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Abstract— Recent progress in robotic manipulation has dealt
with the case of no prior object models in the context of
relatively simple tasks, such as bin-picking. Existing methods
for more constrained problems, however, such as deliberate
placement in a tight region, depend more critically on shape
information to achieve safe execution. This work introduces
a possibilistic object representation for solving constrained
placement tasks without shape priors. A perception method
is proposed to track and update the object representation
during motion execution, which respects physical and geometric
constraints. The method operates directly over sensor data,
modeling the seen and unseen parts of the object given
observations. It results in a dynamically updated conservative
representation, which can be used to plan safe manipulation
actions. This task-driven perception process is integrated with
manipulation task planning architecture for a dual-arm ma-
nipulator to discover efficient solutions for the constrained
placement task with minimal sensing. The planning process
can make use of handoff operations when necessary for safe
placement given the conservative representation. The pipeline
is evaluated with data from over 240 real-world experiments
involving constrained placement of various unknown objects
using a dual-arm manipulator. While straightforward pick-
sense-and-place architectures frequently fail to solve these
problems, the proposed integrated pipeline achieves more than
95% success and faster execution times.

I. INTRODUCTION

Object placement in tight spaces is a challenging problem
often encountered in robotic manipulation. It corresponds to
a task where constraints on the placement pose of the object
are imposed. It occurs, for instance, in logistics applications,
such as packing objects in boxes or packages for shipping. It
also appears in service robotics where, for example, a book
needs to be placed on a bookshelf and inserted in a small
space amongst other books.

Some of the recent work has focused on variants of this
problem, such as the bin-packing problem [1], [2] and table-
top placement in clutter [3]. Nevertheless, a geometric 3D
model for the manipulated object is assumed to be known.
This assumption is invalid in several scenarios due to the
wide variety of objects to be manipulated as well as the time
and effort required for obtaining the shape models. Some
recent robotic manipulation pipelines [4], [5] have shown the
capacity of picking novel and previously unseen objects from
clutter. These methods, however, assume no constraints on
the object placement pose. Therefore, the object is grasped
with any feasible and stable grasp without reasoning about
placement. Some alternatives consider placement constraints
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Fig. 1. A pick-handoff-place solution computed by the proposed pipeline
for inserting an object in a constrained space. The object is previously
unknown. The approach reasons about its shape before manipulating it to
fit it into the constrained space, where only few object poses succeed.

and do not require exact models of objects but operate
with category-level prior information. Examples include an
approach based on sparse keypoint representations [6] and
deep reinforcement learning [7]. While these approaches are
good to guide manipulation planning solutions, the employed
representations do not allow safe and generalizable manip-
ulation planning as no deterministic geometric or physical
constraints are considered. Moreover, task-relevant features
may not be easy to define based only on the category of the
manipulated object.

This work develops both a representation and a framework
that are general and can be easily used with task specifi-
cations that assume no priors, such as dialogue and deictic
expressions in the form of “Put that there” [8]. It should also
be flexible to allow the incorporation of additional semantic
constraints, such as “Put the mugs upright on the shelf” [6].
Thus, in order to deal with the many real-world scenarios
where object priors are not available, this work:
• Proposes a possibilistic representation to deal with shape

uncertainty within a manipulation planning pipeline. The
representation models the unobserved part of the object to
ensure computation of safe manipulation actions when no
prior object information is provided. The representation
can be tracked and updated while maintaining geometric
and physical consistency.
• Develops a robotic system for picking an object (with

no priors) from a table-top and placing it in a constrained
space as in Fig. 1. The system comprises of a dual-arm
manipulator with a single RGB-D sensor as well as a
vacuum-based and an adaptive, finger-based hand.
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• Demonstrates the use of handoffs for transferring objects
between two arms in a real-world setup. Handoffs allow
regrasping and more flexibility in solving constrained
placement as the initial pick may not directly allow a
placement. A handoff is a challenging constrained place-
ment task by itself as the object is inserted in the confined
space between the robotic hand’s fingers.
• Proposes a task-driven perception and manipulation plan-

ning pipeline that exploits the strength of the proposed
object representation for:

1. computing safe to execute manipulation actions
(picks, handoffs and placements) even without priors;

2. planning high-quality action sequences, which may in-
clude handoffs and re-sensing, given the representation;

3. minimizing the number of sensing actions needed to
complete the placement task; and

4. performing visual tracking and closed-loop execution
to counter the effects of stochastic in-hand motions that
often result from unmodeled physical forces, such as
gravity, inertia and grasping contacts.

