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Abstract— This paper considers the problem of rearrange-
ment planning, i.e finding a sequence of manipulation actions
that displace multiple objects from an initial configuration to
a given goal configuration. Rearrangement is a critical skill
for robots so that they can effectively operate in confined
spaces that contain clutter. Examples of tasks that require
rearrangement include packing objects inside a bin, wherein
objects need to lay according to a predefined pattern. In tight
bins, collision-free grasps are often unavailable. Nonprehensile
actions, such as pushing and sliding, are preferred because
they can be performed using minimalistic end-effectors that can
easily be inserted in the bin. Rearrangement with nonprehensile
actions is a challenging problem as it requires reasoning about
object interactions in a combinatorially large configuration
space of multiple objects. This work revisits several existing re-
arrangement planning techniques and introduces a new one that
exploits nested nonprehensile actions by pushing several similar
objects simultaneously along the same path, which removes
the need to rearrange each object individually. Experiments in
simulation and using a real Kuka robotic arm show the ability
of the proposed approach to solve difficult rearrangement tasks
while reducing the length of the end-effector’s trajectories.

I. INTRODUCTION

Warehouse automation has witnessed a vast growth in
the past few years thanks to the deployment of intelligent
robotic solutions. The Amazon Kiva mobile robotic fulfill-
ment system is an example of the impressive progress that
has been recently achieved in this area. Nevertheless, a large
portion of tedious labor performed in warehouse operations
is still manual to a large extent. For example, picking and
packing products inside bins, such as the small shipping box
in Figure 1, is a task that remains highly challenging for
robotic systems. In addition to dealing with vision-related
challenges, a robotic system needs to plan the trajectories of
its arm and the actions to perform by reasoning about the
effects of the collisions between the objects in the scene.
Moreover, bin packing requires reasoning about the different
orders in which the objects should be moved to their marked
final poses, which is a combinatorial optimization problem
known as object rearrangement planning.

Solving rearrangement problems optimally is computa-
tionally prohibitive. Therefore, most proposed algorithms
content with finding feasible plans [1]–[3]. The few efficient
and optimal algorithms that have been proposed require
additional constraints, such as having a clear buffer zone for
intermediate placement of objects [4], [5]. Moreover, most
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Fig. 1. The product packing problem for cuboid products: initial con-
figuration (left), and achieved goal configuration (right). Experiments are
performed using a Kuka robotic arm, equipped with a minimalistic end-
effector and a depth-sensing camera SR300.

of these works use only pick-and-place actions and do not
take advantage of nonprehensile actions, such as pushing
and pulling, that can solve these tasks more efficiently and
using only minimalistic end-effectors. While nonprehensile
manipulation is a growing topic in robotics [6]–[10], it has
not yet been tested on real and dense rearrangement tasks
such as the one in Figure 1. In this paper, we present
and empirically evaluate an approach for solving this type
of tasks. The presented approach utilizes nested pushing
actions for moving several objects simultaneously to their
targets whenever possible. While global optimality is not a
criterion that is maintained or quested by the present work,
the proposed approach is tailored for efficient bin packing
applications. At a high level, a tree search with backtracking
is used for finding subsets of objects to push together. At
an intermediate level, trajectories of objects are merged at
optimized rendezvous points to benefit from grouped pushing
actions. At a low level, the problem of pushing objects
to local target points is formulated as a Markov Decision
Process and solved offline. The obtained policy is stored in
a look-up table and utilized online by the high level planner.
Extensive experiments in simulated environments as well as
on the real rearrangement tasks shown in Figure 1 clearly
demonstrate the effectiveness of this approach.

II. RELATED WORK

Object rearrangement using non-prehensile actions is re-
lated to several areas in robotic manipulation and planning.

