python framework for fast computation of mathematical
expressions. CoRR, abs/1605.02688, 2016.

[7] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey
Levine, and Claire J Tomlin. Goal-driven dynamics
learning via bayesian optimization. In IEEE CDC, 2017.

[8] Filipe de A. Belbute-Peres, Kevin A. Smith, Kelsey R.

Allen, Joshua B. Tenenbaum, and J. Zico Kolter. End-
to-end differentiable physics for learning and control. In
Proceedings of the 32Nd International Conference on
Neural Information Processing Systems, NIPS’18, pages
7178–7189, USA, 2018. Curran Associates Inc. URL
http://dl.acm.org/citation.cfm?id=3327757.3327820.

[9] Roberto Calandra, André Seyfarth, Jan Peters, and
Marc P. Deisenroth. Bayesian optimization for learning
gaits under uncertainty. Annals of Mathematics and
Artificial Intelligence (AMAI), 76(1):5–23, 2016. ISSN
1573-7470.

[10] Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and
Shakir Mohamed. Recurrent environment simulators.
arXiv preprint arXiv:1704.02254, 2017.

[11] Michael Bradley Cline. Rigid body simulation with
contact and constraints. PhD thesis, University of British
Columbia, 2002.

[12] Filipe de Avila Belbute-Peres and Zico Kolter. A mod-
ular differentiable rigid body physics engine. In Deep
Reinforcement Learning Symposium, NIPS, 2017.

[13] Jonas Degrave, Michiel Hermans, Joni Dambre, and
Francis Wyffels. A differentiable physics engine for deep
learning in robotics. CoRR, abs/1611.01652, 2016.

[14] M. Deisenroth, C. Rasmussen, and D. Fox. Learning
to Control a Low-Cost Manipulator using Data-Efficient
Reinforcement Learning. In R:SS, 2011.

[15] Mehmet Dogar, Kaijen Hsiao, Matei Ciocarlie, and
Siddhartha Srinivasa. Physics-Based Grasp Planning
Through Clutter. In R:SS, July 2012.

[16] Mehmet R. Dogar and Siddhartha S. Srinivasa. A plan-
ning framework for non-prehensile manipulation under
clutter and uncertainty. Autonomous Robots, 33(3):217–
236, Oct 2012.

[17] Mehmet Remzi Dogar and Siddhartha S. Srinivasa. Push-
grasping with dexterous hands: Mechanics and a method.
2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2123–2130, 2010.

[18] Mehmet Remzi Dogar and Siddhartha S. Srinivasa. A
framework for push-grasping in clutter. In Robotics:
Science and Systems, 2011.

[19] Tom Erez, Yuval Tassa, and Emanuel Todorov. Sim-
ulation tools for model-based robotics: Comparison of
bullet, havok, mujoco, ODE and physx. In IEEE ICRA,
2015.

[20] Chelsea Finn and Sergey Levine. Deep visual foresight
for planning robot motion. ICRA 2017.

[21] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell,
Sergey Levine, and Pieter Abbeel. Deep spatial autoen-
coders for visuomotor learning. 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages
512–519, 2016.

[22] Kaiyu Hang, Andrew Morgan, and Aaron Dollar. Pre-
grasp sliding manipulation of thin objects using soft,
compliant, or underactuated hands. IEEE Robotics and
Automation Letters, PP:1–1, 01 2019. doi: 10.1109/LRA.
2019.2892591.

 www.bulletphysics.org
 www.bulletphysics.org
 http://dartsim.github.io
 http://dartsim.github.io
http://ode.org
http://ode.org
www.geforce.com/hardware/technology/physx
www.geforce.com/hardware/technology/physx
http://dl.acm.org/citation.cfm?id=3327757.3327820

[23] Nikolaus Hansen. The cma evolution strategy: a com-
paring review. Towards a new evolutionary computation,
pages 75–102, 2006.

[24] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic,
Stefan Holzer, Gary Bradski, Kurt Konolige, and Nassir
Navab. Model based training, detection and pose estima-
tion of texture-less 3d objects in heavily cluttered scenes.
In Kyoung Mu Lee, Yasuyuki Matsushita, James M.
Rehg, and Zhanyi Hu, editors, Computer Vision – ACCV
2012, pages 548–562, 2013.