Over 240 real-world manipulation experiments are per-
formed to study and evaluate the performance of the pro-
posed system. The experiments demonstrate that the pro-
posed pipeline is robust in handling objects with no shape
priors within the limitations of the end-effector and the
sensor. It achieves a task success rate of 95.82%, which is
much higher than straightforward pick-sense-and-place alter-
natives, while reducing requirements for sensing operations
and achieving faster execution times.

II. RELATED WORK

Instance-level object manipulation: Most existing efforts
in robotic manipulation operate over the assumption that
an exact, 3D geometric model of the manipulated object
is known in advance. The pose corresponding to the object
model [9], [10] is perceived in the scene and manipulation
actions [11], [12] are performed on the object to move it from
source pose to a pre-specified target pose. The assumption
of known geometric models may not always be true when
there are a wide variety of objects and obtaining models for
each of them is expensive.
Category-level object manipulation: In some scenarios,
prior knowledge about the objects might be available at the
category-level. There has been recent progress in category-
level pose estimation [13], [14], [15], [16], [17] but given
large intra-class shape variation in certain scenarios, it is
hard to capture the shape in a single category-level pose
representation. This often leads to planning manipulation
actions that end up in physically-unrealistic configuration for
certain object instances. A recent effort [6] proposed using
semantic keypoints as category-level object representation
for planning pick-and-place manipulation actions. While the
representation successfully addresses the issue of intra-class
variation, it does not have the dense geometric information
needed for safe manipulation. Another recent work, [7]
performs pick and place on objects by training an end-to-
end deep reinforcement learning framework within the task

context. Given that it is hard to interpret the learnt policies,
it is not clear how the policies learnt with rewards coming
from a specific task can be generalized to other similar tasks,
configurations and objects.
Task-agnostic grasping: There has also been considerable
effort and success in learning grasp quality metrics [18],
[19], [20], [21], [22] to generate robust grasps given partial
observations of novel objects. This, however, does not take
into account the task context and can often not even provide
enough choices for robust grasps required for the purpose of
manipulation planning.
Placement reasoning: Most manipulation pipelines for
novel objects do not address the problem of constrained
placement [4], [5]. Some related efforts learn the stable
placements of objects by defining features on pointclouds
and learning a placement score function [23]. Alternatively,
the problem of motion planning for placing grasped objects
in clutter typically requires know geometric models [3]. Few
efforts consider both picking and constrained placement for
novel objects.
Shape reconstruction and shape completion: Some works
reconstruct 3D models of in-hand objects by focusing on
object tracking and video segmentation respectively [24],
[25]. Such reconstructions aim to generate good quality
object models as opposed to this work, which performs
good-enough models to solve the current task. Given the
recent progress in learning-based shape completion [26],
[27], [28], this tools is being increasingly used in the context
of manipulation [29], [30]. Nevertheless, such techniques
typically require access to prior knowledge to complete
the object’s shape and the output is often too noisy for
manipulation planning in constrained places.

III. PROBLEM SETUP AND NOTATION

Rigid object: A rigid object geometry is defined by a region
occupied by the object O∗ ⊂ R3 in its local reference frame
that defines its shape. Given a pose P ∈ SE(3), the region
occupied by the object at P is denoted by O∗P .
Constrained placement: Given an object at an initial pose
Pinit ∈ SE(3), the goal of the constrained placement prob-
lem is to transfer the object O∗ to a pose Ptarget ∈ SE(3),
such that O∗Ptarget

⊂ Rplace where Rplace ⊂ R3 is the target
placement region.
Manipulation actions: The robotic arms utilize end-
effectors to alter the pose of objects once they are grasped.
The scope of this work is limited to prehensile manipulation
including the following actions:
a) Pick: A motion that ends at a configuration that allows
the end-effector to attach to and immobilize the object.
b) Placement: A motion that ends with releasing the object
once it attains a desired pose.
c) Handoff: Involving two arms, a handoff comprises of a
simultaneous pick by an arm, and placement by another.
Manipulation planning for constrained placement: Com-
puting a sequence of manipulation actions that can move
the object O∗ from Pinit to a target pose Ptarget, which
successfully solves a constrained placement task.
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Fig. 2. System components (left-top), alternative (center) and proposed pipelines (right) for the placement of a target object within a constrained region.
The problem takes as input (left-bottom) RGB-D sensor data and a 2d segmentation mask of the target object.