Manipulation planning: Object rearrangement problems
can be solved with generic sampling-based motion planning



algorithms, such as RRT∗ [11], Kinodynamic RRT [12], [13],
and trajectory optimization algorithms such as CHOMP [14].
However, these algorithms do not scale up to spaces that
result from combining the configuration spaces of a robot
and several manipulated objects. Similar scalability issues are
encountered in multi-robot motion planning due to the large
number of degrees of freedom [15]. In the context of object
grasping, the dimension of the configuration is typically
reduced by imposing various motion constraints relative to
transfer and transit actions [16]. It is also often common
to explicitly introduce intermediate actions, such as recon-
figuration, for cost and computation efficiency [17]. Our
method is related to the probabilistic path planning method
for multiple robots with subdimensional expansion [18],
wherein plans in each individual robots configuration space
are obtained separately, then those spaces are entangled when
robots come into close proximity with one another. In our
method, individual spaces of objects are coupled when the
objects are physically close to each other.

Object Rearrangement using Prehensile Actions: Most
prior works on objects rearrangement focused on pick-
and-place actions for transporting objects on collision-free
paths [1], [19]. One proposed algorithm adapts a manip-
ulation approach for clearing a path to an unreachable
object [20], and uses a tree-search with backtracking for
finding a feasible order in which objects can be picked and
placed [2]. The same algorithm was adapted for solving non-
monotone rearrangement tasks, by temporarily moving obsta-
cles to buffer zones. Our approach borrows the general idea
of tree-based search from this line of works. A more efficient
algorithm that avoids backtracking builds a directed acyclic
dependency graph that indicates which object is on the way
of which other object, and the objects are then manipulated in
the topological order of the dependency graph [3]. Tabletop
rearrangement with overhand grasps was also formulated
as a TSP problem and an algorithm that minimizes the
total distance traveled by the end-effector was proposed [4],
[5]. Rearrangement planning has also been used in robotic
assembly of discrete architectural structures [21].

Nonprehensile Manipulation: Treating objects always as
obstacles that must be avoided at all costs often results
in inefficient plans. In practice, collisions can be safe and
even helpful in many cases. For example, combined pushing
and grasping actions have been shown to succeed where
traditional grasp planners fail, and they work well under
uncertainty by using the funneling effect of pushing [6].
Environmental contact and compliant manipluation were also
leveraged in peg-in-hole planning tasks [7]. Nonprehensile
manipluation was also used for inferring 3D shapes and
mechanical properties of unknown objects in [22], [23]. As
in our rearrangement approach, interactions between objects
and end-effectors in [7] are modeled using an MDP near
contact manifolds only, while sample-based planners are
used in the other regions. DARRT is a sampling-based
algorithm for general-purpose motion planning problems
with diverse, non-prehensile manipulation actions [8], based
on the RRT structure [9]. Our approach also uses RRT and

non-prehensile manipulation actions, but it is tailored for
efficient rearrangement. The problem of pushing a single
target object to a desired goal region was also recently solved
through reinforcement learning [10]. In the present work,
we are concerned with nested pushing actions, where one or
multiple objects are pushed simultaneously.

Object Rearrangement with Nonprehensile Actions: A
framework that plans rearrangement of clutter using non-
prehensile actions, such as pushing, was introduced by Dogar
et al. [24], but it did not consider nested actions. A version of
RRT with Kinodynamics also used nonprehensile whole arm
rearrangement planning [13], [25]. This approach is related
to ours in the sense that whole arm manipulation can be
seen as a special type of nested manipulation actions. Monte
Carlo tree-search was used to solve rearrangement problems
in clutter, with simple non-prehensile actions, the search
was guided by policies learned from demonstrations [26].
A similar problem was solved with deep Q-learning [27].

Task and Motion Planning: Rearrangement is a special
instance of the general Task and Motion Planning (TMP)
problem [28]. For example, an iterative TMP algorithm was
demonstrated on rearrangement tasks, with the constraints on
motion feasibility removed at the task level [29]. Other TMP
algorithms rely on factored transition functions [30], impulse
exchange constraints at the path optimization level [31], or
symbolic representations of the preconditions and effects of
the manipulation actions [32]. Efficient heuristics for TMP
have also been investigated [33], [34].

