
Relative Entropy Inverse Reinforcement Learning

Abdeslam Boularias Jens Kober Jan Peters
Max-Planck Institute for Intelligent Systems

72076 Tübingen, Germany
{abdeslam.boularias,jens.kober,jan.peters}@tuebingen.mpg.de

Abstract

We consider the problem of imitation learn-
ing where the examples, demonstrated by an
expert, cover only a small part of a large
state space. Inverse Reinforcement Learning
(IRL) provides an efficient tool for generaliz-
ing the demonstration, based on the assump-
tion that the expert is optimally acting in
a Markov Decision Process (MDP). Most of
the past work on IRL requires that a (near)-
optimal policy can be computed for differ-
ent reward functions. However, this require-
ment can hardly be satisfied in systems with
a large, or continuous, state space. In this pa-
per, we propose a model-free IRL algorithm,
where the relative entropy between the em-
pirical distribution of the state-action trajec-
tories under a uniform policy and their distri-
bution under the learned policy is minimized
by stochastic gradient descent. We compare
this new approach to well-known IRL algo-
rithms using approximate MDP models. Em-
pirical results on simulated car racing, grid-
world and ball-in-a-cup problems show that
our approach is able to learn good policies
from a small number of demonstrations.

1 Introduction

Modern robots are designed to perform complicated
planning and control tasks, such as manipulating ob-
jects, navigating in outdoor environments, and driving
in urban areas. Unfortunately, manually programming
these tasks is generically an expensive as well as time-
intensive process. An easier form of instruction is a

Appearing in Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:
W&CP 15. Copyright 2011 by the authors.

key bottleneck in robotics. Markov Decision Processes
(MDPs) provide efficient mathematical tools to han-
dle such tasks with a little help from an expert. Here,
the expert can define the task by simply specifying an
informative reward function. However, in many prob-
lems, even the specification of a reward function is not
always straightforward. In fact, it is frequently easier
to demonstrate examples of a desired behavior than to
define a reward function (Ng and Russell, 2000).

Learning policies from demonstrated examples, also
known as imitation learning, is a technique that has
been used to learn many tasks in robotics (Schaal,
1999). One can generally distinguish between direct
and indirect imitation approaches (Ratliff et al., 2009).
In direct methods, the robot learns a function that
maps state features into actions by using a supervised
learning technique (Atkeson and Schaal, 1997). De-
spite the remarkable success of many systems built on
this paradigm (Pomerleau, 1989), direct methods are
generally suited for learning reactive policies, where
the optimal action in a given state depends on local
features, without taking possible future states into ac-
count.

To overcome this drawback, Abbeel and Ng (2004) in-
troduced a new indirect imitation learning approach
known as apprenticeship learning. The aim of appren-
ticeship learning is to recover a reward function under
which the expert’s policy is optimal, rather than to
directly mimic the actions of the expert. The learned
reward function is then used to find an optimal policy.
The key idea behind apprenticeship learning is that
the reward function is the most succinct hypothesis
for explaining a behavior. Consequently, an observed
behavior can be better generalized when the reward
function is known. The process of recovering a reward
function from a demonstration is known as Inverse Re-
inforcement Learning (IRL).

Many IRL methods are based on the strong assump-
tion that an MDP model of the system is either given
a priori or can be accurately learned from the demon-
strated trajectories. For instance, (Abbeel and Ng,

Relative Entropy Inverse Reinforcement Learning

2004) minimizes the worst-case loss in the value of
the learned policy compared to the expert’s one. The
proposed algorithm proceeds iteratively by finding the
optimal policy of an MDP at each iteration. Simi-
larly, the Maximum Margin Planning (MMP) algo-
rithm, proposed by (Ratliff et al., 2006), consists in
minimizing a cost function by a subgradient descent,
where an MDP problem is solved at each step. The
same assumption is considered in the Bayesian IRL ap-
proach (Ramachandran and Amir, 2007; Lopes et al.,
2009), the natural gradient approach (Neu and Szepes-
vari, 2007), and the game-theoretic approach (Syed
and Schapire, 2008). Along these lines, both the LPAL
algorithm (Syed et al., 2008) and the Maximum En-
tropy algorithm (Ziebart et al., 2008, 2010) used an
MDP model for calculating a probability distribution
on the state-actions. A notable exception is the work
of Abbeel et al. (2010) where a locally linear dynamics
model of a helicopter was learned from demonstrated
trajectories.

