
Competition and Coordination in Stochastic

Games

Andriy Burkov, Abdeslam Boularias, and Brahim Chaib-draa

DAMAS Laboratory
Université Laval

G1K 7P4, Quebec, Canada
{burkov,boularia,chaib}@damas.ift.ulaval.ca

Abstract. Agent competition and coordination are two classical and
most important tasks in multiagent systems. In recent years, there was a
number of learning algorithms proposed to resolve such type of problems.
Among them, there is an important class of algorithms, called adaptive
learning algorithms, that were shown to be able to converge in self-play to
a solution in a wide variety of the repeated matrix games. Although cer-
tain algorithms of this class, such as Infinitesimal Gradient Ascent (IGA),
Policy Hill-Climbing (PHC) and Adaptive Play Q-learning (APQ), have
been catholically studied in the recent literature, a question of how these
algorithms perform versus each other in general form stochastic games
is remaining little-studied. In this work we are trying to answer this
question. To do that, we analyse these algorithms in detail and give a
comparative analysis of their behavior on a set of competition and coor-
dination stochastic games. Also, we introduce a new multiagent learning
algorithm, called ModIGA. This is an extension of the IGA algorithm,
which is able to estimate the strategy of its opponents in the cases when
they do not explicitly play mixed strategies (e.g., APQ) and which can
be applied to the games with more than two actions.

1 Introduction

Competition and coordination between autonomous agents are two classical and
most important tasks in multiagent systems. Coordination is especially impor-
tant in multi-robotic systems where a number of non-adversarial robots (but not
necessarily explicitly cooperative) are aimed to accomplish a task while being
limited in communication and in knowledge about principles of rationality under-
lying their counterparts. On the other hand, competition is a natural condition
of most real life situations. The agents that share limited resources, negotiate
about prices and, in general, have proper interests first or last find themselves
in a competitive situation.

Typically, multiagent environments are modeled as stochastic games [1].
Stochastic game is a model to represent multi-state multiagent environments
having Markovian property and a stochastic inter-state transition rule, and can
be used to model inter-agent interactions in such environments. Formally, a

satochastic game is a tuple (n,S,A1...n, T,R1...n), where n is the number of
agents, S is the set of states s ∈ S now represented as vectors, Aj is the set of
actions aj ∈ Aj available to agent j, A is the joint action space A1 × . . .×An,
T is the transition function: S ×A × S 7→ [0, 1], Rj is the reward function for
agent j: S×A 7→ R and s0 ∈ S is the initial state.

Further, in the article we will refer to a game theoretic terminology, therefore
let’s introduce some useful notions of the Game Theory here. A matrix game is
a tuple (n,A1...n, R1...n), where n is the number of players, Aj is the strategy
space of player j, j = 1 . . . n, and the value function Rj : A1 × An 7→ R defines
the utility for player j of a joint action a ∈ A = A1× . . .×An. A mixed strategy
for player j is a distribution πj , where π

j

aj is the probability for player j to

select some action aj . A strategy is pure if π
j

aj = 1 for some aj . A strategy

profile is a collection Π = {πj |j = 1 . . . n} of all players’ strategies. A reduced

profile for player j, Π−j = Π\{πj}, is a strategy profile containing strategies
of all players except j, and Π

−j

a
−j is the probability for players k 6= j to play

a joint action a−j ∈ A−j = A1 × . . . × Aj−1 × Aj+1 × . . . × An where a−j is
〈ak|k = 1 . . . n, k 6= j〉.

Recently, there was a number of learning algorithms proposed to resolve
decision problems in stochastic games [1–11]. Typically, these algorithms are
constructed to iteratively play a game with an opponent, and, by playing this
game, to converge to a solution. Solution in game theory is called equilibrium. We
say that the playing strategies of all agents forms an equilibrium in a stochastic
game if a unilateral deviation of an agent from its current strategy contradicts
its principles of rationality (usually, maximization of the utility).