Such a solution consists of motions of the arms denoted
by Π, which is parametrized by the time of the motions.
Π(0) is the initial arm configuration, and Π(1) has an arm
placing the object at Ptarget.
Perception actions: It should be noted that no prior knowl-
edge is assumed about the object to be manipulated, i.e.,
O∗ is unknown. Thus, an object representation O is defined
over which manipulation planning can operate. In general
O 6= O∗. O will typically be derived from an initial view
of the object. This is typically incomplete, and might not be
sufficient to solve the constrained placement problem. This
necessitates a separate class of actions, namely perception
actions, which can update the object representation O with
additional sensing information.

The key issue relates to how O is estimated and used.
For instance, given the initial view, when object models are
available, object pose estimation can provide an O (and Pinit)
that is close to the entire geometry of O∗Pinit

. Without models,
shape completion methods try to estimate O∗ as well. The
shape representation needs to be accurate enough to estimate
the occupied volume of the object, in order to facilitate a
successful solution to the planning problem.

Now it is possible to describe the overall problem, which
combines perception and manipulation actions.
Task-driven Perception and Manipulation Planning:
Computing a sequence of perception and manipulation ac-
tions that are necessary for the successful completion of a
constrained placement task.

Let Pfinal be the resultant pose of the object after executing
the sequence of actions returned by task-driven perception
and manipulation planning. In general Pfinal 6= Ptarget. The
constrained placement task fails if the true object geometry
O∗ at Pfinal is not within Rplace. This could be a result of:
i) errors in the computation of Ptarget due to limitations of
the representation O w.r.t. O∗;
ii) errors in execution leading to Pfinal 6= Ptarget.

There is a need for an object representation O that is
accurate enough w.r.t. O∗ and guarantees a solution that can
be tracked and updated to ensure Pfinal is close enough to
the correct Ptarget, such that O∗Pfinal

∈ Rplace.

IV. SYSTEM DESIGN AND BASELINE

Fig. 2 (left) shows the hardware setup used in this work.
The robot being used is a dual-arm manipulator (Yaskawa
Motoman SDA10f ). The current work allows the control
of its two 7 d.o.f arms Cl and Cr. The left arm of the
robot is fitted with a narrow, cylindrical end-effector with a
vacuum gripper attached to the end; and the right arm is fitted
with a Robotiq 2-fingered adaptive gripper. A single RGB-D
sensor (Microsoft Azure Kinect) is mounted on the robot
overlooking both the picking and the placement regions.
The sensor is configured in the Wide-FOV mode to capture
images at 720p resolution with a frequency of up to 20Hz.
Fig. 2 (center) illustrates two alternative pipelines and Fig. 2
(right) highlights the proposed pipeline.
Baseline - Complete Shape Reconstruction: The baseline
is designed to pick the object with a task-agnostic pick (i.e.,
any pick that works) and then reconstruct the entire object by
moving to pre-defined viewpoints. After the reconstruction,
manipulation planning is performed on the reconstructed
shape to find and execute a solution for constrained place-
ment.

A drawback of this approach is that committing to a task-
agnostic pick might preclude solutions, which might have
been possible with a different pick. For instance, the initial
pick might not allow a direct placement or in some cases
even obstruct handoffs. Another drawback is that the amount
of object reconstruction required depends on the task. It
can be inefficient to fully reconstruct the object if a robust
solution with partial information can be found. Finally, even
with a large number of perception actions, some parts of the
objects might be missing, which can still lead to execution
failures. For instance, this can happen if say the bottom
surface is not reconstructed and fingered grasps interact with
the unmodeled part of the object during execution.
Alternative - Shape completion: An alternative is to per-
form shape completion to fill in the part of the object that is
occluded from a single sensor. This is typically performed via
learning priors on objects or categories or via assumptions,
such as object symmetry. Picks and placements are computed
over this completed shape. Any action computed over such
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an output cannot guarantee safe execution, since there are
no guarantees on the parts of the shape being completed.
For prehensile manipulation and constrained placement, any
noise in shape completion can lead to collisions.