However, most of these methods only need access to a
subroutine for finding an optimal policy, which could
be a model-free RL algorithm. Nevertheless, RL algo-
rithms usually require a large number of time-steps be-
fore converging to a near-optimal policy, which is not
efficient since the subroutine is called several times.

In this paper, we build on the Maximum Entropy
framework (Ziebart et al., 2008, 2010) and introduce a
novel model-free algorithm for Inverse Reinforcement
Learning. The proposed algorithm is based on mini-
mizing the relative entropy (KL divergence) between
the empirical distribution of the state-action trajecto-
ries under a uniform policy and the distribution of the
trajectories under a policy that matches the reward
feature counts of the demonstration. We will show
that this divergence can be minimized with a stochas-
tic gradient descent that can be empirically estimated
without using an MDP model. Simulation results show
an improvement over model-based approaches in the
quality of the learned reward functions.

2 Preliminaries

Formally, a Markov Decision Process (MDP) is a tu-
ple (S,A, T,R, d0, γ), where S is a set of states and
A is a set of actions. T is a transition function
with T (s, a, s′) = P (st+1 = s′|st = s, at = a) for
s, s′ ∈ S, a ∈ A, and R is a reward function where
R(s, a) is the reward given for executing action a in
state s. The initial state distribution is denoted by d0,
and γ is a discount factor. A Markov Decision Process
without a reward function is denoted by MDP\R. We
assume that the reward function R is given by a lin-
ear combination of k feature vectors fi with weights θi

such that ∀(s, a) ∈ S × A : R(s, a) =
∑k
i=1 θifi(s, a).

A deterministic policy π is a function that returns an
action π(s) for each state s. A stochastic policy π is a
probability distribution on the action to be executed
in each state, defined as π(s, a) = P (at = a|st = s).
The expected return J(π) of a policy π is the expected
sum of rewards that will be received if policy π will be
followed, i.e., J(π) = E[

∑∞
t=0 γ

tR(st, at)|d0, π, T]. An
optimal policy π is one satisfying π = arg maxπ J(π).
The expectation (or count) of a feature fi for a policy π
is defined as fπi = E[

∑∞
t=0 γ

tfi(st, at)|d0, π, T]. Using
this definition, the expected return of a policy π can
be written as a linear function of the feature expec-
tations J(π) =

∑k
i=1 θif

π
i (s, a). One can also define

the discounted sum of a feature fi along a trajectory
τ = s1a1, . . . sHaH as fτi =

∑
t γ

tfi(st, at). Therefore,
the expected return of a policy π can be written as
J(π) =

∑
τ∈T P (τ |π, T)

∑k
i=1 θif

τ
i , where T is the set

of trajectories.

3 Inverse Reinforcement Learning

In this section, we will quickly review the foundations
of IRL, and subsequently, review Maximum Entropy
IRL which is the most related approach to ours.

3.1 Overview

The aim of apprenticeship learning is to find a policy π
that is at least as good as a policy πE demonstrated by
an expert, i.e., J(π) ≥ J(πE). However, the expected
returns of π and πE cannot be directly compared, un-
less a reward function is provided. As a solution to this
problem, Ng and Russell (2000) proposed to first learn
a reward function, assuming that the expert is optimal,
and then use it to recover the expert’s generalized pol-
icy. However, the problem of learning a reward func-
tion given an optimal policy is ill-posed (Abbeel and
Ng, 2004). In fact, a large class of reward functions,
including all constant functions for instance, may lead
to the same optimal policy. Most of the IRL litera-
ture has focused on solving this particular problem.
Examples of the proposed solutions include incorpo-
rating prior information on the reward function, max-
imizing the margin ‖J(π)−J(πE)‖, or maximizing the
entropy of the distribution on state-actions under the
learned policy π. This latter approach is known as
Maximum Entropy IRL (Ziebart et al., 2008) and will
be described in the following section.