Navigation and Manipulation among Movable Ob-
jects (NAMO): Rearrangement problems are related to
NAMO [35], which is known to be NP-hard even for simple
instances [36]. Thus, most efforts have focused on finding
time-efficient algorithms that are near-optimal [20], [37],
[38]. Minimum constraint removal is another problem related
to NAMO, where the planner searches for a transfer path
that collides with the minimum number of objects [39], [40].
NAMO techniques were used to improve the computational
efficiency of rearrangement planning [3], and can also be
used for the approach proposed in the current work.

III. PROBLEM SETUP AND NOTATION

Consider a 3D workspace that contains:
• a set of static obstacles S,
• a set of n movable rigid-body objects O =
{o1, o2, . . . , on} on a tabletop, where each object oi ∈
O is described by its 3D pose (2D position and rotation
angle) p[i] ∈ Pi ⊆ SE(2),

• and a robotic arm able to rotate, move and push objects.
The configuration of the arm is denoted by q ∈ Q.

Configuration space C is defined as the Cartesian product
of the configuration spaces of the robot and objects: C = Q×∏n

i=1 Pi. The valid subset of C contains all configurations
where no object is partly or entirely inside another object,
including the robot’s arm, and no object is colliding with a
static obstacle. Rigid-body collisions between the movable
objects, or between the arm and the movable objects, are
permitted and used for rearrangement. We denote by q(p)



a collision-free configuration of the robotic arm when the
end-effector is perpendicular to the tabletop and centered in
the 2D position position given by pose p.

There are three different types of valid configurations: i)
Stable: all the objects rest on the surface and the robotic arm
is idle. ii) Transit: the robotic arm moves from an initial con-
figuration qI to a final one qF while avoiding any collision
with the objects, which are described by their joint pose p, we
use TRANSIT(qI , qF , p) to describe a function that returns a
collision-free path to this end. Sets of static obstacles S and
of objects O are constant during planning and do not need to
be provided as arguments to the different functions that we
define here. ii) Push: the end-effector simultaneously pushes
a subset of objects O′ ⊆ O from their initial joint poses in pI
to final poses in pF . Collisions with other movable objects
are allowed during the transfer, except with the objects that
have been successfully moved to their final poses, denoted by
set Os. We use NESTED-PUSH(qI , pI , pF ,O′, L) to denote
the corresponding path of the end-effector. L is a sorted list
that indicates the order in which the objects of O′ should
be pushed, i.e the first object in the list pushes the second,
while the second pushes the third, and so on. Following the
formulation introduced in [2], a legal mode change between
two modes is one where the configuration of the robot and
objects at the end of the first mode is the same as at the start
of the second mode. A rearrangement path π : [0, 1] :→ CH
is a sequence of states in the joint configuration space C
with legal mode changes. We use π(t).q to denote the
configuration of the arm at time-step t in path π, and π(t).p[i]
to denote the pose of object i. Finally, the nonprehensile
rearrangement problem is defined as the problem of finding
a path π given xI = (qI , pI) and xF = (qF , pF ) so that
π(0) = xI and π(1) = xF . If we define cost(π) as the
length of the trajectory traversed by the end-effector, then
the optimal rearrangement problem is defined as finding the
path π with the minimum cost cost(π) and that solves the
rearrangement task.

IV. PROPOSED APPROACH

We first present the general search algorithm for finding a
feasible order in which the objects should be pushed. Then,
we present the nested pushing approach. Finally, we explain
how we obtain the low-level pushing policy.

A. Nested Rearrangement Search (NRS)

The proposed high-level NRS algorithm is given in Al-
gorithm 1 and is an adaptation of an existing rearrangement
planning algorithm [2], which itself is an adaptation of a
NAMO approach for clearing obstructed paths [20]. The
original algorithm of [2] is limited to grasping actions, while
the current algorithm considers pushing actions. Moreover,
the NRS algorithm also considers nested actions that are
applied on sets of objects, as opposed to the mono-object
manipulation actions used in [2]. On the other hand, the
algorithm of [2] deals also with non-monotone instances,
while we focus in this work on monotone instances for

simplicity’s sake. The subroutines related to pushing and
nested operations are presented in the subsequent sections.

