
Neurocomputing 104 (2013) 83–96
Contents lists available at SciVerse ScienceDirect
Neurocomputing
0925-23

http://d

n Corr

E-m

boularia
journal homepage: www.elsevier.com/locate/neucom
Apprenticeship learning with few examples
Abdeslam Boularias a,n, Brahim Chaib-draa b

a Max Planck Institute for Intelligent Systems, Spemannstraße 41, 72076 Tuebingen, Germany
b Computer Science and Software Engineering Department, Laval University, Quebec, Canada G1V 0A6
a r t i c l e i n f o

Article history:

Received 15 November 2011

Received in revised form

19 October 2012

Accepted 1 November 2012
Communicated by H.R. Karimi
algorithms use only simple empirical averages of the features in the demonstrations as a statistics of
Available online 16 November 2012

Keywords:

Imitation learning

Inverse reinforcement learning

Transfer learning

Bootstrapping
12/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.neucom.2012.11.002

esponding author.

ail addresses: abdeslam.boularias@tuebingen.

s@gmail.com (A. Boularias), chaib@ift.ulaval.
a b s t r a c t

We consider the problem of imitation learning when the examples, provided by an expert human, are

scarce. Apprenticeship learning via inverse reinforcement learning provides an efficient tool for

generalizing the examples, based on the assumption that the expert’s policy maximizes a value

function, which is a linear combination of state and action features. Most apprenticeship learning

the expert’s policy. However, this method is efficient only when the number of examples is sufficiently

large to cover most of the states, or the dynamics of the system is nearly deterministic. In this paper, we

show that the quality of the learned policies is sensitive to the error in estimating the averages of the

features when the dynamics of the system is stochastic. To reduce this error, we introduce two new

approaches for bootstrapping the demonstrations by assuming that the expert is near-optimal and the

dynamics of the system is known. In the first approach, the expert’s examples are used to learn a

reward function and to generate furthermore examples from the corresponding optimal policy. The

second approach uses a transfer technique, known as graph homomorphism, in order to generalize the

expert’s actions to unvisited regions of the state space. Empirical results on simulated robot navigation

problems show that our approach is able to learn sufficiently good policies from a significantly small

number of examples.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Modern robots are designed to perform complicated planning
and control tasks, such as manipulating objects, navigating in
unfamiliar environments, and driving in urban settings. However,
manually programming these tasks is almost infeasible in practice
due to their high complexity. Markov decision processes (MDPs)
provide an efficient tool for handling such tasks with a minimal
help from an expert human. The human’s help consists in simply
specifying an appropriate reward function. Unfortunately, in
many practical problems, even specifying a reward function is
not easy. In fact, it is often easier to provide examples of a desired
behavior than to define the corresponding reward function [14].

Learning policies from demonstration, a.k.a. imitation learning,
is a technique that has been widely used in robotics [20,4,15,3,9].
An efficient approach to imitation learning, known as apprentice-
ship learning via inverse reinforcement learning (IRL) [1], consists
in recovering a reward function under which the demonstrated
policy is near-optimal, rather than directly mimicking the expert’s
actions. The learned reward function is then used for finding an
ll rights reserved.

mpg.de,

ca (B. Chaib-draa).
optimal policy. Consequently, the expert’s actions can be pre-
dicted in states that have not been encountered during the
demonstration. Unfortunately, as already pointed by Abbeel and
Ng [1], recovering a reward function is an ill-posed problem. In
fact, the expert’s policy can be optimal for an infinite number of
reward functions, including degenerate ones. Most of the work on
apprenticeship learning focused on solving this particular pro-
blem by using different types of regularization and different loss
functions [17,16,22,25,10].

In this paper, we focus on another important problem in
apprenticeship learning occurring when the number of demon-
strations is small. Previous algorithms rely on the assumption
that the reward function is a linear combination of state and
action features. Therefore, the expected average of rewards, i.e.
the value function, of any policy is also a linear combination of the
expected average of the features. In particular, the value function
of the expert’s policy is approximated by a linear combination of
the empirical averages of the features, estimated from the
demonstration.