3.2 Maximum Entropy IRL

The principle of maximum entropy states that the pol-
icy that best represents the demonstrated behavior is
the one with the highest entropy, subject to the con-

Abdeslam Boularias, Jens Kober, Jan Peters

straint of matching the reward value of the demon-
strated actions. This latter constraint can be satisfied
by ensuring that the feature counts of the learned pol-
icy match with those of the demonstration, i.e.,

∀i ∈ {1, . . . , k} :
∑
τ∈T

P (τ |π, T)fτi = f̂i (1)

where f̂i denotes the empirical expectation of feature
i calculated from the demonstration. The approach
of Ziebart et al. (2008) consists of finding the param-
eters θ of a policy π that maximizes the entropy of
the distribution on the trajectories subject to Con-
straint (1). Solving this problem leads to maximizing
the likelihood of the demonstrated trajectories under
the following distribution

Pr(τ |θ, T) ∝ d0(s1) exp

(
k∑
i=1

θif
τ
i

)
H∏
t=1

T (st, at, st+1) (2)

where τ = s1a1, . . . sHaH .

Note that this distribution was suggested as an ap-
proximation of a more complex one derived by using
the principle of maximum entropy. Unfortunately, the
likelihood function of the demonstrations cannot be
calculated unless the transition function is known. To
solve this problem, we propose a new method inspired
by the Relative Entropy Policy Search (REPS) ap-
proach (Peters et al., 2010). We minimize the rela-
tive entropy between an arbitrary distribution on the
trajectories and the empirical distribution under a uni-
form policy. We also bound the difference between the
feature counts of the learned policy and those of the
demonstration. We show that the resulting distribu-
tion is similar to the one given in Equation (2). Fi-
nally, we show how to efficiently approximate the cor-
responding gradient by using Importance Sampling.

4 Relative Entropy IRL

In this section, we propose a new approach that is
based on REPS (Peters et al., 2010) and General-
ized Maximum Entropy methods (Dudik and Schapire,
2006).

4.1 Problem Statement

We consider trajectories of a fixed horizon H, and de-
note by T the set of such trajectories. Let P be a
probability distribution on the trajectories of T . Let
Q be the distribution on the trajectories of T under a
uniform policy and the transition matrices T a. Maxi-
mum Entropy IRL can be reformulated as the problem
of minimizing the relative entropy between P and Q,

min
P

∑
τ∈T

P (τ) ln
P (τ)
Q(τ)

, (3)

subject to the following constraints

∀i ∈ {1, . . . , k} : |
∑
τ∈T

P (τ)fτi − f̂i| ≤ εi, (4)∑
τ∈T

P (τ) = 1, (5)

∀τ ∈ T : P (τ) ≥ 0, (6)

The thresholds εi can be calculated by using Hoeffd-
ing’s bound. Given n sampled trajectories, and a con-
fidence probability δ, we set

εi =

√
− ln(1− δ)

2n

γH+1 − 1

γ − 1

(
max
s,a

fi(s, a)−min
s,a

fi(s, a)
)

The parameter δ is an upper bound on the probability
that the difference between the feature counts given
the distribution P and the feature counts given the
expert’s policy is larger than 2ε.

Notice that the optimality of the expert’s policy is
not required. However, the difference between the
expected return of the expert and that of the pol-
icy extracted from the distribution P is bounded by∑
i εi|θi|, where {θi} are the reward weights.

4.2 Derivation of the Solution

The Lagrangian of this problem is given by (Dudik and
Schapire, 2006)

L(P, θ, η) =
∑
τ∈T

P (τ) ln
P (τ)

Q(τ)
−

k∑
i=1

θi(
∑
τ∈T

P (τ)fτi − f̂i)

−
k∑
i=1

|θi|εi + η(
∑
τ∈T

P (τ)− 1).

Due to the KKT conditions, we have

∂L(P,θ,η)P (τ) = ln (P (τ)/Q(τ))−
k∑
i=1

θif
τ
i + η + 1 = 0.

Then

P (τ) = Q(τ) exp

(
k∑
i=1

θif
τ
i − η − 1

)
.

Since
∑
τ∈T P (τ) = 1, the normalization

constant is determined by exp (η + 1) =∑
τ∈T Q(τ) exp

(∑k
i=1 θif

τ
i

)
def
= Z(θ).

Therefore

P (τ |θ) =
1

Z(θ)
Q(τ) exp

(
k∑
i=1

θif
τ
i

)
(7)

The dual function resulting from this step is

g(θ) =
k∑
i=1

θif̂i − lnZ(θ)−
k∑
i=1

|θi|εi.

