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1 Overview

Aim: Learning to grasp and manipulate unknown objects

Barrett Robot Hand Point Cloud of an Unknown Object

Problems: Noise in the features of the value function.
Shape-related features are difficult to define.

Solution: Markov Random Field Policies, A Structured Output Prediction Tech-
nique that Combines Control and Vision

1. Define a similarity measure in the state space (domain knowledge);

2. Construct a k-nearest neighbors graph of states;

3. Learn a distribution on policies such that the probability of a policy is proportional
to its value and to the number of adjacent states that have the same action.
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Markov Decision Process with State Similarity Graph (in red)

2 Background

2.1 Markov Decision Process (MDP)

A Markov Decision Process is a tuple (S,A, T, R), where .

• S is a set of states, A is a set of actions,

•T are transition probabilities, with T (s, a, s′) = P (s′|s, a) for s, s′ ∈ S, a ∈ A,

•R is a reward function where R(s) ∈ R is the reward of state s.

2.2 Policies and Value Functions

•A policy π is a function that maps every state into an action.

•The value of policy π is defined as V π(s) = E[
∑H

t=0 γ
tR(st)|s0 = s, at = π(st)],

where H is a horizon. It is also given by Bellman equation

V π(s) = R(s) + γ
∑
s′

T (s, π(s), s′)V π(s′).

3 Markov Random Field Policies for Reinforcement Learning

3.1 Structure penalty

•Optimal policies are smooth: close states tend to have the same optimal
action. How can we exploit this property in reinforcement learning?

•The similarity measure is given as a Gram matrix K of a kernel that approxi-
mates the optimal value function, where K(〈statei, actioni〉, 〈statej, actionj〉) ∈ R

•The approximation error is given by the minimum Bellman error, defined as

BE(K, πt) = min
wt,wt+1∈R|S|

‖Kπtwt −
(
R + γTπtKπt+1

wt+1

)
‖1.

where Kπ(si, sj) = K(〈si, π(ai)〉, 〈sj, π(aj)〉) and Tπ(s, s′) = T (s, π(s), s′)

•The value function of an optimal policy has a low Bellman error with Gram ma-
trix K (domain knowledge) ⇒ use the Bellman error as a surrogate function for
measuring how close a policy is to an optimal one

3.2 Optimization Problem

From t = H to 0, find a probability distribution P on deterministic policies πt

max
P

∑
πt∈A|S|

P (πt|πt+1:H)
∑
s∈S

V πt:H(s), (1)

subject to the following constraints∑
πt∈A|S|

P (πt|πt+1:H) = 1,

−
∑
πt∈A|S|

P (πt|πt+1:H) logP (πt|πt+1:H) ≥ ρ, (entropy bound)

‖
∑
πt∈A|S|

P (πt|πt+1:H)[Kπtwt − γTπtKπt+1
wt+1]−R‖1 ≤ ε. (Bellman error)

ρ is a lower bound on the entropy of P , it is used for controlling the exploration.
ε is an upper bound on the Bellman error, it is used for controlling the smoothness.

3.3 Solution

P (πt|πt+1:H) ∝ exp
( 1

τ︸︷︷︸
exploration factor

(expected sum of rewards︷ ︸︸ ︷∑
s∈S

V πt:H(s) +λT [Kπtwt − γTπtKπt+1
wt+1]︸ ︷︷ ︸

smoothness term

))
.

Parameter τ is initialized to a large value, and is gradually decreased as more sam-
ples are collected. The other parameters are learned by a gradient descent on the
Lagrangian dual. We use Metropolis-Hastings for finding π∗ = arg maxπ∈A|S| P (π).

4 Markov Random Field Policies for Apprenticeship Learning

•Apprenticeship Learning via Inverse Reinforcement Learning (IRL) [1] consists in
learning a reward function that maximizes the value of an expert’s policy π̂.

•The reward function is usually assumed to be linear, R(s) =
∑

i θiφi(s).

•The learned reward is used to find a policy that generalizes the observed behavior.

4.1 Structure Matchings

•Given an expert’s policy π̂0:H and a Gram matrix K, we are interested in finding
a distribution P on policies π0:H that has a Bellman error similar to that of π̂0:H.

• Sufficient condition: Eπt∼P [Kπt] = Kπ̂t and Eπt:t+1∼P [TπtKπt+1
T Tπt ] = Tπ̂tKπ̂t+1

T Tπ̂t .

4.2 Solution

Enforcing the structure matching constraints, in addition to the value matching con-
straints [2], and maximizing the entropy of P leads to the solution

P (πt|πt+1:H) ∝ exp
( ∑

s∈S

V πt:H
θ (s)︸ ︷︷ ︸

expected sum of rewards

+

smoothness term︷ ︸︸ ︷∑
si,sj∈S

λi,jK
(
〈si, πt(si)〉, 〈sj, πt(sj)〉

) )

where V πt:H
θ (s) =

∑
i θiφi(s) + γ

∑
s′∈S Tπt(s, s

′)V πt+1:H

θ (s′).

•Parameters θ and λ are learned by maximizing the likelihood of the demonstration.

•An optimal policy π∗ ∈ arg maxπ∈A|S| P (π) is found by dynamic programing.

λ = 0 λ ∈ R
γ = 0 Logistic Regression Associative Markov Networks (AMN) [3]
γ ∈ R Maximum Entropy IRL [2] Markov Random Field Policies

5 Experiments

From a high-level point of view, grasping an object can be seen as an MDP with three
time-steps: (1) reaching the object, (2) preshaping the hand, and (3) grasp-
ing. The following results show the learned values of the first time-step (reaching
the object). Each point on an object corresponds to a reaching action. Blue in-
dicates low values and red indicates high values. The black arrow indicates the
approach direction in the optimal policy according to the learned reward function.

Logistic regression

AMN [3]

MaxEnt IRL [2]

MRF Policy
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