Among the learning algorithms proposed for the stochastic games, there is
an important class, which we call adaptive learning algorithms, that are proven
to be able to converge in self-play (i.e., when learning “against” agents that are
using the same learning algorithm) to an equilibrium solution in a wide variety
of repeated matrix games. The advantage of the adaptive learning algorithms
with respect to other class of multiagent learning algorithms, such as equilibrium

learning algorithms [1, 7, 8], is that the latter are calculating an equilibrium so-
lution regardless the other agents’ actual behavior (i.e., equilibrium learners
assume that their opponents are rational, though they may not be) and their
convergence is limited to a number of cases where these equilibria are identifi-
able. The adaptive learning agents, on the contrary, make no assumptions about
their opponents’ rationality and learning capabilities, and about the solution
type they are searching. Adaptive agents are adapting to their opponents and
a solution is found as an emerging result of this adaptation. Among adaptive
algorithms, the most outstanding and theoretically sound ones are Infinitesimal
Gradient Ascent (IGA) [4], Policy Hill-Climbing (PHC) [2] and Adaptive Play
Q-learning (APQ) [3]. These algorithms were empirically tested by their respec-
tive authors on the different test benches. However, although these algorithms
were tested on a number of repeated matrix games and on some examples of
stochastic games, a number of questions is remaining. First, whether these al-
gorithms are well extensible to the general form stochastic games. Second, how

these algorithms are comparable between themselves (in terms of convergence
and relative effectiveness against each other).

In this paper we are trying to answer these questions. To do that, we analyse
these algorithms in detail and give a comparative analysis of their behavior on a
set of competition and coordination stochastic games, which includes two-robot-
on-the-grid coordination game and two-robot-predator-prey competition game.
Further, we introduce a new multiagent learning algorithm, called ModIGA, a
modification of the IGA algorithm.

2 Adaptive Learning Algorithms

As we noted above, to learn a “good” policy in stochastic games a number
of adaptive algorithms have been proposed. They can be conventionally divided
onto three groups: (1) Opponent Modelling algorithms [3, 5], (2) Policy Gradient
based algorithms [2, 4] and Adaptivity Modelling algorithms [9–11]. Although the
algorithms of the third group are very interesting and empirically shown to have
several attractive properties, such as exploiting their opponents in adversarial
games [10, 11] and converging to a solution maximizing welfare of both players
in non-adversarial two-player matrix games [11], there are still no theoretical
proofs of their correctness, while in the first two groups there are algorithms
that were formally proven to have such properties as rationality and convergence.
In our analysis, we opted for the following three adaptive learning algorithms:
Infinitesimal Gradient Ascent (IGA) [4], Policy Hill-Climbing (PHC) [2] and
Adaptive Play Q-learning (APQ) [3] because, as we have just noted, (1) they
are theoretically proven to converge to a stable solution (at least in self-play),
(2) they represent two major classes of learning algorithms, those able to play
pure strategies only (APQ) and those able to play mixed strategies (IGA, PHC).

In this section we analyze in detail these algorithms. Also, we introduce a
new multiagent learning algorithm, called ModIGA. This is an extension of the
IGA algorithm, which is able to estimate the strategy of its opponents in the
cases when they do not explicitly play mixed strategies (e.g., APQ) and which,
unlike IGA, can be applied to the games with more than two actions.

2.1 Adaptive Play Q-learning

Formally, each player j playing Adaptive Play [12] saves in memory a history
H

j
t = {a−j

t−p, . . . ,a
−j
t } of the last p joint actions played by the other players. To

select a strategy to play at time t+1 each player randomly and irrevocably sam-
ples from H

j
t a set of examples of length l, Ĥ

j
t = {a−j

k1
, . . . ,a

−j
kl
}, and calculates

the empiric distribution Π̂−j as an approximation of the real reduced profile of
strategies played by the other players, using the following:

Π̂
−j

a
−j =

C(a−j , Ĥ
j
t)

l
(1)

where C(a−j , Ĥ
j
t)) is the number of times that the joint action a−j was played

by the other players according to the set Ĥ
j
t . Given the probability distribution

over the other players’ actions, Π̂−j , the player j plays its best reply, BRj(Π̂−j),
to this distribution with some exploration. If there are several equivalent best
replies, the player j randomly chooses one of them. Young [12] proved the con-
vergence of Adaptive Play to an equilibrium when played in self-play for a big
class of games such as the coordination and common interest games.