Even if the computed plans work in simulation for either
of the alternatives, there might be execution failures due to
unmodeled motions of object, such as within-hand motion
(which violate the prehensile assumption). Thus, a closed-
loop execution that would keep track of the object during
manipulation and perform online adjustments is essential.

V. PROPOSED PIPELINE

This section outlines the primary contributions of the
current work: a) a shape representation, b) an online pose
and shape tracking method that can leverage the shape rep-
resentation, and c) a pipeline (Fig 2, right), which composes
different modules to solve the constrained placement task.
The design choices made in the pipeline address the issues
highlighted in the above pipelines. The proposed pipeline
begins with initializing an object shape representation.

Object Shape Representation: An object is represented
as a point set O that consists of two mutually exclusive
sets of points S and U in R3. S is a set of seen points
on the surface of the object that are observed by the RGB-
D sensor. U is a set of unseen points in space that have
not been observed by the sensor given its observations but
have a non-zero probability of belonging to the target object.
Thus O = S ∪ U , where, S ∩ U = φ. The conservative
representation ensures that the optimal object shape O∗ ⊆ O.

Given the input RGB-D images (Irgb, Idepth) and the
target object mask Tmask, the object representation O is
initialized with it’s origin 0O at the centroid of the 3D
segment corresponding to Tmask and the reference frame
at identity rotation with respect to the camera frame. A
voxel grid is initialized at 0O and each voxel is classified
as either 1) observed and occupied S, 2) unobserved U ,
or 3) observed and unoccupied, i.e., empty voxels that are
implicitly modeled as a set of points {p ∈ R3 | p /∈
S ∪ U , ‖p − 0O‖ < Dmax}, for a maximum dimension
parameter Dmax = 30cm.

Grasp computation: Grasp sets Gl and Gr are computed
over the object shape representation O by ensuring stable
geometric interaction with the observed part of the object S
and being collision-free with both S and U , thereby ensuring
safe and successful execution. It is also crucial for the success
of manipulation planning to have large, diverse grasp sets at
its disposal. This is distinct from the typical objective of
grasp generation modules that primarily focus on the quality
of the top (few) returned grasps. For instance, in Fig. 3
top-right, the grasps are spread out over O with different
approach directions, which provide options to manipulation
planning and aid solution discovery.

Vacuum grasps Gl are computed by uniformly sampling
pick points and their normals from S, and ranked in quality
by their distance from the shape centroid. The grasp set Gr

for the fingered gripper samples a large set of grasps over
O according to prior work [19]. Sampled grasps are then

Fig. 3. The object is represented by a set of occupied, unseen and empty
voxels. This representation is tracked during manipulation such that it can
be updated based on new viewpoints to reduce the uncertainty in shape
while maintaining the physical consistency of the representation such as the
empty voxels in the object frame can never be occupied and unseen voxels
can only reduce in size by being replaced by occupied or empty voxels.

pushed forward along the grasp approach direction until the
fingers collide with either points from S or U , and ranked
by the alignment between the finger and contact region on
S.

Placement Computation: Given the placement region
Rplace, and the object representation O, two boxes are com-
puted, 1) the maximum volume box Bplace within Rplace and
2) the minimal volume box BO that encloses O. Candidate
placement poses (Ptarget) correspond to configurations of
BO which fit within Bplace. A discrete set (24) of configu-
rations for the box is computed by placing BO at the center
of Bplace and validating all axis-aligned rotations. The total
set of poses returned is Pplace, such that any pose in it is a
candidate Ptarget.

Manipulation Planning: The input to manipulation
planning is the estimated object representation O, the grasp
sets available for both arms, Gl,Gr, and the placement
poses Pplace. Manipulation planning returns a sequence of
prehensile manipulation actions that ensure a collision free
movement (Π) of the arms and O such that the object is
transferred from Pinit to some Ptarget ∈ Pplace. In the
absence of any errors, the execution of these actions solves
the constrained placement task.

