

Overview

Aim: Learning to **grasp** and manipulate **unknown objects**

Barrett Robot Hand

Point Cloud of an Unknown Object

Problems: **Noise** in the features of the value function. Shape-related features are difficult to define.

Solution: Markov Random Field Policies, A Structured Output Prediction Technique that Combines Control and Vision

- 1. Define a **similarity measure** in the state space (domain knowledge);
- 2. Construct a k-nearest neighbors graph of states;
- 3. Learn a distribution on policies such that the probability of a policy is proportional to its value and to the number of **adjacent states** that have **the same action**.

Markov Decision Process with State Similarity Graph (in red)

Background

Markov Decision Process (MDP) 2.1

- A Markov Decision Process is a tuple $(\mathcal{S}, \mathcal{A}, T, R)$, where
- \mathcal{S} is a set of states, \mathcal{A} is a set of actions,
- T are transition probabilities, with T(s, a, s') = P(s'|s, a) for $s, s' \in \mathcal{S}, a \in A$,
- R is a reward function where $R(s) \in \mathbb{R}$ is the reward of state s.

Policies and Value Functions 2.2

- A policy π is a function that maps every state into an action.
- The value of policy π is defined as $V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{H} \gamma^{t} R(s_{t}) | s_{0} = s, a_{t} = \pi(s_{t})\right]$, where H is a horizon. It is also given by *Bellman equation*

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} T(s, \pi(s), s') V^{\pi}(s')$$

Algorithms for Learning Markov Field Policies Jan Peters^{1,2} Oliver Krömer² Abdeslam Boularias¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany

Markov Random Field Policies for Reinforcement Learning

Structure penalty 3.1

- **Optimal policies are smooth**: close states tend to have the same optimal action. How can we exploit this property in reinforcement learning?
- The similarity measure is given as a Gram matrix K of a kernel that approximates the optimal value function, where $K(\langle \text{state}_i, \text{action}_i \rangle, \langle \text{state}_i, \text{action}_i \rangle) \in \mathbb{R}$
- The approximation error is given by the minimum **Bellman error**, defined as

$$BE(K, \pi_t) = \min_{w_t, w_{t+1} \in \mathbb{R}^{|\mathcal{S}|}} \|K_{\pi_t} w_t - (L)\|$$

where $K_{\pi}(s_i, s_j) = K(\langle s_i, \pi(a_i) \rangle, \langle s_j, \pi(a_j) \rangle)$ and $T_{\pi}(s, s') = T(s, \pi(s), s')$

• The value function of an optimal policy has a low Bellman error with Gram matrix K (domain knowledge) \Rightarrow use the Bellman error as a surrogate function for measuring how close a policy is to an optimal one

3.2 **Optimization Problem**

From t = H to 0, find a probability distribution P on deterministic policies π_t $\max_{P} \sum_{\pi_{t} \in |\mathcal{A}||\mathcal{S}|} P(\pi_{t} | \pi_{t+1:H}) \sum_{s \in \mathcal{S}} V^{\pi_{t:H}}(s),$

subject to the following constraints

$$\sum_{\pi_t \in \mathcal{A}^{|\mathcal{S}|}} P(\pi_t | \pi_{t+1})$$
$$-\sum_{\pi_t \in \mathcal{A}^{|\mathcal{S}|}} P(\pi_t | \pi_{t+1:H}) \log P(\pi_t | \pi_{t+1})$$

$$\|\sum_{\pi_t \in \mathcal{A}^{|\mathcal{S}|}} P(\pi_t | \pi_{t+1:H}) [K_{\pi_t} w_t - \gamma T_{\pi_t} K_{\pi_{t+1}} w_{t+1}] - I$$

 ρ is a lower bound on the entropy of P, it is used for controlling the exploration. ϵ is an upper bound on the Bellman error, it is used for controlling the smoothness.

3.3 Solution

Parameter τ is initialized to a large value, and is gradually decreased as more samples are collected. The other parameters are learned by a gradient descent on the Lagrangian dual. We use *Metropolis-Hastings* for finding $\pi^* = \arg \max_{\pi \in \mathcal{A}^{|S|}} P(\pi)$.

