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4 Experiments

3 Relative Entropy Inverse Reinforcement Learning

1 Overview

Reinforcement Learning e A trajectory of states and actions sjaq, ... spay is denoted by 7. 4.1 Gridworld and Racetrack

Th lue of feat ; al traject s denoted by f;(7). , |
* The average value of feature f; along a trajectory 7 is denoted by fi() We compare the Relative Entropy IRL to: (1) the model-based Maximum Entropy

e The empirical average of feature f; in the observed trajectories is denoted by f}

Optimal Control [RL [2] where a model is estimated from the demonstrated trajectories, (2) a naive
e Let () be a basline distribution on the trajectories. () can be uniform (Maximum model-free variant of Maximum Margin Planning (MMP [3]) where the forward prob-
A R . o . . o . o o . . .
I Entropy [2]), or an initial approximation of the observed behavior. lem is solved by reinforcement learning, (3) a supervised learning approach (k-NN).
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namics 1s unavailable. Gridworld Racetrack

subject to the following constraints
4.2 Ball-in-a-cup

2 Background . ,
Vi€ {l,....k}:| Y P(r)fi(r) = fi| < e (1)
TeT
2.1 Markov Decision Process (MDP) N P(r) =1, (2)
TeT
A Markov Decision Process is a tuple (S, A, T, R), where V7 € 76- - P(r) > 0. (3)
e S is a set of states,
o A is a set of actions,
o I' are transition probabilities with T'(s, a,s’) = P(s'|s,a) for s,s" € §,a € A,
e 17 is a reward function where R(s, a) is the reward given for action a in state s. 3.2 Solution
The subgradient of the dual function g is given by
2.2 Policies 9
A policy 7 is a function that maps every state into an action or a distribution on the 8—82 (0) = fi — Z P(7]0) fi(T) — cuei,
actions. The expected average reward received by following a policy 7 is given by et
- where ; = 1 1f 0; > 0 and «; = —1 otherwise. ‘ |
J(m) = 1 o {Z R(s; &t)‘ do. T} The parameterized trajectory distribution P is given by The figure above shows schematic draw- |
h —0 . ings of the Ball-in-a-Cup motion, the fi- 1t
1 ' g
where d; is the initial state distribution and h is the horizon. P(1|0) = —=Q(1)exp [ Y 0ifi(T)]. nal }eamed robot motion as _Weﬂ Tew
Z ((9) P motion-captured human motion. We @
. . used 17 trajectories provided by a hu- § 051
2.3 Inverse Reinforcement Learning (IRL) The probability Q(7) is given by d(7)u(7), where d(7) is the joint probability of the man expert. The figure on the right @ : :
e Designing a reward function for matching a complex behavior can be a challenging state transitions in 7, and u(7) is the joint probability of the actions conditioned on shows the average success rate as a func- oL ___—— I 1
problem. It is often easier to provide examples of the desired behavior [1]. the states in 7. tion of the number of sampled trajecto- 100 500 1OOOI 2000
. . . . . . samples
o IRL consists in learning a reward function that explains an observed behavior. X The subgradient of the dual function cannot be calculated if d(7) is unknown. ries that were used for learning the re- — M

. : : : ward function.
e The reward is assumed to be a linear function of state-action features f;, . . . .
3.3 Stochastic subgradient with Importance Sampling

S
- o . . . eferences
R(s,a) = Z 0;fi(s,a). Let 7w(7) be the joint probability of the actions in 7 under a sampling policy.
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