As a part of the task planning framework, a probabilistic
roadmap [31] consisting of 5000 nodes is constructed using
the PRM∗ algorithm [32], for each of the arms. The grasps and
placements for each arm can be attained by corresponding
grasping, and placement configurations of the arms, obtained
using Inverse Kinematics solvers. Beginning with the initial
configuration of the arms, the high-level task planning prob-
lem becomes a search over a sequence of the manipulation
actions, achievable by the pick, place or handoff configu-
rations. This is described in the form of a forward search
tree [33] which operates over the same roadmap [34] by
invalidating edges (motions) that collide with the object,
or the other arm. The search tree is further focused by
only expanding pick-place and pick-handoff-place action
sequences. Each such sequence can be achieved through a
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combination of different choices of grasping, handoff, and
placement configurations. The search traverses the set of
options for grasps in the descending order or quality, and
returns the first discovered solution that successfully achieves
a valid target placement (Ptarget ∈ Pplace).

Composition into Pipeline: As in Fig 2(right) manipulation
planning is first performed over the grasps and placements
computed on the conservative estimate of the shape (O =
S ∪ U). If the planning fails to find a solution, grasps and
placements are re-computed over an optimistic shape (S).
If no placements are achievable at this point, the problem
is not solvable since S ⊂ O ⊂ O∗. The solution with
the optimistic shape provides the immediate picking action.
After the pick, the object is moved to the next best view to
update the conservative shape estimate O with a manipula-
tion planning attempt for the updated shape. The solution is
then executed in a closed-loop fashion using tracking. The
proposed pipeline benefits from the fact that manipulation
planning could be performed early in the process without
compromising on the safety of execution. This also allows it
to solve the problem with minimal perception actions.

The following modules describe the steps involved in
tracking, shape-update and closed-loop execution.

Shape and Pose Tracking: The object pose P t changes
over time with the gripper manipulating it, where Et ∈
SE(3) denotes the gripper pose at time t. Between con-
secutive timestamps for a perfect prehensile manipulation,
∆P t−1:t = ∆Et−1:t which is the change in the gripper’s
pose. Tracking is introduced to account for non-prehensile
within-hand motions which violates this nicety.

The object segment at any time st is computed from a)
points lying in a pre-defined region of interest (Dmax) in
the reference frame of the gripper, and b) by eliminating
the points corresponding to the gripper’s known model. An
update to the pose of the object, ∆P t−1:t is computed (and
updated) in three steps:

1) Assuming rigid attachment of the object with the end-
effector, the transformation, ∆Et−1:t is applied to the object
segment in previous frame st−1 to obtain the expected object
segment at time t, s′t.

2) To account for any within hand motion of the object, a
transformation is computed between s′t and the observation
st via ICP. While ∆P t−1:t = ∆Et−1:t ∗∆PICP provides a
good estimate of relative pose between consecutive frames,
accumulating such transforms over time can cause drift.

3) A final pointset registration process is utilized to
locally refine the pose. An ICP registration step with a
strict correspondence threshold is performed between the
object representation (O) at pose P t = P t−1 ·∆P t−1:t, and
the current observation st. The resulting transformation is
applied to ∆P t−1:t, and correspondingly P t.

During manipulation, when a new viewpoint is encoun-
tered, the output of pose tracking is utilized to update the
object’s shape which assists tracking in future frames.

Update Shape: The object shape is updated with every
new viewpoint. As mentioned above this might be necessary
to reduce the conservative estimate of the shape and help

with pose tracking. For the case when the update is invoked
as a perception action, the first step is to compute the
next best view amongst a set of discrete viewpoints that
exposes the most number of unobserved voxels (in U). In
the implementation rotations about the global Z-axis are
evaluated. This is found by rendering S at each of the
viewpoints and computing the count of U that are unoccluded
in the renderings. This viewpoint is most-likely to reduce the
conservative volume of the object. The object is then moved
to this viewpoint and O is updated.

The size of the set O (and thus the conservative volume) is
the largest at initialization. Any update to O either removes
a point p ∈ U (if it is observed to be empty) or p can be
moved from U to S. To update O, the observed segment
st is transformed to the object’s local frame based on the
pose P t. For each point p on the transformed point cloud,
its nearest neighbor pS ∈ S and pU ∈ U are found. If |
pS − p |< δc where δc is the correspondence threshold, p is
considered to be already present. Otherwise, if | pU−p |< δc,
pU is removed from U and added to S . Finally all points
in UPt

are iterated over to remove points in U and thus
in O which belong to the empty part of space based on
the currently observed depth image. Applying these physical
and geometric constraints in the update process significantly
reduces the drift that occurs in simultaneous updates to the
object’s pose and shape.