Adaptive Play Q-learning (APQ) is an extension of Young’s algorithm to
the multi-state stochastic game context. To do that, the usual single-agent Q-
learning update rule [13] was modified to consider multiple agents as follows:

Qj(s,a)← (1− α)Qj(s,a) + α[Rj(s,a) + γ max
aj∈πj(s′)

U j(Π̂(s′) ∪ {πj(s′)})]

where j is an agent, a is a joint action played by the agents in state s ∈ S,
Qj(s,a) is the current value for player j of playing the joint action a in state
s, Rj(s,a) is the immediate reward the player j receives if the joint action a is
played in the state s and πj(s′) are all possible pure strategies that are available
for player j in state s′.

2.2 Infinitesimal Gradient Ascent

To examine the dynamics of using policy gradient in repeated games, Singh,
Kearns and Mansour modeled this process for two-player, two-action matrix
games. They called their approach Infinitesimal Gradient Ascent (IGA) [4]. Un-
like APQ, which can learn and play pure strategies only, IGA players were de-
signed to be capable to learn and play mixed strategies.

The problem of the gradient ascent in matrix games was modelled by Singh
and colleagues as having two payoff matrices for the row and column players, r

and c, as follows:

Rr =

[

r11 r12

r21 r22

]

, Rc =

[

c11 c12

c21 c22

]

If row player r selects an action i and the column player c selects an action j,
then the payoffs they obtain are Rr

ij and Rc
ij respectively.

Because the game being modelled has only two available actions for each
agent, a mixed strategy can be represented as a single value. If we let α ∈ [0, 1] be
a probability the player r selects the action 1, then 1−α will be the probability to
play the action 2. Similarly, we can define as β ∈ [0, 1] and 1−β the probabilities
to play actions 1 and 2 by the player c. The expected utility of playing a strategy
profile {α, β} for player r can then be calculated as follows:

Ur({α, β}) = r11αβ + r22(1− α)(1− β) + r12α(1− β) + r21(1− α)β

At each game iteration, to estimate the effect of changing its current strategy,
player r calculates a partial derivative of the expected utility with respect its
current mixed strategy:

∂Ur({α, β})

∂α
= βu− (r22 − r12)

where u = (r11 + r22)− (r21 + r12).
Having calculated the gradient, IGA agent adjusts its current strategy in the

direction of this gradient as to maximize its utility:

αt+1 = αt + η
∂Ur({αt, βt})

∂α

where η is a step size, usually 0 < η ≪ 1. Similar equations can be written for the
column player c as well. Obviously, the opponent’s mixed strategy is supposed
to be known by the players.

Singh and colleagues proved the convergence of IGA to an equilibrium (or,
at least, to the equivalent average reward of an equilibrium), when played in
self-play, in the case of the infinitesimal step size (limη→0).

2.3 Policy Hill-Climbing

The first practical algorithm capable to play mixed strategies that realized the
convergence properties of IGA was Policy Hill-Climbing (PHC) learning algo-
rithm [2]. The PHC algorithm requires neither knowledge of the opponent’s
current stochastic policy nor its recently executed actions (the latter is required
for the APQ algorithm, for example). The algorithm, in essence, performs hill-
climbing in the space of mixed strategies and is, in fact, a simple modification
of the single-agent Q-learning technique. It is composed of two parts. The first
part is the reinforcement learning component, which is based on the Q-learning
technique to maintain the values of the particular actions in the states:

Q̂j(st, a
j
t)← (1− α)Q̂j(st, a

j
t) + α

[

R
j
t (st, a

j
t) + γ max

a
j

t+1

Q̂(st+1, a
j
t+1)

]

The second part is the game theoretic component, which maintains the current
mixed strategy in each system’s state. The policy is improved by increasing the
probability that the agent selects the highest valued action, by using the small
step δ which is called learning rate:

π
j

aj (s)← π
j

aj (s) + ∆
saj (2)

where

∆
saj =

{

−δ
saj if aj 6= argmaxa′j Q̂(s, a′j)

∑

a′j 6=aj δ
sa′j otherwise

(3)

δ
saj = min

(

πj(s, aj),
δ

|Aj | − 1

)

(4)

while constrained to a legal probability distribution. If δ = 1 the algorithm
is equivalent to the single-agent Q-learning as soon as the learning agent will
deterministically execute the best action (greedy policy). As well as the single-
agent Q-learning, this technique is rational and converges to the optimal solution
if the other players follow a fixed (stationary) policy. However, if the other players
are learning, the PHC algorithm may not converge to a stationary policy though
its average reward will converge to the reward of a Nash equilibrium [2].

2.4 ModIGA

While IGA demonstrated good convergence results, its applicability in reality
is limited to the two-action case where the opponent is playing an identifiable

mixed strategy. This assumption does not reflect real nature problems. In reality,
we are usually expecting agent to observe the opponent’s actions rather than
its mixed strategy. Furthermore, the real life learning agents, as well as their
counterparts, are intended to have more than two available actions.

We introduce an improved version of the IGA algorithm, which is able to
learn a mixed strategy for more than two simple actions and to estimate the
strategy of its opponents even if they do not explicitly play a mixed strategy.
(This is the case, for example, when playing against APQ algorithm.)

To make IGA agent able to estimate the strategy of its opponent we used
the Adaptive Play’s probability estimation technique described in Subsection
2.1. Having calculated the estimation of the opponent’s strategy, Π

−j
t+1, the IGA

agent is able to calculate the gradient of its own current strategy by using the
equations of Subsection 2.2. It is important to note that even if the opponent
is not playing explicitly mixed strategies (e.g., APQ), the IGA agent using this
technique is still able to calculate the gradient of its strategy, though this gradient
will be calculated to the averaged opponent’s strategy rather than to its real
strategy.

When there are more than two actions at the agents’ disposal, the techniques
of gradient calculation and strategy update of two-action case do not work well
and, as we observed, cannot be readily extended to the case of multiple actions.
First, this is because in this case there can not be one variable to represent the
agent’s strategy and another one depending on it. Second, in the two-action case,
an increase of the probability to make one action tacitly and at the same degree
decreased the probability of the other action to be executed, which always kept
the total probability equal to 1. In the multiple action case, this is no longer so.

To deal with this problem, we adapted the technique used in PHC algorithm.
It consists in updating the strategy in the direction of the action with the higher
Q-value (see equations 2,3,4). But unlike PHC, in our ModIGA algorithm, δ is
proportional to the Q-value. This keeps the gradient ascent property, i.e., the
step in the direction of the gradient is proportional to the gradient itself.

3 Environments

To make our experiments, we programmed two stochastic games, which model
two the most important types of multiagent interactions: coordination and com-
petition. The first game is called two-robot-on-the-grid coordination problem,
first introduced by Hu and Wellman [7]. The game consists of the grid contain-
ing a number of cells. There are two robots on the grid, which have four available
actions, up, down, left and right. By making actions, robots are able to transit
between cells with a certain probability of the transition success. If transition
is successful, robot changes the cell in the intended direction. Otherwise, robot

2 1

21

(a)

2

1

2

(b)

Fig. 1. (a) The two-robot-on-the-grid coordination problem and (b) The two-robot-
predator-prey competition game.

keeps its current position. For each action made in each cell, except the goal cell,
robot receives a negative reward. A collision is possible if robots are trying to
transit into the same cell or to trade cells. In the case of collision, robots receive
a negative collision reward. The goal of each robot hence is to reach its respective
goal cell by collecting the minimal value of negative reward. In our experiments
we set the following values of the parameters of the model. The action reward
in all non-goal cells is −0.04 and is 0 in the goal cell, the collision reward is
0.1, the probability of action success is 0.9 and the discount factor is 0.95. The
configuration of the grid and the start and goal cells of robots are depicted in
Figure 1(a).