Relative Entropy Inverse Reinforcement Learning

The dual problem consists in maximizing g(θ), where
θ ∈ Rk. The function g is concave and differentiable
everywhere except for θi = 0, hence, it can be maxi-
mized by using a subgradient ascent. The subgradient
is given by

∂

∂θi
g(θ) = f̂i −

∑
τ∈T

P (τ |θ)fτi − αiεi (8)

with αi = 1 if θi ≥ 0 and αi = −1 otherwise. The
subgradient ∂θig(θ) cannot be obtained analytically
unless the transition function T , used for calculating
Q and P , is known. However, the lack of knowledge
of T is essential in many problems and the reason for
the quest for model-free methods. In the remainder
of this section, we present a simple method for empiri-
cally estimating the gradient. This method is based on
sampling trajectories by following an arbitrary policy
π, and then using Importance Sampling for approxi-
mating the gradient.

4.3 Gradient Estimation with Importance
Sampling

The function Q can be decomposed as Q(τ) =
D(τ)U(τ) for τ = s1a1, . . . sHaH where{

D(τ) = d0(s1)
∏H
t=1 T (st, at, st+1)

U(τ) = 1
|A|H (a uniform policy)

Therefore, Equation (7) becomes

P (τ |θ) =
D(τ) exp (

∑k
i=1 θif

τ
i)∑

τ∈T D(τ) exp (
∑k
i=1 θif

τ
i)
.

The term
∑
τ∈T P (τ |θ)fτi in Equation (8) can be ap-

proximated given a set T πN of N trajectories sampled
by executing a given policy π by using Importance
Sampling. Thus, we can determine the sample-based
gradient

∂̂g

∂θi
(θ) = f̂i −

1
N

∑
τ∈T π

N

P (τ |θ)
D(τ)π(τ)

fτi − αiεi

= f̂i −
1
N

∑
τ∈T π

N

D(τ) exp (
∑k

i=1
θif

τ
i)

D(τ)π(τ) fτi∑
τ∈T D(τ) exp (

∑k
i=1 θif

τ
i)
− αiεi

= f̂i −
1
N

∑
τ∈T π

N

D(τ) exp (
∑k

i=1
θif

τ
i)

D(τ)π(τ) fτi

1
N

∑
τ∈T π

N

D(τ) exp (
∑k

i=1
θifτi)

D(τ)π(τ)

− αiεi

= f̂i −
∑
τ∈T π

N

exp (
∑k

i=1
θif

τ
i)

π(τ) fτi∑
τ∈T π

N

exp (
∑k

i=1
θifτi)

π(τ)

− αiεi, (9)

where π(τ) =
∏H
t=1 Pr(at|st), for τ = s1a1, . . . sHaH .

5 Experiments

To validate our approach, we experimented on three
benchmark problems. The first domain is a racetrack,
the second one is a gridworld and the last benchmark
corresponds to a toy known as the ball-in-a-cup prob-
lem. While the racetrack and gridworld problems are
not meant to be challenging tasks, they allow us to
compare our approach to other methods of generaliz-
ing the demonstrations. The first approach that we
compare to is the model-based Maximum Entropy,
where a transition matrix is learned from uniformly
sampled trajectories. The second approach corre-
sponds to a naive model-free adaptation of Maximum
Margin Planning (MMP). At each step of the subgra-
dient descent in MMP, a near-optimal policy is found
by using the reinforcement learning algorithm Sarsa,
which requires a large number of additional sampled
trajectories. We also compare these IRL methods to
a simple classification algorithm where the action in a
given state is selected by performing a majority vote on
the k-nearest neighbor states where the expert’s action
is known. For each state, the distance k is gradually
increased until at least one state that appeared in the
demonstration is encountered. The distance between
two states corresponds to the shortest path between
them with a positive probability.

The performance of different IRL methods can be com-
pared by learning the optimal policies corresponding
to the learned reward functions, and comparing the
expected returns of these policies. However, such an
approach would be biased by the algorithm and the
parameters used for learning the policies. Therefore,
we will use the accurate transition functions for find-
ing the optimal policies corresponding to the learned
reward functions.