Closed Loop Execution: Given a manipulation planning
solution describing the motions (Π) of the arms, and the
object over time, it is the objective of closed-loop execution
to ensure that any errors in execution or non-prehensile
grasping interactions are adjusted for. At any time t, Π(t)
describes how the arms are configured, and assuming prehen-
sile grasps, the object pose P t∗. Tracking returns the current
estimate P t. If P t 6= P t∗ the remainder of the motion has to
be adjusted to account for ∆P = P t∗ − P t. Large reported
errors in terms of ∆P might need re-planning, which is
not part of the current work. In our implementation this
adjustment is performed before handoffs, and placements by
doing local changes to Π.

Fig. 4. (left) Change in grasp as the object is being picked due to the
center of mass of the object being away from the pick point. This combined
with other nuances of real-world manipulation, such as unmodeled contact
parameters during handoff leads to the situation where the object does not
reach the planned placement pose. Thus adjustment is made based on the
closed loop execution module (right) before handoffs and placement.

VI. EVALUATION

More than 240 real-robot experiments are performed using
different unknown objects and placement constraints to as-
sess the proposed system. The experimental setup and results
are reported in the following section.
Design Choices: The experiment setup design was carefully
chosen to fairly evaluate the efficacy of the current contri-
butions - the shape representation and tracking, and robust
pipeline that leverages the two.
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Fig. 5. Objects used in the experiments (top). Examples of initial
configurations (left). Examples of placement constraints (right).

A dual-arm manipulator described in Fig 2(left) provides
a powerful manipulation task-solving capability via a rich
set of actions, different end-effectors, handoff interactions,
extended reachability etc.

Objects: Experiments are performed over 5 YCB [35]
objects (Fig. 5) of different shapes and sizes. It should be
noted that no models are made available to the method.

The objects are placed on a table-top scene in front of the
left arm (vacuum gripper), with the target placement region
centrally aligned in front of the robot, reachable by both
arms. The constrained placement solutions here can therefore
involve a direct placement by the left arm, or a handoff-
placement with the right arm. Different initial configurations
of the object will affect the nature of the task planning
solution by virtue of a) different available initial picks, and
b) different conservative shape representation based on how
much of the object is unseen at the configuration.

Initial Configuration: For each stable resting pose of the
object in front of the left arm, rotations were uniformly sam-
pled along the axis perpendicular to the plane of the table.
Configurations with limited reachable grasps are ignored.

Placement Region: An opening is created on the table sur-
face where the object needs to be placed. This corresponds to
the placement task. Two placement scenarios are evaluated
as shown in Fig 5 (bottom right). Using the measures of
three canonical dimensions measured from the object, the
first class of opening size allows four out of six approach
directions for placement to fit, while the other only allows
two approach directions. An error tolerance of 2.00cm is
considered in the dimension of the opening.

The idea is that more constraints (lesser approach direc-
tions) need deliberate planning to choose precise grasp and
handoff sequences that allow the placement. The low error
tolerance also motivates the use of tracking to adjust within-
hand motions of the object in closed-loop execution.
Evaluation metrics: The following metrics are reported
for the manipulation trials and used for evaluating the task
success rate and efficiency of the manipulation pipelines.
Success (S) denotes the percentage of trials that resulted
in collision-free, successful insertion of objects within the
constrained opening, while Marginal Success (MS) records
trials where the object grazes the boundaries of the con-
strained space during a successful insertion. The failures
include Placement failures where the final act of placement

Initialize shape Pick Update Shape Handoff Placeproblem init shape update shapepick handoff place

Fig. 6. Qualitative results indicating different solution modes of the
proposed pipeline.

fails to insert the object, Handoff failures where executing
the transfer of object between the arms fails, and No Solution
cases when planning fails and nothing is executed.

In terms of quality metrics, Task planning time records
open-loop manipulation planning, Move time records the time
the robot is in motion, and Sensing actions counts the number
of times the robot actively reconfigures the object to acquire
sensor data from a new viewpoint.