Algorithm 1 is a recursive function that takes as input the
set Or of objects that have not yet been placed in their final
poses. In the first call of the function, O = Or. Objects that
have been successfully placed in their final poses are treated
as obstacles during planning, to avoid infinite cycles. Many
real-world rearrangement tasks can be solved accordingly.
For example, bin packing can be achieved by first placing
objects that are close to the edge of the bin. Once the first
row is formed, it can be treated as a static obstacle. The bin
can be packed by repeating this process, row by row.

Additionally, the algorithm receives the current pose qI
of the robotic arm and the current joint pose pI of all the
objects, which is generally different from the starting pose
provided in the first call, because the objects are generally
displaced as a result of collisions and pushing actions. The
final poses (qF , pF ) are fixed. The algorithm stops when
all objects are correctly placed in their final poses (line
1), in which case a path π that moves the end-effector to
its final configuration qF while avoiding any collision is
returned (lines 2-3). Otherwise, the algorithm proceeds into
partitioning the remaining objects set Or into its powerset
of subsets P , with each subset corresponding to a different
group of objects that will be potentially pushed simultane-
ously. Partitions P include sets containing single objects.
Sets containing more than one object are manipulated using
nested pushes. Given a set P , we create a list of all possible
permutations of the objects in P by using subroutine NLC
given in Algorithm 2. The set of permutations is denoted
by L (line 5). The algorithm then proceeds into searching
for a permutation that provides a feasible nested pushing
action that moves all objects in P into their final poses
(lines 7-10). Nested pushing actions are performed using
subroutine NESTED-PUSH, explained in the next section,
which takes as inputs the current state (qI , pI) as well as
the final joint configuration pF . An ordered list L indicates
the subset of objects in O that will need to be pushed
as well as the order of the nested pushes. NESTED-PUSH
returns a path π of the arm-objects configuration (line 8).
If the corresponding action is feasible, then π 6= ∅ and the
search of permutations stops. The same algorithm is called
recursively after removing from Or the objects that were
successfully placed in the current call (line 12). If it is
possible to place the remaining objects, then the algorithm
stops after concatenating paths π and π′ (line 14), otherwise
another subset of objects P is tested, until a feasible order
of nested pushing actions of subgroups of objects is found.
An empty path ∅ is returned if no feasible order is found.

B. Nested Pushing

Algorithm 3 returns a path π that moves simultaneously
a set of objects to a given goal configuration. The algorithm
receives as inputs an initial state (qI , pI), a goal configuration
of the objects pF , a list L indicating the objects that will be
pushed and the order in which the objects will be nested,
in addition to the set of objects that are already successfully



Algorithm 1: Nested Rearrangement Search (NRS)
Input: Or: set of objects that have not yet been moved

to their final poses, (qI , pI): initial state,
(qF , pF ): final state;

Output: Path π of the joint arm-objects configuration;
1 if Or = ∅ then
2 π ←TRANSIT(qI , qF , pI);
3 return π;

4 foreach P ∈ P(Or) \ {∅} do
5 L =NLC(P );
6 π ← ∅;
7 foreach L ∈ L do
8 π ←NESTED-PUSH(qI , pI , pF ,O \ Or, L);
9 if π 6= ∅ then

10 break;

11 if π 6= ∅ then
12 π′ ←NRS(Or \ P, π(1).q, π(1).p, qF , pF );
13 if π′ 6= ∅ then
14 π ← {π|π′};
15 return π;

16 return ∅ ;

Algorithm 2: Nested List Construction (NLC)

Input: Oc: set of objects to chain;
Output: L: set of permutations of objects in Oc ;