5.1 Racetrack

We implemented a simplified car race simulator, the
corresponding racetrack is shown in Figure 1. The
states correspond to the position of the vehicle in the
racetrack and its velocity. We considered two dis-
cretized velocities, low and high, in each direction of
the vertical and horizontal axis, in addition to a zero
velocity in each axis, leading to a total of 25 possi-
ble combinations of velocities and 5100 states. The
controller can accelerate or decelerate in each axis,
or do nothing. The controller cannot however com-
bine a horizontal and a vertical action, the number
of actions then is 5. When the velocity is low, accel-
eration/deceleration actions succeed with probability
0.9, and fail with probability 0.1, leaving the velocity
unchanged. The success probability falls down to 0.2
when the velocity is high, making the vehicle harder to

Abdeslam Boularias, Jens Kober, Jan Peters

Finish line

Figure 1: Configuration of the racetrack

control. When the vehicle tries to move off the track,
it remains in the same position and its velocity falls
down to zero. The controller receives a reward of 0 for
each step except for off-roads, where it receives −1,
and for reaching the finish line, where the reward is
5. A discount factor of 0.99 is used in order to favor
shorter trajectories. The vehicle starts from a ran-
dom position on the start line, and the length of each
demonstration trajectory is 40. The results are aver-
aged over 103 independent trials of length 50. There
is a binary reward feature corresponding to the fin-
ish line and one for driving off-track, in addition to a
feature with value 1 in all the states.

Figure 2 shows the average reward per time-step, the
average number of steps required for reaching the fin-
ish line, and the average frequency of driving off the
track. The results are a function of the number of
sampled trajectories. For the IRL algorithms, there
are only 10 demonstrations provided by an expert, the
additional samples are those used for learning the tran-
sition function or the stochastic gradient (Equation 9,
with a uniform sampling policy π), or for learning a
policy in the case of MMP. In this latter case, the
number of trajectories corresponds to the number of
trials used by Sarsa for each step of the subgradient
descent. For k-NN, all the trajectories are provided by
an expert.

In this experiment, both the model-based Maximum
Entropy and the model-free Relative Entropy ap-
proaches learned a reward function close to the ex-
pert’s one. Consequently, the policies found by us-
ing the corresponding reward functions achieve nearly
optimal performances. In fact, the model-based algo-
rithm was provided with the list of possible next states
for each state and action, and the only unknown pa-
rameter was the success probability. Moreover, since
the race always starts from the same line, a small num-
ber of sampled trajectories is sufficient for learning an
accurate model of the dynamics.

We also notice the underperformance of the naive
model-free MMP, caused by the large number of sam-
ples required for finding optimal policies by reinforce-
ment. Finally, we remark that k-NN converges to an
optimal policy after a 100 demonstrations. This result

cannot be directly compared to the other methods,
where only 10 trajectories correspond to demonstra-
tions.

5.2 Gridworld

We consider a 50×50 gridworld. The state corresponds
to the location of the agent on the grid. The agent
has four actions for moving in one of the directions
of the compass. The actions succeed with probability
0.7, a failure results in a uniform random transition
to one of the adjacent states. A reward of 1 is given
for reaching the goal state, located on the upper-right
corner. For the remaining states, the reward function
was randomly set to 0 with probability 2/3 and to −1
with probability 1/3. The initial state is sampled from
a uniform distribution on the states. The discount fac-
tor is set to 0.99. We used only 10 demonstration tra-
jectories for the IRL methods, and a variable number
of demonstrations for k-NN. The duration of each tra-
jectory is 100 time-steps, and the results are averaged
over 103 independent trials.

Figure 2(d) shows the average reward per time-step
of the policies found by using different learning ap-
proaches. We notice that the average return of the
model-based Maximum Entropy method is zero. In
fact, the high reward associated to the goal state was
not learned by this method. This was mainly caused
by the uniform distribution on the initial state of each
trajectory, which resulted in an inaccurate learned
model. The reward function learned by the model-free
approach was similar to the expert’s one after only 10
uniformly sampled trajectories were used to estimate
the stochastic gradient.