Fig. 7. Figure indicates the split of outcomes of experiments within success
and various failure cases for each category.

Comparison: Shape completion, and reconstruction have
been mentioned as potential alternative solutions to the
problem. The focus of this work is on manipulation of
objects with no prior information. Shape completion can only
operate under the existence of priors, or with heuristic as-
sumptions like symmetry etc. Our proposed pipeline reflects
an integrated perception, planning, and execution paradigm
that is an improvement upon both alternatives, and leverages
the benefits of our shape representation and tracking. As
such, we choose to perform an ablation study that improves
upon the more model-agnostic and generalizable of the
alternatives - shape reconstruction as the Baseline (BL).

240 trials are performed with combinations of object
sets, initial configurations and placement constraints. Out
of these, 120 experiments use the Baseline pipeline shown
in Fig. 2 and the rest use the proposed pipeline.

Baseline (BL): The baseline corresponds to the shape
reconstruction pipeline but without the option for handoffs.
Once picked with a task-agnostic grasp, the object is moved
in front of the sensor at a predefined pose, and RGB-D
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TABLE I
Object #Experiments Baseline (+) Handoff (+) Shape-representation

S (%) S + MS (%) S (%) S + MS (%) S (%) S + MS (%)
001 chips can 20 15.00 15.00 35.00 40.00 90.00 90.00
003 cracker box 30 30.00 33.33 46.66 56.66 90.00 93.33
004 sugar box 30 23.33 23.33 53.33 60.00 93.33 96.66
006 mustard bottle 20 0.00 0.00 45.00 55.0 100.00 100.00
002 bleach cleanser 20 0.00 0.00 50.00 60.00 100.00 100.00
Overall 120 15.83 16.66 46.66 55.00 94.16 95.82

Evaluating the task success rate of the proposed manipulation pipeline against a baseline. Overall 240 manipulation trials were
executed, where the results corresponding to Baseline and Baseline + handoff are derived from the first set and the shape
representation results are derived from the second set. S indicates successful insertion in the constrained space, and MS stands
for marginal success, where the object made contact with the boundary of the constrained space but the task still succeeded.

TABLE II
Baseline + Handoff Shape-representation

sense-place sense-hoff-place overall place sense-place hoff-place sense-hoff-place overall
#instances 20.0 46.0 66.0 18.0 22.0 51.0 24.0 115.0
tp time (s) 4.29 ± 3.59 5.87 ± 2.88 5.39 ± 3.20 1.10 ± 0.47 6.69 ± 4.15 5.41 ± 3.14 13.50 ± 8.69 6.67 ± 6.22
move time (s) 9.92 ± 1.04 19.91 ± 1.87 16.88 ± 4.88 6.13 ± 2.76 7.24 ± 1.24 18.12 ± 2.02 18.22 ± 1.67 14.18 ± 5.79
sense actions 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.0 0.0 ± 0.0 1.36 ± 0.56 0.0 ± 0.0 1.41 ± 0.57 0.59 ± 0.81

Comparing the quality and computation time for the solutions found with the baseline and the proposed approach. The data is presented only for successful
executions within each category.

images are captured from 4 different viewpoints by rotating
the object along the global Z-axis by an angle of π/2. All
4 views are merged to obtain the object’s reconstruction.
Manipulation planning is then invoked to find a pick-and-
placement (no handoff) solution with the left arm if it exists.
The baseline achieves a very low success rate (Table. I) and
the most dominant failure mode is No Solution (Fig. 7) since
the initially chosen grasp might not allow task completion.

(+) Handoff (HO): An improvement over BL, this allows
the manipulator an additional option of transferring the
object to the fingered gripper which can then be used for
reorientation and placement in the constrained space. The
overall success rate increases significantly when additional
handoff actions are available. Nonetheless, the handoff by
itself can be seen as a constrained placement problem, and
as this approach commits to a pick for object reconstruction
without manipulation planning, it could still lead to No
solution cases specially for relatively smaller sized objects
such as for the Mustard bottle (Fig. 7). The grasps with
the fingered gripper are computed assuming that the recon-
structed geometry is indeed the complete model of the object.
However, views across a single rotation are not sufficient
to complete the object shape. This causes grasps to collide
with the unmodeled parts of the object during execution
(Handoff failures). Handoff actions often disturb the within-
hand object pose and can cause Placement failures.