Consequently, most of state-of-the-art apprenticeship algo-
rithms [1,23,18,25] work efficiently only when the number of
examples is large enough to accurately calculate the feature
averages, or when the dynamics of the system is nearly determi-
nistic. However, this is not often verified in practice. In fact, most
real-world systems are characterized by stochastic transition

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2012.11.002
dx.doi.org/10.1016/j.neucom.2012.11.002
dx.doi.org/10.1016/j.neucom.2012.11.002
mailto:abdeslam.boularias@tuebingen.mpg.de
mailto:boularias@gmail.com
mailto:chaib@ift.ulaval.ca
dx.doi.org/10.1016/j.neucom.2012.11.002

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–9684
functions. This results in a high variance of the feature values, and
a large number of examples is needed for estimating these values.
In fact, the features of sampled trajectories may take extreme
values that do not accurately represent the average ones when
their distribution has a large variance, therefore more examples
are needed. Examples of highly stochastic systems include robot
locomotion [12], autonomous helicopters [2], and object grasping
and manipulation [8]. A large number of examples may also be
needed to accurately approximate the average values of the
feature counts when the state space is too large. In fact, Hoeffd-
ing’s inequality shows that the convergence rate of an empirical
estimate of a random variable decreases exponentially when it
has a large support, which is usually the case when the state
space is large.

Moreover, the training examples are often provided by a
human expert that needs to repeat the task several times, which
can be a laborious process, costing time and money. For instance,
Abbeel et al. [2] used a professional helicopter pilot for recording
trajectories. In the motor game ball-in-a-cup [7], we were able to
record only 17 expert trajectories given the difficulty of perform-
ing the task while holding the robot arm. In general, it would be
much easier to teach robots using as few examples as possible.
Therefore, we are interested in developing apprenticeship learn-
ing techniques that work well with few training examples.

We propose two bootstrapping techniques for approximating the
expected values of the features using a small number of examples.
These methods take advantage of the fact that the expert’s partially
demonstrated policy is near-optimal, and generalizes the expert’s
policy beyond the states that appear in the demonstration. The
expected values of the features are then calculated from the general-
ized policy and used in an apprenticeship learning algorithm.

In the first approach, we propose a modification to the loss
functions of known apprenticeship learning algorithms. Given a
hypothesized reward function, the modified loss function com-
pares the value of the optimal policy to the value of the best
policy that is consistent with the examples.

The second bootstrapping approach uses a transfer learning
technique, known as soft homomorphism [21], in order to explicitly
generalize the expert’s actions to unvisited regions of the state
space. The generalized policy can then be used along with the
known system dynamics to analytically calculate the expected
average values of the features. Contrary to other direct imitation
methods, homomorphisms measure the similarity between two
states by taking into account all the possible future states.

We show that the proposed techniques improve the perfor-
mance of two well-known apprenticeship learning algorithms,
namely maximum margin planning (MMP) [17], and linear
programming apprenticeship learning (LPAL) [23].

In the next two sections, we present a background of Markov
decision processes (MDPs) and a brief overview of apprenticeship
learning. Then, we provide a theoretical analysis regarding the
error in the learned reward function for a particular apprentice-
ship learning algorithm. The core of the paper is divided into two
parts, the first one is related to the analytical bootstrapping
approach, while the second presents the transfer-based techni-
ques. We also present empirical evaluations that demonstrate the
effectiveness of the suggested methods. The paper concludes with
a discussion of the pros and cons of these techniques, as well as
the proposed extension of this work. Note that earlier preliminary
versions of this work appeared in [5,6].
2. Background

A finite-state Markov decision process (MDP) is a tuple
ðS,A,T,R,a,gÞ, where: S is a finite set of states, A is a finite set of
actions, T is a transition matrix (Tðs,a,s0Þ ¼ Prðs09s,aÞ,s,s0AS,aAA),
R is a reward function (Rðs,aÞ is the reward given for executing
action a in state s), a is the initial state distribution, and g is a
discount factor (gA ½0,1�). We denote by MDP\R a Markov decision
process without a reward function, i.e. a tuple ðS,A,T ,a,gÞ. We
assume that there exists a set of k feature functions fi such that
the reward function R is given by a linear combination of these
features with real-valued weights wi:

8sAS, 8aAA : Rðs,aÞ ¼
Xk

i ¼ 0

wif iðs,aÞ: ð1Þ

A deterministic policy p is a function that returns an action pðsÞ
for each state s. A stochastic policy p is a probability distribution
on the action to be executed in each state, defined as
pðs,aÞ ¼ Prða9sÞ. The value VðpÞ of a policy p is the expected sum
of rewards that will be received if we follow policy p,

VðpÞ ¼ Eðst ,at Þ � dp,t

X1
t ¼ 0

gtRðst ,atÞ9a,p,T

" #
, ð2Þ

where dp,t is the distribution on the states and actions at time-
step t induced by policy p and the transition matrix. An optimal
policy p is one satisfying

pAarg max
p

VðpÞ: ð3Þ

The occupancy mp of a policy p is the discounted state–action visit
distribution, defined as

mpðs,aÞ ¼ Eðst ,at Þ � dp,t

X1
t ¼ 0

gtdst ,sdat ,a9a,p,T

" #
, ð4Þ

where d is the Kronecker delta. We also use mpðsÞ to denoteP
ampðs,aÞ. The following linear constraints, known as Bellman-

flow constraints, are necessary and sufficient for defining an
occupancy measure of a policy

mpðsÞ ¼ aðsÞþg
P

s0AS
P

aAAmpðs0,aÞTðs0,a,sÞ,

mpðsÞ ¼
P

aAAmpðs,aÞ,

mpðs,aÞZ0:

8><
>: ð5Þ

A policy p is well-defined by its occupancy measure mp, one can
interchangeably use p and mp to denote a policy. The set of all
vectors mpAR9S�A9 that satisfy Eq. (5) is denoted by G. The
expected discounted value of a feature fi for a policy p is given by

vi,p ¼ Eðst ,atÞ � dp,t

X1
t ¼ 0

gtf iðst ,atÞ9a,p,T

" #

¼ Fði,�Þmp, ð6Þ

where F is a k by 9S99A9 feature matrix, such that Fði,ðs,aÞÞ ¼ f iðs,aÞ.
Using this definition, the value of a policy p can be written as a
linear function of the feature counts

VðpÞ ¼wT Fmp ¼wT vp, ð7Þ

where vp is a vector of entries vi,p, for i¼ 1, . . . ,k. Therefore, the
value of a policy p is determined by vp.
3. Apprenticeship learning

3.1. Overview

The aim of apprenticeship learning is to find a policy p that is
nearly as good as a policy pE demonstrated by an expert, i.e.
VðpÞZVðpEÞ�E. The value functions of p and pE cannot be
compared directly, unless a reward function is given. Ng and
Russell [14] proposed to first learn a reward function, assuming
that the expert’s policy is optimal, and then use it to recover the

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–96 85
expert’s generalized policy. However, as previously stated, the
problem of learning a reward function given an optimal policy is
ill-posed [1]. In fact, a large class of reward functions, including all
constant functions for instance, may lead to the same optimal
policy. To overcome this problem, Abbeel and Ng [1] did not
consider recovering a reward function, instead, their algorithm
directly returns a policy p with a bounded loss of the value, i.e.
9VðpÞ�VðpEÞ9rE, where the value is measured with respect to the
expert’s reward function in the worst case. Such guarantee can be
achieved by finding a policy p such that Jvp�vpEJrE. This is a
direct consequence of the fact that when two policies have similar
expected feature values, they also have similar cumulative
rewards, assuming that the reward is a linear function of the
features. In the next two subsections, we briefly describe two
apprenticeship learning algorithms that we build on in this paper.
The first one, known as maximum margin planning (MMP) [17], is
a robust algorithm that learns a reward function. The second one,
known as linear programming apprenticeship learning (LPAL)
[23], is a fast algorithm that returns a policy with a bounded loss
in the value.

3.2. Maximum margin planning (MMP)

The MMP algorithm returns a vector of weights w, such that
the value of the expert’s policy pE (Eq. (7)) is higher than the value
of an alternative policy p by a margin that scales with the number
of expert’s actions that are different from the actions of the
alternative policy. This criterion is explicitly specified in the loss
function minimized by the MMP algorithm

cqðwÞ ¼ max
mAG
ðwT Fþ lÞm�wT FmpE

� �q

þ
l
2
JwJ2: ð8Þ

This latter equation corresponds to the loss used in MMP for one
MDP domain, where qAf1,2g defines a slack penalization, l is a
regularization parameter, l is a deviation cost vector that can be
defined as

lðs,aÞ ¼ 1�pEðs,aÞ, ð9Þ

and G is the set of occupancy measures, i.e. the set of all vectors m
that satisfy Eq. (5). Notice that when policy pE is deterministic,
then lðs,aÞ ¼ 1 if pEðs,aÞ ¼ 0 and lðs,aÞ ¼ 0 if pEðs,aÞ ¼ 1.

Intuitively, a policy that maximizes the cost-augmented
reward vector ðwT Fþ lÞ tends to be completely different from
the expert’s policy, since an additional reward lðs,aÞ is given for
actions that are different from those of the expert. The MMP
algorithm minimizes the difference between the value difference,
given by wT FmpE�wT Fm, and the actions difference lm.

The loss function cq is convex, but nondifferentiable. Never-
theless, Ratliff et al. [17] showed that cq can be minimized by
using a generalization of the gradient ascent called the subgra-

dient method. For a given reward w, a subgradient gw
q of the

objective function is given by

gq
w ¼ qððwT Fþ lÞmþ�wT FmpE Þ

q�1FDwmpEþlw, ð10Þ

where

mþ ¼def
arg max

mAG
ðwT Fþ lÞm, DwmpE ¼

defmþ�mpE :

The subgradient gw
q is used for updating the reward weights w in

an iterative loop, wtþ1 ¼wt�Zgq
wt

, until a minimum is reached.