1 L ← ∅ ;
2 foreach o ∈ Oc do
3 foreach L ∈NLC(Oc \ {o}) do
4 L ← L ∪ {(o, L)};

5 return L;

placed, to avoid colliding with them. If the list of objects
is empty, then the algorithm returns an empty path (line
3). The returned path π is initialized to an empty list.
Counter m counts the number of nested objects that are
successfully lined up in front of the end-effector and are
ready to be pushed to their final poses. While the algorithm
described here is general, we found from our real bin packing
experiments that it is practical only for m ≤ 2. First, the
algorithm finds a path πmain for pushing the last object
alone (line 5). This path is returned by function PUSH that
will be described in the next section. The last object is the
head of the pushing chain, it is given by L(N) and its
aimed final pose is given by pF [L[N ]]. πmain, like all paths
returned by PUSH, avoids collisions with the fixed obstacles
S as well as with objects Os that have been successfully
placed in the current search branch. But collisions with the
remaining objects are allowed. The effects of these collisions
are simulated with a physics engine and included in the
sequence of states given by the path.

Path πmain can be followed simultaneously by a train of

Algorithm 3: Nested Pushing (NESTED-PUSH)
Input: (qI , pI): initial state, pF : final configuration of

the objects, Os: set of objects that are
successfully placed in their final configurations,
L: sorted list of objects to push;

Output: Path π of the joint arm-objects configuration;
1 N ← size(L);
2 if N = 0 then
3 return ∅ ;

4 π ← ∅; m← 1;
5 πmain ←PUSH(qI , pI , L[N ], pF [L[N ]],m,Os);
6 if πmain = ∅ then
7 return ∅ ;

8 for i← N − 1; i > 0; i← i− 1 do
9 m← N − i+ 1;

10 pdocking,1 ←DOCKING-POSE(πmain, pI , L,m);
11 pdocking,2 ←NEAREST-POSE(πmain, pI , L,m, i);
12 prdv ←RDV-POSE(πmain, L,m, pdocking,2);
13 π1 ←PUSH(qI , pI , L[i], pdocking,1, 1,Os);
14 π2 ←PUSH(π1(1).q, π1(1).p, L[N ], prdv,m,Os);
15 π3 ←PUSH(qI , pI , L[N ], prdv,m,Os);
16 π4 ←PUSH(π3(1).q, π3(1).p, L[i], pdocking,2,m,Os);
17 if (π1 = ∅ ∨ π2 = ∅) ∧ (π3 = ∅ ∨ π4 = ∅) then
18 return ∅ ;

19 if cost({π1|π2}) ≤ cost({π3|π4}) then
20 π ← {π|π1|π2};(qI , pI)← (π2(1).q, π2(1).q);
21 else
22 π ← {π|π3|π4};(qI , pI)← (π4(1).q, π4(1).q);

23 πall ←PUSH(π(1).q, π(1).p, L[N ], pF [L[N ]], N,Os);
24 π ← {π|πall};
25 for i← N − 1; i > 0; i← i− 1 do
26 Os ← Os ∪ {L[i+ 1]};
27 πi ←PUSH(π(1).q, π(1).q, L[i], pF [L[i]], 1,Os);
28 if πi = ∅ then
29 return ∅ ;

30 π ← {π|πi};
31 return π ;

other objects lined up behind the frontal object if they have
a similar or smaller footprint. To this end, the algorithm
proceeds into placing the remaining objects in the reverse
order of list L (lines 8-22). Note that L can also contain a
single object as a special case. In iteration i, the formed chain
already contains m = N − i + 1 objects. There are various
strategies to insert the (m + 1)th object to the back of the
chain. But for time efficiency, we limit the strategies to two
options. The first option is to move the new object directly to
the back of the chain. This is done by first finding a docking
point (line 10), which is a pose denoted by pdocking,1 and
found by function DOCKING-POSE, explained below. The
object is then pushed alone to its docking pose through a path
π1. The second option is to find the nearest point on path



Fig. 2. Strategies for merging paths of two objects

Fig. 3. Nested pushing of objects can rearrange several objects
simultaneously and reduce the trajectory of the end-effector.