(+) Shape representation (SR): The proposed pipeline
reflects Fig 2 (right). The method discovers four different
classes of solutions (Fig 6) which compose a sequence of
shape initialization, picks, updates, handoffs and placements.
The key benefit is that our pipeline chooses the mode of
operation based on the problem at hand, and tries to (a)
perform the minimum number of sensing actions (b) with a
minimum number of manipulation actions (c) in a robust
fashion that accounts for non-prehensile errors (d) while
guaranteeing safe execution and successful task completion.

The results reflect that our pipeline achieves all of the
above by leveraging the proposed shape representation, in-

tegrated perception and planning in the pipeline, and closed
loop execution to achieve a success rate of 95.82%.

SR eliminates the cases of No Solution by performing
manipulation planning with a large, diverse, and robust set
of grasps. It ensures successful execution of the task by
conservative modeling of the unseen parts of the object to
avoid collision and by tracking the shape representation to
account for any in-hand motion of the object and adjusting
the computed plan. The failure cases for this approach are
due to failures in tracking. If the within-hand motion is too
drastic motion plans might not be found for local adjustments
to the initially computed solution.

As indicated in Fig. 6 (left) and Table. II, the proposed
solution can find one of the four solution modes with varying
solution quality. The advantage in terms of efficiency comes
from the fact that the proposed solution requires additional
sensing in only 38% of the runs and the mean number of
sensing actions is 1.36 as opposed to the 4 additional sensing
actions in every run for the baseline approach. Also the fact
that the shape representation allows task planning before
picking with multiple grasping options increases the number
of single-shot pick-and-place solutions with less motion time
in addition to avoiding No solution scenarios. The overall
execution time reduces significantly due to the combination
of these factors. The proposed pipeline shows clear benefits
across all the metrics over the extensive real-world trials.
Demonstrations and Publicly-shared Data: On top of
the benchmark, additional experiments are performed to
demonstrate the proposed system. The first demonstration is
performed over mugs, some with and some without handles,
with the handles being occluded in the first viewpoint. Such
a case imposes ambiguity for shape completion approaches,
but is solved with the proposed pipeline as demonstrated in
the accompanying video. The second demonstration presents
the task of flipping objects and placing them on the table.
For objects with no geometric models, tasks specification
for object placement can either be relative to constraints in
the environment or relative to the initial pose. The following
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data items corresponding to all the manipulation runs for the
proposed solution are made publicly available at https://
cs.rutgers.edu/˜cm1074/task-driven.html. 1) Task
specification: Initial RGB-D data, object segment, placement
region. 2) RGB-D data at 20Hz for the executed trajectory.

Fig. 8. Demonstrations of the pro-
posed pipeline’s operation (left) in the
presence of shape ambiguity (right) on
the object flipping task.

3) Robot arm transfor-
mations and end-effector
grasping status for both
grippers. 4) Pose esti-
mates of the initial seg-
ment returned by the
tracking module for ev-
ery frame. The data can
be used as a manipulation
benchmark or to study
tracking shapes and poses of objects in-hand during manip-
ulation.

VII. LIMITATIONS AND FUTURE WORK

The current work paves the way for the paradigm of
task-driven perception and manipulation using a possibilistic
object representation for solving constrained placement tasks.
The results show performance benefits from the design prin-
ciples adopted in the representation, tracking, and pipeline
proposed in the current work.

There are some limitations to the current work that can be
addressed in future research. The pick/grasp computation is
not the focus here. General grasping strategies on such shape
representations can prove useful. The depth sensor used in
this study is not suited for reflective and thin objects, and
shows significant distortion and smoothing. The bounding
box representation for placement is an approximation that
is computationally efficient and sufficient for most cases but
not ideal. This can be resolved by performing mesh recon-
struction and sampling configurations for placement based on
those. Segmentation in the presence of clutter is challenging.
It is interesting to study the effect of segmentation noise and
occlusion due to the clutter on this process. Finally, it is
often not possible or safe to insert the object completely
in a narrow opening, and in such cases it can be dropped
from some height. This process is significantly affected by
the object’s weight distribution and needs to be modeled or
addressed using a controller.
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