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1 Overview

Aim: Learning to grasp and manipulate unknown objects

Barrett Robot Hand

Point Cloud of an Unknown Object

Problems: Noise in the features of the value function.
Shape-related features are difficult to define.

Solution: Markov Random Field Policies, A Structured Output Prediction Tech-
nique that Combines Control and Vision

1. Define a similarity measure in the state space (domain knowledge);
2. Construct a k-nearest neighbors graph of states;

3. Learn a distribution on policies such that the probability of a policy is proportional
to its value and to the number of adjacent states that have the same action.

Markov Decision Process with State Similarity Graph (in red)

2 Background

2.1 Markov Decision Process (MDP)
A Markov Decision Process is a tuple (S, A, T, R), where

e S is a set of states, A is a set of actions,
o [" are transition probabilities, with T'(s, a, s’) = P(s'|s,a) for s, € §,a € A,

e 17 is a reward function where R(s) € R is the reward of state s.

2.2 Policies and Value Functions

e A policy 7 is a function that maps every state into an action.

e The value of policy 7 is defined as V7™ (s) = E[Zio Y R(s¢)|so = s,a; = 7(sy)],
where H is a horizon. It is also given by Bellman equation

V7(s) = R(s)+7 Y T(s,m(s),sV(s).
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3 Markov Random Field Policies for Reinforcement Learning

3.1 Structure penalty
e Optimal policies are smooth: close states tend to have the same optimal
action. How can we exploit this property in reinforcement learning?

e The similarity measure is given as a Gram matrix /i of a kernel that approxi-
mates the optimal value function, where K ((state;, action;), (state;, action,)) € R

e The approximation error is given by the minimum Bellman error, defined as

BE(K,m)= min ||[Kyw — (R4 T Kr, wi) |1

wtawt+1ER|S|

where K (s;,s;) = K((s;,m(a;)), (sj,m(a;))) and Ty (s,s") =T (s, m(s),s")
e The value function of an optimal policy has a low Bellman error with Gram ma-

trix K (domain knowledge) = use the Bellman error as a surrogate function for
measuring how close a policy is to an optimal one

3.2 Optimization Problem

From ¢t = H to 0, find a probability distribution P on deterministic policies
max Y Pm|mrm) Y V™(s), (1)
WteA’S‘ SGS

subject to the following constraints

Y P(m|mn) = 1,
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— Z P(m¢|mpa.q) log P(my|me1.g) = p,  (entropy bound)
7Tt€A‘8|
| Z P(my|mys1.m) | Krwy — Y Ky, ] — Rl < e (Bellman error)
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p 1s a lower bound on the entropy of P, it is used for controlling the exploration.
€ 1s an upper bound on the Bellman error, it is used for controlling the smoothness.

3.3 Solution

expected sum of rewards
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Parameter 7 is initialized to a large value, and is gradually decreased as more sam-
ples are collected. The other parameters are learned by a gradient descent on the
Lagrangian dual. We use Metropolis-Hastings for finding 7% = arg max_. qs P(7).

4 Markov Random Field Policies for Apprenticeship Learning

e Apprenticeship Learning via Inverse Reinforcement Learning (IRL) [1| consists in
learning a reward function that maximizes the value of an expert’s policy 7.

e The reward function is usually assumed to be linear, R(s) = > . 0;0:(s).

e The learned reward is used to find a policy that generalizes the observed behavior.

Algorithms for Learning Markov Field Policies
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4.1 Structure Matchings

e Given an expert’s policy 7y and a Gram matrix /K, we are interested in finding
a distribution P on policies . that has a Bellman error similar to that of m.x.

e Sufficient condition: E, p[K, ]| = K;, and E, . p[T K, T!] =T: K;: T!.
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4.2 Solution

Enforcing the structure matching constraints, in addition to the value matching con-
straints 2], and maximizing the entropy of P leads to the solution
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expected sum of rewards

whete V¥#(s) = 37, 0i6i(5) + 7 s Ta(s, )V (')
e Parameters 6 and A are learned by maximizing the likelihood of the demonstration.
e An optimal policy 7* € argmax_. qs P(7) is found by dynamic programing.
A=0 AeER
v =0 Logistic Regression Associative Markov Networks (AMN) 3]
v € R/ Maximum Entropy IRL [2] Markov Random Field Policies

b5 Experiments

From a high-level point of view, grasping an object can be seen as an MDP with three
time-steps: (1) reaching the object, (2) preshaping the hand, and (3) grasp-
ing. The following results show the learned values of the first time-step (reaching
the object). Each point on an object corresponds to a reaching action. Blue in-
dicates low values and red indicates high values. The black arrow indicates the
approach direction in the optimal policy according to the learned reward function.

MaxEnt IRL [2]

MRYF Policy
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