The second stochastic game we programmed is called two-robot-predator-
prey competition game. In this game, there are two robots on the same grid as
in the coordination game, but the robots play different roles. The first robot
(player 1) is called “predator” and its goal in the game is to catch (to achieve
a collision with) the second robot, called “prey”. The goal of the “prey” (player
2) is to reach a refuge where it cannot be catched. I.e., the goal situations for
both robots are opposite. If the predator has achieved its goal (i.e., catched the
prey) its reward for any action in this state is 0 and the prey, in turn, receives
a negative reward of −1 for any action. On the other hand, if the prey has
reached the refuge, its reward for any action in this state is 0 and the reward of
the predator is −1 regardless its position and action. In all other states robots
receive a negative reward of −0.04 for any action. So, we see, that this game is
strictly competitive. We set the following values of the other parameters of the
model. The probability of action success of predator was set to 0.9, the same
parameter of the prey was set to 0.65. These values equalize the chances of
winning of both predator and prey, as it was determined in self-play (when both
predator and prey used the same learning algorithms). The discount factor was
set to 0.95. The configuration of the grid, the start cells and the refuge cell for
the prey are depicted in Figure 1(b).

4 Experiments

In our experiments we compared the convergence processes and the final solution
quality of all algorithm pairs (i.e., IGA versus IGA, IGA versus PHC, and so
on) in the both environments presented in Figure 1. The curves in Figures 2-5
show the results of these experiments.

Figures 2-3 show the results of the experiments in the two-robot-on-the-grid
coordination problem. The curves represent the average number of inter-cell
transitions of player 1 in one trial as a function of the number of trials. To build
each curve, we averaged data over 10 similar experiments. (The results are shown
for the first agent only, because the curves for the second agent are the same.) To
reflect the convergence speed of each algorithm pair, Figure 2 represents the first
50, 000 trials of the learning process. We can easily see that the IGA×IGA pair
converges slower than the other pairs, and, on the contrary, the pair PHC×PHC
demonstrates the fastest convergence speed. This can be explained by the fact
that the learning space of the APQ and IGA algorithms is |S||A|2, since they
learn in the space of joint actions, instead of |S||A| of the PHC algorithm, which
considers its own actions only.

Figure 3 reflects the final 100, 000 trials of the same learning processes. These
curves reflect the solution quality of each algorithm pair. We can see here that
whereas PHC demonstrated the faster convergence speed in the first learning
trials, all algorithm pairs with a participation of PHC demonstrated a worse
final solution quality, i.e., in these curves, the final value of average trial length
is higher than this for the algorithm pairs without PHC. On the other hand,
the cases APQ×APQ and IGA×IGA demonstrated the best average solutions.
This can be explained by the fact that both APQ and IGA can observe the
actions of their opponents, and, by so doing, to adapt better to the strategy of
the opponent. Moreover, since in the two-robot-on-the-grid problem the solution
is deterministic (a pair of trajectories) and APQ learns pure strategies directly,
it is obvious that in that case the solution found by APQ×APQ cannot be worse
than the others.

In our opinion, the results obtained, in particular the empirical convergence of
the algorithms of different types against each other, are very interesting, because
there have been no theoretical guarantees that these algorithms converge when
playing not against themselves. This could be explained by the the similarity
of the convergence curves of these algorithms in self-play. Hence, the policies
generated at the end of each trial differ not much. Thus, the agents had almost
the same behavior when we combined these different algorithms in one play.
Additionally, the convergence properties can be held in this situation, because
the agents were not able to distinguish whether the other agent was using the
same algorithm or not.

Figures 4-5 show the results of the experiments in the two-robot-predator-
prey problem. As in the coordination problem’s case, we tested all the possible
two-by-two combinations of the chosen algorithms. The curves represent average
trial length of the predator agent. For the same reasons as sated above, we did
not present the curves for the prey agent.

