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1 Overview

Reward Model of the Dynamics Policy

Optimal Control

Reinforcement Learning

Inverse Reinforcement Learning Examples

Imitation Learning

We consider the problem of inverse reinforcement learning when a model of the dy-
namics is unavailable.

2 Background

2.1 Markov Decision Process (MDP)

A Markov Decision Process is a tuple (S,A, T, R), where

• S is a set of states,

•A is a set of actions,

•T are transition probabilities with T (s, a, s′) = P (s′|s, a) for s, s′ ∈ S, a ∈ A,

•R is a reward function where R(s, a) is the reward given for action a in state s.

2.2 Policies

A policy π is a function that maps every state into an action or a distribution on the
actions. The expected average reward received by following a policy π is given by

J(π) =
1

h
Est,at

[ h−1∑
t=0

R(st, at)
∣∣∣d0, π, T

]
,

where d0 is the initial state distribution and h is the horizon.

2.3 Inverse Reinforcement Learning (IRL)

•Designing a reward function for matching a complex behavior can be a challenging
problem. It is often easier to provide examples of the desired behavior [1].

• IRL consists in learning a reward function that explains an observed behavior.

•The reward is assumed to be a linear function of state-action features fi,

R(s, a) =
k−1∑
i=0

θifi(s, a).

•The learned reward function, parameterized by θ, is used to generalize the observed
behavior.

3 Relative Entropy Inverse Reinforcement Learning

•A trajectory of states and actions s1a1, . . . shah is denoted by τ .

•The average value of feature fi along a trajectory τ is denoted by fi(τ ).

•The empirical average of feature fi in the observed trajectories is denoted by f̂i

•Let Q be a basline distribution on the trajectories. Q can be uniform (Maximum
Entropy [2]), or an initial approximation of the observed behavior.

•Find a distribution P that is as close as possible to Q, while each feature has an
average under P that is close to its average in the observed trajectories.

3.1 Problem statement

Relative Entropy IRL is formulated as the problem of minimizing the relative
entropy between P and Q,

min
P

∑
τ∈T

P (τ ) ln
P (τ )

Q(τ )
,

subject to the following constraints

∀i ∈ {1, . . . , k} :
∣∣∣ ∑
τ∈T

P (τ )fi(τ )− f̂i
∣∣∣ ≤ εi, (1)∑

τ∈T
P (τ ) = 1, (2)

∀τ ∈ T : P (τ ) ≥ 0. (3)

3.2 Solution

The subgradient of the dual function g is given by

∂

∂θi
g(θ) = f̂i −

∑
τ∈T

P (τ |θ)fi(τ )− αiεi,

where αi = 1 if θi ≥ 0 and αi = −1 otherwise.
The parameterized trajectory distribution P is given by

P (τ |θ) =
1

Z(θ)
Q(τ ) exp

 k∑
i=1

θifi(τ )

.
The probability Q(τ ) is given by d(τ )u(τ ), where d(τ ) is the joint probability of the
state transitions in τ , and u(τ ) is the joint probability of the actions conditioned on
the states in τ .

7 The subgradient of the dual function cannot be calculated if d(τ ) is unknown.

3.3 Stochastic subgradient with Importance Sampling

Let π(τ ) be the joint probability of the actions in τ under a sampling policy.

∂̂g

∂θi
(θ) = f̂i −

∑
τ
u(τ )
π(τ ) exp

(∑
i θifi(τ )

)
fi(τ )∑

τ
u(τ )
π(τ ) exp

(∑
i θifi(τ )

) − αiεi.

4 Experiments

4.1 Gridworld and Racetrack

We compare the Relative Entropy IRL to: (1) the model-based Maximum Entropy
IRL [2] where a model is estimated from the demonstrated trajectories, (2) a naive
model-free variant of Maximum Margin Planning (MMP [3]) where the forward prob-
lem is solved by reinforcement learning, (3) a supervised learning approach (k-NN).
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4.2 Ball-in-a-cup
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The figure above shows schematic draw-

ings of the Ball-in-a-Cup motion, the fi-

nal learned robot motion as well as a

motion-captured human motion. We

used 17 trajectories provided by a hu-

man expert. The figure on the right

shows the average success rate as a func-

tion of the number of sampled trajecto-

ries that were used for learning the re-

ward function.
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