5.3 Ball-in-a-cup

As a final evaluation, we employ the model-free Rela-
tive Entropy method to recover the reward of the chil-
dren’s motor game ball-in-a-cup. The toy consists of a
small cup and ball attached to its bottom by a string
(see Figure 3). Initially, the ball is hanging below the
cup and the goal of the game is to toss the ball into
the cup by moving the cup. The state space consists
of the Cartesian positions and velocities of the ball
and the cup. The actions correspond to the Cartesian
accelerations of the cup. Both the state and the ac-
tion space are continuous. The dynamics of the system
cannot be accurately described by a model. Therefore,
model-based approaches will not be considered in this
experiment.

We recorded a total of 17 movements of the ball and
the cup in a motion capture setup. These recordings
were filtered in order to make them consistent with
our simulator. The inverse reinforcement learning al-

Relative Entropy Inverse Reinforcement Learning

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1 10 100 1000 10000

A
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
s
te

p

Number of trajectories in the demonstration

Expert
Model−free Relative Entropy IRL

Model−based Maximum Entropy IRL
Naive Model−free MMP

k−NN

(a) Average reward in the racetrack

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 1 10 100 1000 10000

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
s
te

p
s

Number of trajectories in the demonstration

Expert
Model−free Relative Entropy IRL

Model−based Maximum Entropy IRL
Naive Model−free MMP

k−NN

(b) Average number of time-steps per round

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 10 100 1000 10000

A
v
e

ra
g

e
 f

re
q

u
e

n
c
y
 o

f
d

ri
v
in

g
 o

ff
−

tr
a

c
k

Number of trajectories in the demonstration

Expert
Model−free Relative Entropy IRL

Model−based Maximum Entropy IRL
Naive Model−free MMP

k−NN

(c) Average frequency of driving off-track

−0.3

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 1 10 100 1000 10000

A
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
s
te

p

Number of trajectories in the demonstration

Expert
Model−free Relative Entropy IRL

Model−based Maximum Entropy IRL
k−NN

(d) Average reward in the gridworld

Figure 2: Racetrack and gridworld results

Figure 3: This figure shows schematic drawings of the Ball-in-a-Cup motion, the final learned robot motion as
well as a motion-captured human motion. The green arrows show the directions of the momentary movements.

Abdeslam Boularias, Jens Kober, Jan Peters

gorithm is provided 10 of the 17 trials as expert demon-
strations. These expert demonstrations result in suc-
cessful trials, i.e., the ball is caught in the cup. As
global policy search in this high dimensional continu-
ous space is infeasible, the search algorithm employed
to test the recovered reward functions relies on local
optimization in the vicinity of an initialization. The
remaining seven recorded movements were employed
to initialize the policy search during the testing. We
perturbed these trajectories slightly ensuring that the
ball is not directly caught in the cup. As the “true”
reward function is unknown, we use the proxy reward
of ‘ball caught with the cup’ instead for evaluating the
success of the learned trajectories. The reward fea-
tures for this task consist of the continuous values of
the absolute and relative positions and velocities of the
ball and the cup as well as their squared values, the
distance between the ball and the cup, the angle be-
tween the ball and the cup. Additionally, the binary
feature “the ball is in the cup” is provided. These 29
features are additionally localized in time using 10 eq-
uispaced Gaussian weighting functions, resulting in a
total feature count of 290.

Figure 4 illustrates the number of samples and the cor-
responding success rates of both the model-free Rela-
tive Entropy and the model-free MMP approaches for
the ball-in-a-cup task. The results are averaged over
three runs with the error bars indicating the standard
deviation. The policy found by employing the learned
reward function converged to a success rate of 100%
after using only 1000 sampled trajectories in the case
of the proposed method. A larger number of sam-
pled trajectories is needed by the model-free variant
of MMP.

6 Conclusion

Apprenticeship Learning via Inverse Reinforcement
Learning (IRL) provides an elegant solution to the
problem of generalization in imitation learning. This
approach consists in first learning a reward function
that explains the observed behavior, and then using
it for generalization. A strong assumption considered
in IRL-based algorithms is that the dynamics model
of the underlying MDP is known, or it can be learned
from sampled trajectories.