[25] Robert D. Howe and Mark R. Cutkosky. Practical force-
motion models for sliding manipulation. The Inter-
national Journal of Robotics Research, 15(6):557–572,
1996.

[26] J. E. King, V. Ranganeni, and S. S. Srinivasa. Unobserv-
able monte carlo planning for nonprehensile rearrange-
ment tasks. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 4681–4688, May
2017. doi: 10.1109/ICRA.2017.7989544.

[27] Jennifer E. King, Joshua A. Haustein, Siddhartha S.
Srinivasa, and Tamim Asfour. Nonprehensile whole arm
rearrangement planning on physics manifolds. In IEEE
International Conference on Robotics and Automation,
ICRA 2015, Seattle, WA, USA, 26-30 May, 2015, pages
2508–2515. IEEE, 2015. ISBN 978-1-4799-6923-4. doi:
10.1109/ICRA.2015.7139535. URL https://doi.org/10.
1109/ICRA.2015.7139535.

[28] Jennifer E. King, Marco Cognetti, and Siddhartha S.
Srinivasa. Rearrangement planning using object-centric
and robot-centric action spaces. In 2016 IEEE Inter-
national Conference on Robotics and Automation, ICRA,
Stockholm, Sweden, May 16-21, 2016, pages 3940–3947,
2016.

[29] Alina Kloss, Stefan Schaal, and Jeannette Bohg. Com-
bining learned and analytical models for predicting action
effects. CoRR, abs/1710.04102, 2017.

[30] N. Fazeli KT. Yu, M. Bauza and A. Rodriguez. More than
a million ways to be pushed: A high-fidelity experimental
dataset of planar pushing. In IROS, pages 30–37, 2016.

[31] K. M. Lynch and M. T. Mason. Stable pushing: Mechan-
ics, control- lability, and planning. International Journal
of Robotics Research, 18, 1996.

[32] Kevin M. Lynch. Estimating the friction parameters
of pushed objects. In 1993 International Conference
on Intelligent Robots and Systems, 1993 International
Conference on Intelligent Robots and Systems, pages
186–193, 12 1993.

[33] Kevin M. Lynch and Matthew T. Mason. Stable pushing:
Mechanics, controllability, and planning. The Inter-
national Journal of Robotics Research, 15(6):533–556,
1996.

[34] F. Hogan* M. Bauza* and A. Rodriguez. A data-efficient
approach to precise and controlled pushing. In CoRL,
2018.

[35] Y. Lin T. Lozano-Perez L. Kaelbling P. Isola M. Bauza,
F. Alet and A. Rodriguez. Omnipush: accurate, diverse,

real-world dataset of pushing dynamics with rgbd im-
ages. In IROS, 2019.

[36] Alonso Marco, Felix Berkenkamp, Philipp Hennig, An-
gela P. Schoellig, Andreas Krause, Stefan Schaal, and
Sebastian Trimpe. Virtual vs. real: Trading off simula-
tions and physical experiments in reinforcement learning
with bayesian optimization. In ICRA, pages 1557–1563,
2017.

[37] Matthew T. Mason. Mechanics and planning of manip-
ulator pushing operations. The International Journal of
Robotics Research, 5(3):53–71, 1986.

[38] J. Mattingley and S. Boyd. CVXGEN: A code generator
for embedded convex optimization. Optimization and
Engineering, 12(1):1–27, 2012.

[39] Igor Mordatch, Emanuel Todorov, and Zoran Popović.
Discovery of complex behaviors through contact-
invariant optimization. ACM Trans. Graph., 31(4):43:1–
43:8, July 2012. ISSN 0730-0301. doi: 10.1145/2185520.
2185539. URL http://doi.acm.org/10.1145/2185520.
2185539.

[40] F. Hogan N. Doshi and A. Rodriguez. Hybrid differential
dynamic programming for planar manipulation primi-
tives. In ICRA, 2020.

[41] R. Tedrake N. Fazeli, R. Kolbert and A. Rodriguez.
Parameter and contact force estimation of planar rigid-
bodies undergoing frictional contact. IJRR, 2017.