πmain to the current object’s pose. The nearest pose, denoted
by pdocking,2 and returned by function NEAREST-POSE,
is obtained by using a standard RRT ∗ search or by a
heuristic that ignores other objects and projects the object’s
position on path πmain. From pose pdocking,2, we compute
the corresponding rendezvous pose of the frontal object (line
12). The rendezvous pose indicates where the frontal object
should be moved to so that the new object joins the chain
when moved to pose pdocking,2. We then compare the two
options, which are (a) first push the new object to the back
of the partial chain then push the chain to the final pose
of the frontal object, and (b) push the partial chain to that
final pose and make sure the new object joins the chain at the
rendezvous point. The costs of the two options are computed
and the one with the smallest cost is selected (lines 19-
22). Note that this choice is not trivial, because the costs
also include the transition of the end-effector, which can be
initially closer to the start of option (a) or option (b). Option
(b) also involves one more transition of the end-effector to
bring the new object to the rendezvous point.

At the end of path π, all objects of list L form a chain
described in the global state (π(1).q, π(1).p), with different
objects joining at different rendezvous points. The nested
chain is pushed so that the frontal object reaches its final
pose (line 23). The final steps (lines 25-30) consist in pushing
each object individually to its final pose, while growing the
set of objects Os that are successfully placed (line 26).

We now describe the procedure for computing the docking
pose, given by Algorithm 4. The docking pose is simply one
that is located near the frontal object of the nested chain.
This procedure has two modes: random and path-oriented. In
the random mode, the given path is empty, a planar unitary
translation vector ~v is randomly sampled. In the path-oriented
mode, planar unitary translation vector −~v is in the opposite
direction of the provided path in pose p1 of the frontal object,
which ensures that the docking point is behind the frontal
object. Pose p1 is then translated in the direction of −~v for
a distance of m× 2R with R being the radius of the largest
object in the list L of m nested objects. In our experiments
in the present work, we use only cuboid objects that have

similar sizes, but this approach can be generalized to objects
with different shapes and sizes. The random docking poses
are useful for pushing single objects, while path-oriented
docking poses are necessary for pushing trains of objects.

Algorithm 4: DOCKING-POSE
Input: π: pushing path, pI : configuration of objects, L:

sorted list of objects to push, m: number of
nested objects;

Output: Docking pose p ;
1 N ← size(L); i← L[N ] ;
2 if π = ∅ then
3 ~v = ( x

x2+y2 ,
y

x2+y2 , 0), x and y are random;
4 p1 = pI [i];
5 else
6 x1 = π(0);x2 = π( 1

H ); p1 = x1.p[i]; p2 = x2.p[i]; ;
7 ~v ← p2 − p1, ~v[3]← 0; ~v ← ~v

‖~v‖2 ;

8 Let R be the radius of the largest object in list L;
9 return p1 − 2m~vR;

Function RDV-POSE of Algorithm 5 performs the op-
posite function of DOCKING-POSE, it retrieves the pose
where the frontal object should be, given a docking pose,
a path π, and a list L of m nested objects to push along
path π. Poses returned by RDV-POSE and DOCKING-POSE
are translations of the frontal object’s pose in SE(2) that
preserve its rotation, which is why ~v[3] is set to zero.

Algorithm 5: RDV-POSE
Input: π: pushing path, L: sorted list of objects to

push, m: number of nested objects, pdocking:
docking pose;

Output: Rendezvous pose p ;
1 N ← size(L); i← L[N ] ;
2 p1 = pdocking;
3 Find t ∈ [0, 1] such that π(t).p[i] = p1;
4 x2 = π(t+ 1

H ); p2 = x2.p[i];
5 ~v ← p2 − p1, ~v[3]← 0; ~v ← ~v

‖~v‖2 ;
6 Let R be the radius of the largest object in list L;
7 return p1 + 2m~vR;