In this paper, we showed that using inaccurate mod-
els, learned from a small number of samples, may lead
to learning reward functions that are completely dif-
ferent from the true ones. Inspired by the work on
Generalized Maximum Entropy and Relative Entropy
Policy Search, we proposed a novel model-free IRL al-
gorithm where the cost function is minimized with a
stochastic gradient descent. Empirical results on sim-

100 500 1000 2000
0

0.5

1

samples

su
cc

es
s

ra
te

RE IRL MMP

Figure 4: Ball-in-a-cup results. RE IRL refers to the
model-free Relative Entropy IRL algorithm and MMP
refers to the model-free MMP algorithm.

ulated problems show that our algorithm is able to
learn good policies from a small number of samples.

As a future work, we mainly plan to experiment on
more difficult problems, and to explore other tech-
niques of stochastic optimization.

References

Abbeel, P., Coates, A., and Ng, A. Y. (2010). Au-
tonomous helicopter aerobatics through apprentice-
ship learning. International Journal of Robotics Re-
search (IJRR), 29(13).

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship
Learning via Inverse Reinforcement Learning. In
Proceedings of the Twenty-first International Con-
ference on Machine Learning (ICML’04), pages 1–8.

Atkeson, C. and Schaal, S. (1997). Robot Learning
From Demonstration. In Proceedings of the Four-
teenth International Conference on Machine Learn-
ing (ICML’97).

Dudik, M. and Schapire, R. (2006). Maximum entropy
distribution estimation with generalized regulariza-
tion. In Proceedings of the 19th Annual Conference
on Learning Theory (COLT’06), pages 123–138.

Lopes, M., Melo, F., and Montesano, L. (2009). Ac-
tive Learning for Reward Estimation in Inverse Re-
inforcement Learning. In European Conference on
Machine Learning (ECML’09), pages 31–46.

Neu, G. and Szepesvari, C. (2007). Apprenticeship
Learning using Inverse Reinforcement Learning and
Gradient Methods. In Conference on Uncertainty in
Artificial Intelligence (UAI’07), pages 295–302.

Ng, A. and Russell, S. (2000). Algorithms for In-
verse Reinforcement Learning. In Proceedings of the
Seventeenth International Conference on Machine
Learning (ICML’00), pages 663–670.

Relative Entropy Inverse Reinforcement Learning

Peters, J., Mulling, K., and Altun, Y. (2010). Rela-
tive Entropy Policy Search. In Proceedings of the
Twenty-Fourth National Conference on Articial In-
telligence (AAAI’10).

Pomerleau, D. (1989). ALVINN: An Autonomous
Land Vehicle in a Neural Network. In Neural Infor-
mation Processing Systems (NIPS’89), pages 769–
776.

Ramachandran, D. and Amir, E. (2007). Bayesian In-
verse Reinforcement Learning. In Proceedings of The
twentieth International Joint Conference on Artifi-
cial Intelligence (IJCAI’07), pages 2586–2591.

Ratliff, N., Bagnell, J., and Zinkevich, M. (2006).
Maximum Margin Planning. In Proceedings of the
Twenty-third International Conference on Machine
Learning (ICML’06), pages 729–736.

Ratliff, N., Silver, D., and Bagnell, A. (2009). Learn-
ing to Search: Functional Gradient Techniques for
Imitation Learning. Autonomous Robots, 27(1):25–
53.

Schaal, S. (1999). Is Imitation Learning the Route to
Humanoid Robots? Trends in Cognitive Sciences,
3(6):233–242.

Syed, U., Bowling, M., and Schapire, R. E. (2008). Ap-
prenticeship Learning using Linear Programming.
In Proceedings of the Twenty-fifth International
Conference on Machine Learning (ICML’08), pages
1032–1039.

Syed, U. and Schapire, R. (2008). A Game-Theoretic
Approach to Apprenticeship Learning. In Ad-
vances in Neural Information Processing Systems 20
(NIPS’08), pages 1449–1456.

Ziebart, B., Bagnell, A., and Dey, A. (2010).
Modeling Interaction via the Principle of Max-
imum Causal Entropy. In Proceedings of the
Twenty-seventh International Conference on Ma-
chine Learning (ICML’10), pages 1255–1262.

Ziebart, B., Maas, A., Bagnell, A., and Dey, A. (2008).
Maximum Entropy Inverse Reinforcement Learn-
ing. In Proceedings of The Twenty-third AAAI Con-
ference on Artificial Intelligence (AAAI’08), pages
1433–1438.