[42] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L.
Lewis, and Satinder P. Singh. Action-conditional video
prediction using deep networks in atari games. In NIPS,
pages 2863–2871, 2015.

[43] Rémi Pautrat, Konstantinos Chatzilygeroudis, and Jean-
Baptiste Mouret. Bayesian optimization with automatic
prior selection for data-efficient direct policy search.
arXiv preprint arXiv:1709.06919, 2017.

[44] Lerrel Pinto, Aditya Mandalika, Brian Hou, and Sid-
dhartha Srinivasa. Sample-efficient learning of nonpre-
hensile manipulation policies via physics-based informed
state distributions. CoRR, abs/1810.10654, 2018. URL
http://arxiv.org/abs/1810.10654.

[45] Connor Schenck and Dieter Fox. Spnets: Differen-
tiable fluid dynamics for deep neural networks. CoRR,
abs/1806.06094, 2018.

[46] Jonathan Scholz, Martin Levihn, Charles L. Isbell, and
David Wingate. A Physics-Based Model Prior for Object-
Oriented MDPs. In ICML, 2014.

[47] Marc Toussaint, Kelsey R Allen, Kevin A Smith, and
Josh B Tenenbaum. Differentiable physics and stable
modes for tool-use and manipulation planning. In Proc.
of Robotics: Science and Systems (R:SS 2018), 2018.

[48] Tsuneo Yoshikawa and Masamitsu Kurisu. Indentifica-
tion of the center of friction from pushing an object by a
mobile robot. Proceedings IROS ’91:IEEE/RSJ Interna-
tional Workshop on Intelligent Robots and Systems ’91,
pages 449–454 vol.2, 1991.

[49] Weihao Yuan, Johannes A. Stork, Danica Kragic,
Michael Yu Wang, and Kaiyu Hang. Rearrangement with

https://doi.org/10.1109/ICRA.2015.7139535
https://doi.org/10.1109/ICRA.2015.7139535
http://doi.acm.org/10.1145/2185520.2185539
http://doi.acm.org/10.1145/2185520.2185539
http://arxiv.org/abs/1810.10654

nonprehensile manipulation using deep reinforcement
learning. In 2018 IEEE International Conference on
Robotics and Automation, ICRA 2018, Brisbane, Aus-
tralia, May 21-25, 2018, pages 270–277, 2018. doi:
10.1109/ICRA.2018.8462863. URL https://doi.org/10.
1109/ICRA.2018.8462863.

[50] Jiaji Zhou, Robert Paolini, J. Andrew Bagnell, and
Matthew T. Mason. A convex polynomial force-motion
model for planar sliding: Identification and application.
In 2016 IEEE International Conference on Robotics and
Automation, ICRA 2016, Stockholm, Sweden, May 16-21,
2016, pages 372–377, 2016.

[51] Jiaji Zhou, Robert Paolini, J. Andrew Bagnell, and
Matthew T. Mason. A convex polynomial force-motion
model for planar sliding: Identification and application.
In ICRA, pages 372–377, 2016.

[52] Jiaji Zhou, Matthew T. Mason, Robert Paolini, and
Drew Bagnell. A convex polynomial model for planar
sliding mechanics: theory, application, and experimental
validation. I. J. Robotics Res., 37(2-3):249–265, 2018.

[53] Jiaji Zhou, Matthew T Mason, Robert Paolini, and Drew
Bagnell. A convex polynomial model for planar sliding
mechanics: theory, application, and experimental valida-
tion. The International Journal of Robotics Research, 37
(2-3):249–265, 2018.

[54] Jiaji Zhou, Yifan Hou, and Matthew T. Mason. Pushing
revisited: Differential flatness, trajectory planning, and
stabilization. I. J. Robotics Res., 38(12-13), 2019.

https://doi.org/10.1109/ICRA.2018.8462863
https://doi.org/10.1109/ICRA.2018.8462863

	Introduction
	Related Work
	Problem Setup and Notation
	Forward Simulation
	Mass and Friction Gradients
	Mass Gradient
	Friction Gradient
	Mass and Friction Identification Algorithm

	Policy Gradient
	Main Algorithm
	Evaluation
	Experimental Setup
	Tasks
	Compared Methods
	Results

	Final Remark