3.3. Linear programming apprenticeship learning (LPAL)

The LPAL algorithm [23] formulates the problem of learning a
reward function as a zero-sum game between two players. In this
game, one player chooses reward weights w that minimize the
value function of a policy p, and the other player chooses an
optimal policy p given reward weights w. The proposed solution
is based on the following observation: if the reward weights are
positive and sum to 1, then VðpÞ�VðpEÞZmini½vi,p�vi,pE �, for any
policy p (vi,p is defined in Eq. (6)). LPAL consists in finding a policy
that maximizes the margin mini½vi,p�vi,pE �. The maximum margin
is given by the linear program:

max
vAR,mpAG

v

subject to 8iAf0, . . . ,k�1g:

vr
X
sAS

X
aAA

mpðs,aÞf iðs,aÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vi,p

�
X
sAS

X
aAA

mpE ðs,aÞf iðs,aÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
v

i,pE

: ð11Þ

The learned policy p is given by

pðs,aÞ ¼
mpðs,aÞP

a0AAmpðs,a0Þ
: ð12Þ
3.4. Empirical estimation of the expected feature values

Notice that both MMP and LPAL require the knowledge of the
expected feature values vi,pE . These values can be analytically
calculated (using Bellman-flow constraints) only when pE is
known for every state. Given a sequence of M demonstration
trajectories tm ¼ ðsm

1 ,am
1 , . . . ,sm

H ,am
H ,Þ, the values vi,pE can be empiri-

cally estimated as

v̂i,pE ¼
1

M

XM
m ¼ 1

XH

t ¼ 1

gt f iðs
m
t ,am

t Þ: ð13Þ

However, there are many issues related to this approximation.
First, the estimated values v̂i,pE can be very different from the true
ones when the demonstration trajectories are scarce. Second, v̂i,pE

is estimated for a finite horizon H, whereas vi,p, used in the
objective function (Eqs. (8) and (11)), is calculated for an infinite
horizon (Eq. (5)). In practice, these two values have different
scales and cannot be compared as done in these loss functions.
Finally, the values vi,pE are a function of both a policy and the
transition probabilities, Eq. (13) does not take advantage of the
fact that the transition probabilities are known.
4. Empirical error analysis

4.1. A Hoeffding bound on the empirical estimation error

In this subsection, we derive an upper bound on the error in
estimating the feature averages v̂i,pE using the Monte Carlo
estimator given by Eq. (13).

Theorem 1. Let M be the number of trajectories in the demonstra-

tion, H be the length of each trajectory, f�i ¼minsAS,aAAf iðs,aÞ,
f þi ¼maxsAS,aAAf iðs,aÞ and EAR, then

Prð9v̂i,pE�vi,pE 9ZEÞr2 exp �
2Mðð1�gÞE�gHf þi Þ

2

ð1�gHÞ
2
ðf þi �f�i Þ

2

 !
: ð14Þ

Proof. Let dpE ,t be the distribution on the states and the actions at
time-step t induced by the policy pE and the transition matrix. Let
us denote 9v̂i,pE�vi,pE 9 by d. From Eq. (13), we have

dr
XH

t ¼ 1

gt 1

M

XM
m ¼ 1

f iðs
m
t ,am

t Þ�EdpE ,t
f iðs,aÞ

�����
�����|ffl{zffl}

Dt

þ
gH

1�g f þi :

Fig. 1. Reward error in the MMP algorithm using approximate feature counts v̂pE .

We indicate by vpE (resp. v̂pE) the linear function defined by the vector vpE (resp.

v̂pE), wn denotes the true reward weights and ŵ denotes the learned ones.

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–9686
From Hoeffding’s inequality, we have 8xAR,

PrðDt ZxÞr2 exp �
2Mx2

ðf þi �f�i Þ
2

 !
:

Since the errors Dt for different time-steps t are independent
given the state–action distributions dpE ,t , then

Pr dZ
XH

t ¼ 1

gtxþ
gH

1�g
f þi

 !
r2 exp �

2Mx2

ðf þi �f�i Þ
2

 !
:

The bound is given by setting x¼ ðð1�gÞE�gHf þi Þ=ð1�gHÞ. &

This bound indicates that the probability of making an error
within a given threshold increases as the range (f þi �f�i) of the
estimated feature gets larger.

