
Bootstrapping Apprenticeship Learning
Abdeslam Boularias and Brahim Chaib-Draa

Laval University, Québec, Canada

DAMAS
www.damas.ift.ulaval.ca

1 Overview

•We consider the problem of imitation learning where the examples, given by an expert, cover only
a small part of a large state space.

• Inverse Reinforcement Learning (IRL) provides an efficient tool for generalizing the partial demon-
stration, based on the assumption that the expert is maximizing an unknown utility function.

• IRL consists in learning a reward function that explains the expert’s behavior, and that is a linear
combination of state-action features.

• Previous IRL algorithms use the empirical averages to estimate the expected feature counts under
the expert’s policy.

•We introduce a new technique for bootstrapping the examples. The proposed technique consists in
iteratively learning a reward function. At each iteration,

– the examples are replaced by a complete optimal policy given the current reward function,

– the feature counts are calculated by using the current optimal policy and the dynamics model.

2 Background

2.1 Markov Decision Process (MDP)

A Markov Decision Process is a tuple (S,A, T, R, α,H, γ), where S is a set of states and A is a set of
actions. T is a transition function with T (s, a, s′) = P (st+1 = s′|st = s, at = a) for s, s′ ∈ S, a ∈ A,
and R is a reward function where R(s, a) is the reward given for executing action a in state s. The
initial state distribution is denoted by α, γ is a discount factor, and H is a planning horizon.

2.2 Policies

A policy π is a function that maps every state into an action. We assume that the expert’s policy
used in the demonstration is deterministic.
The value of a policy π is the expected sum of the rewards received by following this policy,

V (π) = E[

H−1∑
t=0

γtR(st, at)|α, π].

2.3 Apprenticeship Learning via Inverse Reinforcement Learning

•Handcrafting a reward function for matching a complex behavior is a hard problem.

• It is often easier to demonstrate examples of the desired behavior [1].

•Apprenticeship learning via inverse reinforcement learning consists in learning a reward function
that explains an observed behavior.

• The reward is assumed to be a linear function of k state-action features φi,

R(s, a) =

k−1∑
i=0

wiφi(s, a), R = wTΦ,

where Φ is k × |S||A| feature matrix, defined as Φ[i, (s, a)] = φi(s, a).

• The value of a policy π can be rewritten as V (π) = wTΦµπ, where µπ(s, a) is the expected
frequency of visiting (s, a), defined as

µπ(s, a) =

H−1∑
t=0

γtPr(st = s, at = a|α, π).

•Given examples of an expert’s policy π∗, find a reward weight vector w that satisfies

∀π ∈ A|S| : wTΦµπ∗ ≥ wTΦµπ.
value of the expert’s policy value of any other policy

•Use the reward weight vector w to recover the expert’s policy π∗.

3 Bootstrapping Maximum Margin Planning

3.1 Maximum Margin Planning (MMP) [2]

Find the reward weight vector w by solving the following optimization problem

min
w

(
max
µπ∈G

(wTΦ + l)µπ − wTΦµπ∗
)

+
λ

2
‖ w‖2,

3exact counts
↗

7empirical counts
↖

where G denotes the set of state-action average counts µπ, satisfying Bellman flow constraints

µπ(s) = α(s) + γ
∑
s′∈S

∑
a∈A

µπ(s′, a)T (s′, a, s),
∑
a∈A

µπ(s, a) = µπ(s), µπ(s, a) ≥ 0.

The loss vector l represents the cost of deviating from the expert’s examples. It can be defined as
l(s, a) = 1 if a 6= π∗(s), and l(s, a) = 0 if a = π∗(s).

3.2 Empirical Feature Counts

The feature counts Φµπ∗ can be analytically calculated (using Bellman flow equation) only if π∗ is
completely known. However, the examples cover only a part of the state space and the feature counts
are approximated by using the empirical counts. Two main problems are related to this approximation:

• The empirical averages suffer from a large variance when the transition function is highly stochastic.

• The empirical averages do not take into account the known transition probabilities.