 4

 8

 12

 16

 20

 24

 0 10 20 30 40 50

A
v
e
ra

g
e
 l
e
n
g
th

 o
f
tr

ia
l,
 c

e
lls

Trial, thousands

APQ×APQ
IGA×APQ
IGA×IGA

IGA×PHC
PHC×APQ
PHC×PHC

Fig. 2. The optimal trajectory learning in a 5 × 5 two-robot-on-the-grid game. The
curves reflect the length of a trial as a function of the trials number, where the agents
use the algorithms PHC, IGA/ModIGA and APQ: the first 50, 000 trials.

 4.65

 4.7

 4.75

 4.8

 4.85

 4.9

 4.95

 5

 260 280 300 320 340

A
v
e
ra

g
e
 l
e
n
g
th

 o
f
tr

ia
l,
 c

e
lls

Trial, thousands

APQ×APQ
IGA×APQ
IGA×IGA

IGA×PHC
PHC×APQ
PHC×PHC

Fig. 3. The optimal trajectory learning in a 5 × 5 two-robot-on-the-grid game. The
curves reflect the length of a trial as a function of the trials number, where the agents
use the algorithms PHC, IGA/ModIGA and APQ: the final 100, 000 trials.

Similarly to the results obtained in the coordination game, in this adver-
sarial game we observed the convergence to a stable value for each algorithm
pair. Because of the same factors, the convergence speed during the first 50, 000
trials was the slowest for the IGA×IGA algorithm pair and the fastest for the
PHC×PHC case (Figure 4). However, in terms of the solution quality (final value

 4

 8

 12

 16

 20

 24

 0 10 20 30 40 50

A
v
e
ra

g
e
 l
e
n
g
th

 o
f
tr

ia
l,
 c

e
lls

Trial, thousands

APQ×APQ
IGA×APQ
IGA×IGA

IGA×PHC
PHC×APQ
PHC×PHC

Fig. 4. The dynamics of learning in the two-robot-predator-prey game, with a 5 × 5
grid. The curves show the length of a trial as a function of the trials number, where
the agents use the algorithms PHC, IGA/ModIGA and APQ.

 4.1

 4.2

 4.3

 4.4

 4.5

 4.6

 4.7

 4.8

 260 280 300 320 340

A
v
e
ra

g
e
 l
e
n
g
th

 o
f
tr

ia
l,
 c

e
lls

Trial, thousands

APQ×APQ
IGA×APQ
IGA×IGA

IGA×PHC
PHC×APQ
PHC×PHC

Fig. 5. The dynamics of learning of the last 100,000 trials in the two-robot-predator-
prey game, with a 5× 5 grid. The curves show the length of a trial as a function of the
trials number, where the agents use the algorithms PHC, IGA/ModIGA and APQ.

of average trial length), the results are inverse. All the algorithm pairs with a
participation of PHC (PHC×PHC, PHC×APQ and IGA×PHC) behaved better
than those without PHC during the last 100, 000 learning trials (Figure 5). We
explain this by the ability of PHC to learn mixed strategies, which can bring
better solutions in adversarial games than pure strategies can do. For the same

reasons, APQ cannot perform better than PHC in this case. But, surprisingly
for us, IGA×IGA case demonstrated the longest average trial length at the end
of the learning, which is somewhat unexpected, since its convergence proper-
ties are the same as for the PHC algorithm. This fact is remaining for further
investigation.

Finally, we measured the average running time of all experiments (Table 1).
As expected, the PHC algorithm was the fastest in terms of calculation time
(it is, in fact, the simplest in terms of the amount of calculations required at
each iteration). APQ was, as expected, the slowest among all algorithms in
both competition and coordination games, since at each iteration it performs a
computationally hard operation of the opponent strategy estimation.

Table 1. Effective running time in different games, in seconds.

Game PHC×PHC PHC×IGA PHC×APQ IGA×IGA IGA×APQ APQ×APQ

Coordination 69 98 113 128 117 153
Adversarial 86 121 147 171 280 218

5 Conclusion and Future Work

In this work we compared different multiagent learning algorithms in play in
two different stochastic games, a coordination game and an adversarial game.
To do that, we extended Infinitesimal Gradient Ascent algorithm [4] to the case
where the environment has multiple states and the agents can execute more then
two different actions. The other two algorithms, namely Policy Hill Climbing [2]
and Adaptive Play Q-learning [3] have already been adapted to the stochastic
game setting by their respective authors. These algorithms was proven to con-
verge to an equilibrium in self-play in the repeated matrix games, but, to our
knowledge, they were never compared with each other in the case of stochastic
games. This encouraged us to do this research. The goals we aimed were to in-
vestigate these algorithms in detail and to make a preliminary conclusion about
their performance in stochastic games when playing against each other.