Markov Random Field Policies for Apprenticeship Learning

- Apprenticeship Learning via Inverse Reinforcement Learning (IRL) [1] consists in learning a reward function that maximizes the value of an expert's policy $\hat{\pi}$.
- The reward function is usually assumed to be linear, $R(s) = \sum_i \theta_i \phi_i(s)$.
- The learned reward is used to find a policy that generalizes the observed behavior.

²Technical University of Darmstadt, Germany

 $(R + \gamma T_{\pi_t} K_{\pi_{t+1}} w_{t+1}) \|_1.$

 $_{1:H})=1,$

(entropy bound) $_{1:H}) \geq \rho$,

(Bellman error) $\|R\|_1 \le \epsilon.$

$$\underbrace{\lambda^{T}[K_{\pi_{t}}\mathbf{w}_{t} - \gamma T_{\pi_{t}}K_{\pi_{t+1}}\mathbf{w}_{t+1}])}_{\text{smoothness term}}\right).$$

4.1 Structure Matchings

4.2 Solution

Enforcing the structure matching constraints, in addition to the value matching constraints [2], and maximizing the entropy of P leads to the solution

where $V_{\boldsymbol{\theta}}^{\pi_{t:H}}(s) = \sum_{i} \boldsymbol{\theta}_{i} \phi_{i}(s) + \gamma \sum_{s' \in \mathcal{S}} T_{\pi_{t}}(s, s') V_{\boldsymbol{\theta}}^{\pi_{t+1:H}}(s')$.

 $\lambda = 0$ Logistic Regression $\gamma = 0$ $\gamma \in \mathbb{R}$ | Maximum Entropy IRL

Experiments 5

From a high-level point of view, grasping an object can be seen as an MDP with three time-steps: (1) reaching the object, (2) preshaping the hand, and (3) grasping. The following results show the learned values of the first time-step (reaching) the object). Each point on an object corresponds to a reaching action. Blue indicates low values and red indicates high values. The black arrow indicates the approach direction in the optimal policy according to the learned reward function.

MRF Policy

References

• Given an expert's policy $\hat{\pi}_{0:H}$ and a Gram matrix K, we are interested in finding a distribution P on policies $\pi_{0:H}$ that has a Bellman error similar to that of $\hat{\pi}_{0:H}$. • Sufficient condition: $\mathbb{E}_{\pi_t \sim P}[K_{\pi_t}] = K_{\hat{\pi}_t}$ and $\mathbb{E}_{\pi_{t:t+1} \sim P}[T_{\pi_t}K_{\pi_{t+1}}T_{\pi_t}^T] = T_{\hat{\pi}_t}K_{\hat{\pi}_{t+1}}T_{\hat{\pi}_t}^T$.

$$\underset{\theta}{\overset{\pi_{t:H}(s)}{\underset{s_{i},s_{j}\in\mathcal{S}}{\longrightarrow}}{}} + \underbrace{\sum_{s_{i},s_{j}\in\mathcal{S}}\lambda_{i,j}K(\langle s_{i},\pi_{t}(s_{i})\rangle,\langle s_{j},\pi_{t}(s_{j})\rangle)})$$

• Parameters θ and λ are learned by maximizing the likelihood of the demonstration. • An optimal policy $\pi^* \in \arg \max_{\pi \in \mathcal{A}^{|\mathcal{S}|}} P(\pi)$ is found by dynamic programing.

	$\lambda \in \mathbb{R}$	
	Associative Markov Networks (AMN) [3	,]
[2]	Markov Random Field Policies	

[1] Pieter Abbeel and Andrew Ng. Apprenticeship Learning via Inverse Reinforcement Learning. ICML 2004. [2] Ziebart, B., Maas, A., Bagnell, A., and Dey, A. Maximum Entropy Inverse Reinforcement Learning. AAAI 2008. [3] Taskar, B.: Learning Structured Prediction Models: A Large Margin Approach. PhD thesis, Stanford University, 2004.

NIPS 2012, Lake Tahoe, December 2012