C. Pushing Policy with Receding Horizons

Algorithm 6 returns a path π for simultaneously pushing
a set of m objects nested so that the frontal object o ends
up in its final pose pF . First, the algorithm attempts to
sample a docking pose that is in the vicinity of the objects
to push and that can be reached by the end-effector in
a collision-free path πinit (lines 1-5). An RRT ∗ planner
is then called to find the shortest path π for moving the
frontal object to its goal (line 8). This path avoids collisions
with successfully rearranged objects Os and static obstacles.
Objects are transported along π through a sequence of
highly precise pushing actions to ensure that all the pushed
objects remain on π until they arrive at the goal. To achieve



this level of accuracy, π is divided into a sequence of H
small horizons. Each small horizon t has an intermediate
(waypoint) goal state xtarget that is given by state π(t+ 1)
(line 11).

To reach each intermediate goal xtarget in a robust manner
through a sequence of pushing actions, we formalize this
problem as a local Markov Decision Process (MDP). The
state space is the cartesian product of the 3D poses of the
jointly pushed objects and the end-effector. The 2D position
part of the state space is discretized into a regular grid with
a limited size, centered around the end-effector. The 1D
rotation part is also discretized by dividing the unit circle
into 36 arcs. The action space is also discretized into a
large number of small rotations and translations of the end-
effector. The stochastic transition function T that maps a
state s and action a into a distribution over next states s′ is
learned by first fine-tuning the friction and mass coefficients
of the object models inside a physics engine (Bullet), then
collecting a large set of training data D = {(s, a, s′)} for
random starting states s and actions a in the physics engine.
Since the true friction and inertial parameters of the objects
are not known precisely, next states s′ in the data are sampled
by adding small random noises to these parameters before
simulating the pushing actions. In the real setup, the poses
of the objects returned by the vision module are also subject
to small errors. Therefore, the 3D poses of the objects in
simulation are also perturbed by adding small random noises
to the data while learning the transition function of the MDP
model. A reward function is also defined by assigning small
negative rewards to all states except for the intermediate
goal states that are defined as the edges of the grid for
the positions, and landmark angles for the orientations. The
MDP is then solved by using the value iteration algorithm.
Solving this large MDP is time consuming and took around
nine hours on a single CPU. However, the MDP is solved
only once and offline. The optimal policy resulting from this
process is stored in a lookup table and used for all instances
of rearrangement planning that involve the same objects.

V. EVALUATION

We report here the results of our experiments for evaluat-
ing the proposed method, referred to as NRS (Algorithm 1).

A. Alternative approaches

We compare the proposed method to the piecewise linear
non-monotone Rearrangement Search (plRS) method [2].
The plRS method was originally proposed for pick-and-place
actions, but we extend it here to handle pushing actions
as well for a fair comparison. The plRS algorithm finds
collision-free paths. If a path is obstructed, then the blocking
objects are temporarily moved off the way to the nearest
pose in the free space. At a high level, plRS is similar
to our method in the sense that it also uses tree search
with backtracking to find the order in which the object
are moved. To assess the efficiency of the MDP policy
for pushing objects, we substitute function PUSH in our
algorithm with the Kinodynamic RRT procedure presented

Algorithm 6: PUSH
Input: (qI , pI): initial state, o: frontal object to push,

pF : final configuration of the object, m: number
of nested objects, Os: set of objects that are
successfully placed in their final configurations;

Output: Path π of the joint arm-objects configuration;
1 for i← 0; i < max attempts; i← i+ 1 do
2 p← DOCKING-POSE(∅, pI , L,m);
3 πinit ←TRANSIT(qI , q(p), pI);
4 if πinit 6= ∅ then
5 break;

6 if i = max attempts then
7 return ∅
8 π ← RRT ∗(πinit(1).q, πinit(1).p, pF , o,O,Os);
9 for t← 0; t < 1; t← t+ 1

H do
10 x← π(t);
11 xtarget ← π(t+ 1);
12 for i← 0; i < horizon; i← i+ 1 do
13 δq ← MDP-Policy(x, xtarget,m);
14 x← Physics-Propagation(x, δq);

15 if ‖x− xtarget‖2 > ε then
16 return ∅ ;

17 return {πinit|π};

in [25] and compare the two methods as well. Kinodynamic
RRT was used in [25] for nonprehensile rearrangement.