The first important observation, which we noted as a result of our experi-
ments, is that these algorithms converge in play against each other, which was
not observed and theoretically proved before. The second observation is the dif-
ferent quality of the solutions found by the different algorithm pairs.

In terms of execution time, we observed that the PHC algorithm required
less time to get a decision in each state and, thus, it converged more quickly
in the examples we used in this work. On the other hand, in the cooperation
game the algorithms, which were able to observe the actions of their opponents
(i.e., AQP and IGA) learned better solutions in terms of the average trajectory
length, than PHC which had not such ability.

In our future work we would like to focus our attention to the finding of the
formal convergence properties of these algorithms when used one against other.
Also, we would extend our experiments to the more complex and unpredictable
environments and to the algorithms using the learning principles other then
adaptivity to the opponent’s current policy, such as Hyper-Q [10] and some
non-stationary algorithms such as [14, 15].

References

1. Littman, M.: Markov games as a framework for multi-agent reinforcement learning.
In: Proceedings of the Eleventh International Conference on Machine Learning
(ICML’94), New Brunswick, NJ, Morgan Kaufmann (1994) 157–163

2. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Arti-
ficial Intelligence 136(2) (2002) 215–250

3. Gies, O., Chaib-draa, B.: Apprentissage de la coordination multiagent : une
méthode basée sur le Q-learning par jeu adaptatif. Revue d’Intelligence Artifi-
cielle 20(2-3) (2006) 385–412

4. Singh, S., Kearns, M., Mansour, Y.: Nash convergence of gradient dynamics in
general-sum games. In: Proceedings of the Sixteenth Conference on Uncertainty
in Artificial Intelligence (UAI’94), San Francisco, CA, Morgan Kaufman (1994)
541–548

5. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative
multiagent systems. In: Proceedings of AAAI’98, Menlo Park, CA, AAAI Press
(1998)

6. Hu, J., Wellman, P.: Multiagent reinforcement learning: Theoretical framework and
an algorithm. In: Proceedings of ICML’98, San Francisco, CA, Morgan Kaufmann
(1998) 242–250

7. Hu, J., Wellman, M.: Nash Q-learning for general-sum stochastic games. Journal
of Machine Learning Research 4 (2003) 1039–1069

8. Littman, M.: Friend-or-foe Q-learning in general-sum games. In: Proceedings of
ICML’01, San Francisco, CA (2001) Morgan Kaufman

9. Chang, Y., Kaelbling, L.: Playing is believing: The role of beliefs in multi-agent
learning. In: Proceedings of the Advances in Neural Information Processing Sys-
tems (NIPS’01), Canada (2001)

10. Tesauro, G.: Extending Q-learning to general adaptive multi-agent systems. In
Thrun, S., Saul, L., Scholkopf, B., eds.: Advances in Neural Information Processing
Systems. Volume 16., Cambridge, MA, MIT Press (2004)

11. Burkov, A., Chaib-draa, B.: Effective learning in adaptive dynamic systems. In:
Proceedings of the AAAI 2007 Spring Symposium on Decision Theoretic and Game
Theoretic Agents (GTDT’07), Stanford, California (2007) To appear.

12. Young, H.: The evolution of conventions. Econometrica 61(1) (1993) 57–84
13. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8(3) (1992) 279–292
14. Powers, R., Shoham, Y.: New criteria and a new algorithm for learning in multi-

agent systems. In Saul, L.K., Weiss, Y., Bottou, L., eds.: Advances in Neural
Information Processing Systems. Volume 17., MIT Press (2005)

15. Powers, R., Shoham, Y.: Learning against opponents with bounded memory. In:
Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence (IJCAI’05). (2005)