3.3 Bootstrapping Maximum Margin Planning

Assuming that the expert’s policy π∗ is optimal and deterministic, the term wTΦµπ∗ can be replaced
by maxµ∈Gπ∗ w

TΦµ, the value of the optimal policy according to the intermediate reward weight w
(in a gradient descent algorithm) that selects the same actions as the expert in all the states that
occurred in the demonstration. Bootstrapped Maximum Margin Planning consists in solving the
following optimization problem

min
w

(
max
µπ∈G

(wTΦ + l)µπ − max
µπ′∈Gπ∗

wTΦµπ′
)

+
λ

2
‖ w‖2,

exact counts
↗

exact counts
↖

where Gπ∗ is the set of vectors µπ subject to the following modified Bellman flow constraints

µπ(s) = α(s) + γ
∑
s′∈Se

µπ(s′)T (s′, π∗(s′), s) + γ
∑

s′∈S\Se

∑
a∈A

µπ(s′, a)T (s′, a, s),

∑
a∈A

µπ(s, a) = µπ(s), µπ(s, a) ≥ 0

Se is the set of states encountered in the examples, where the expert’s deterministic policy is known.

3.4 Theoretical Results

Theorem 1 The objective function of the bootstrapped MMP algorithm has at most
|A||S|
|A||Se|

different local minima.

Theorem 2 If there exists a reward weight vector w∗ ∈ Rk, such that the expert’s policy
π∗ is the only optimal policy with w∗, i.e. arg maxµ∈G w

∗TΦµ = {µπ∗}, then there exists
α > 0 such that: (i), the expert’s policy π∗ is the only optimal policy with αw∗, and (ii),
the objective function of the bootstrapped MMP algorithm has a local minimum at αw∗.

Theorem 3 If Φ is an identity matrix and λ = 0, then all the local minima of the objective
function of the bootstrapped MMP algorithm are equal to 0.

4 Bootstrapping LPAL

4.1 Linear Programming Apprenticeship Learning (LPAL) [3]

LPAL is based on the following observation, if the reward weights are positive and sum to 1 then
V (π) ≥ V (π∗) + v, where

v = min
φi

[
∑
s∈S

∑
a∈A

µπ(s, a)φi(s, a)−
∑
s∈S

∑
a∈A

µπ∗(s, a)φi(s, a)].

exact counts
↗

empirical counts
↖

LPAL consists in finding a policy π that maximizes the margin v. The maximal margin is found by
solving a linear program where the variables are the margin v and the expected visitation frequencies
µπ(s, a), subject to Bellman flow constraints.

4.2 Bootstrapping Linear Programming Apprenticeship Learning

As with MMP, the feature frequencies in LPAL can be analytically calculated only when a complete
policy π∗ of the expert is provided. The same bound V (π) ≥ V (π∗)+v can be guaranteed by putting

v = min
φi

[
∑
s∈S

∑
a∈A

µπ(s, a)φi(s, a)− max
π′i∈Π∗

∑
s∈S

∑
a∈A

µπ′i(s, a)φi(s, a)],

exact counts
↗

exact counts
↖

where Π∗ denotes the set of all the policies that select the same actions as the expert in all the states
that occurred in the demonstration.
The maximal margin v is found by solving a linear program where the variables correspond to µπ(s, a).
The policies π′i are found by solving k separate optimization problems (k is the number of reward
features). For each feature φi, π

′
i is the policy that selects the same action as the expert in the known

states, and is optimal under the reward weights w defined as wi = 1, and wj = 0, ∀j 6= i.

5 Experimental Results

The experiments were performed on a car race simulator, where a positive reward is given for reaching
the finish line and a negative reward is given for hitting obstacles.
Racetrack 1: the car starts at a fixed location.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12

A
ve

ra
ge

 r
ew

ar
d

pe
r

st
ep

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

 20

 22

 24

 26

 28

 30

 32

 34

 2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r

of
 h

itt
ed

 o
bs

ta
cl

es
 p

er
 s

te
p

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

Racetrack 2: the car starts at a random location.

 0

 5

 10

 15

 20

 2 4 6 8 10 12

A
ve

ra
ge

 r
ew

ar
d

pe
r

st
ep

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

 20

 30

 40

 50

 60

 2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r

of
 h

itt
ed

 o
bs

ta
cl

es
 p

er
 s

te
p

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

Notice that MMP using empirical feature counts (MMP+MC) achieved good performances only when
the car starts at a fixed position. When the car starts at a random position, the performance of MMP
is significantly improved by using the bootstrapping technique.

References

[1] Pieter Abbeel and Andrew Ng. Apprenticeship Learning via Inverse Reinforcement Learning. ICML
2004, pp. 1–8.

[2] Nathan Ratliff, J. Andrew Bagnell and Martin Zinkevich. Maximum Margin Planning. ICML 2006,
pp. 729–736.

[3] Umar Syed, Michael Bowling and Robert Schapire. Apprenticeship Learning using Linear Pro-
gramming. ICML 2008, pp. 1032–1039.

NIPS 2010, Vancouver, December 2010