We also compare to a variant of our method, referred to
as mono-NRS, which is identical to NRS except that the
number of pushed objects in a given path is limited to one.
This is equivalent to replacing the powerset in line 4 of
Algorithm 1 with a set of mono-object sets.

B. Experiment Setup

We used the methods discussed above to solve four rear-
rangement types of tasks, three in simulation and one with a
real robot. The simulation tasks are open-space, tabletop, and
inside-box. The open-space setup is a 2m×2m workspace
without obstacles. The tabletop setup is a more realistic
environment constrained by the robot’s configuration space
and its field of view as shown in Figure 4. The inside-box
setup is another realistic environment with a tight free space.
For each task, 20 different scenes are generated by sampling
random poses of various numbers of objects. The reported
results are averages of these independent runs. In the open-
space task, the targeted final poses are arbitrary. In tabletop,
objects are pushed from the left side and packed on the right
side. In inside-box, the targeted final poses are assigned to
objects based on their initial poses, each object is assigned
to the final pose that is nearest to its initial pose.

The real robot experiments are performed on the setup
shown in Figure 1, using 9.5cm×6.5cm×3.5cm cuboid ob-
jects inside a 49cm×33cm cardboard box. We randomly
generated the initial collision-free poses of the objects in



(a) open-space (b) tabletop (c) inside-box

Fig. 5. Traveled distance of the end-effector as a function of the number of objects in the tasks.

Fig. 4. Experiments are performed on three tasks (left-down) open-
space, (right) tabletop, and (left-up) inside-box. The inside-box task
is performed both in simulation and with a real robot. In (right),
green represents the area where the end-effector can operate freely,
and blue is the field of view of the robot with two cameras.

each round, and used the same initial poses for all methods.
Poses of objects are then estimated by segmenting the point
cloud of the scene and performing PCA on the clusters. The
final arrangement poses are those shown in Figure 1 (right).
The experiments are performed on bins with two to seven
objects. Each experiment for each method is repeated four
times. The total number of tested real scenes is 96 (6×4×4).

C. Results

Position Rotation
plRS [2] 85.2%(±10.9) 82.4%(±12.2)
Kinodynamic RRT [25] 85.2%(±10.9) 76.9%(±14.3)
mono-NRS 85.2%(±03) 81.5%(±06)
NRS 88.0%(±05.6) 86.1%(±08.2)

TABLE I
SUCCESS RATES IN THE REAL ROBOT EXPERIMENT.

The time limit for all methods is set to 10 minutes per
task. Within this limit, all methods achieved a 100% success
rate in simulation. A successful object placement is defined
as one where the final reached pose is within 1cm and 10◦

of the final desired pose.

Fig. 6. Execution time as a function of the number of objects in the real
robot tasks.

Figure 5 shows the total traveled distance of the end-
effector as a function of the number objects used in the sim-
ulated rearrangement task. The results demonstrate that the
nested-push approach effectively reduces the end-effector’s
movement by moving multiple objects together. It also seems
like the advantage of this method becomes more pronounced
as more objects are considered. In fact, finding objects to
push together becomes easier in the presence of multiple
objects. On the other hand, when too many objects are
cramped inside a small space, it becomes more difficult to
successfully push more than one object at a time, which is
the reason why the advantage of NRS is clearer in task open-
space. Because collisions are allowed in the mono-NRS
method, objects are sometimes accidentally pushed to their
targeted final poses, which contributes to reducing the cost
of that method in inside-box. Accidental placements are less
likely to occur in large open spaces, such as open-space

The threshold for success in the real robotic experiments,
reported in Table I, is defined as 2cm for translation errors
and 15◦ for rotation errors. All methods achieved a reason-
able success rate, with no significant difference between the
methods. Execution time, however, is significantly smaller
when NRS is used, as shown in Figure 6, which confirms
the simulation results.
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