4.2. An analysis of the reward error in maximum margin planning

To show the effect of the empirical feature estimation error on
the quality of the learned rewards, we present an analysis of the
distance between the vector of reward weights ŵ returned by
MMP with empirical feature counts v̂pE , calculated from the
examples by solving Eq. (13), and the vector wn returned by
MMP with accurate values vpE , calculated by using Eq. (5). We
adopt the following notations: Dvp ¼ v̂pE�vpE , Dw¼ ŵ�wn, and
VlðwÞ ¼maxmAGðwT Fþ lÞm, and we consider q¼1 in Eq. (8). The
following theorem shows how the reward error Dw is related to
the feature count error Dvp. Due to the fact that the loss function
of the MMP algorithm is piecewise defined, one cannot find a
simple relation between Dw and Dvp. However, we show that for
any ŵARk, there is an upper bound function f such that for any
EAR, if JDvpJ2o f ðŵ,EÞ then JDwJ2rE.

Theorem 2. Let EAR, if the following condition is verified:

JDvpJ2o min
w,Jw�ŵJ2 ¼ E

VlðwÞ�VlðŵÞþðŵ�wÞT v̂pEþ
l
2
ðJwJ2�JŵJ2Þ

E
ð15Þ

then JDwJ2rE.

Proof. The condition stated in this theorem implies

Jŵ�wJ2JDvpJ2oVlðwÞ�VlðŵÞþðŵ�wÞT v̂pEþ
lðJwJ2�JŵJ2Þ

2
:

From Hölder’s inequality, we have

ðŵ�wÞTDvpoVlðwÞ�VlðŵÞþðŵ�wÞT v̂pEþ
lðJwJ2�JŵJ2Þ

2
:

Then

VlðŵÞ� ŵ
T
vpE�

l
2
JŵJ2

� �
oVlðwÞ� wT vpE�

l
2
JwJ2

� �
:

In other terms, the point ðŵ
T
vpE�ðl=2ÞJŵJ2Þ is closer to Vl than

any other point ðwT vpE�ðl=2ÞJwJ2Þ, where w is a point on the
sphere centered around ŵ with a radius of E. Since Vl is convex
and ðwnT vpE�ðl=2ÞJwnJ2Þ is by definition the closest point to the
set of hyperplans Vl, then wn should be inside the ball centered
around ŵ with a radius of E. Therefore, Jwn�ŵJ2rE and thus
JDwJ2rE. &

Consequently, the reward error JDwJ2 approaches zero as the
error of the estimated feature values JDvpJ2 approaches zero. A
simpler bound can be easily derived given admissible heuristics of Vl.

Corollary. Let Vl and Vl be, respectively, a lower and an upper

bound on Vl, then Theorem 2 holds if VlðwÞ�VlðŵÞ is replaced by

Vl ðwÞ�Vl ðŵÞ.
Fig. 1 illustrates the divergence from the optimal reward
weights wn when approximate feature values are used. The error
is not a continuous function of Dvp when the cost function is not
regularized, because the vector returned by MMP is always a
fringe point. Informally, the error is proportional to the maximum
subgradient of Vl�vpE at the fringe point wn.

Finally, note that Theorem 2 can be used along with the
Hoeffding bound given in Theorem 1 to derive a probabilistic
bound that links the reward error to the number of examples, as
shown in the following theorem.

Theorem 3. Let M be the number of trajectories in the demonstra-

tion, H be the length of each trajectory, f�i ¼minsAS,aAAf iðs,aÞ,
f þi ¼maxsAS,aAAf iðs,aÞ and EAR, and x¼minw,Jw�ŵJ2 ¼ Eð

VlðwÞ�VlðŵÞþð̂ w�wÞT v̂ pEþðl=2Þ ðJwJ2�J ŵJ2ÞÞ= E, then

PrðJDwJ2ZEÞr2 exp �min
i

2Mðð1�gÞx�gHf þi Þ
2

ð1�gHÞ
2
ðf þi �f�i Þ

2

 !
: ð16Þ

Proof. From Theorem 2, we have PrðJDwJ2ZEÞrPrðJDvpJ2ZxÞ
(in general, ðA) BÞ) ðPr ðAÞrPrðBÞÞ). Note that JDvpJ2r
maxi9v̂i,pE�vi,pE 9. Therefore, PrðJDwJ2ZEÞr maxiPrð9 v̂i,pE �vi,

pE9ZxÞ. From the bound given in Theorem 1, we have maxi

Prð9v̂ i,pE� vi,pE 9ZxÞr2 expð�minið2M ðð1�gÞx�gHf þi Þ
2=ð1�gH Þ

2

ðf þi �f�i Þ
2
ÞÞ. &

Such a bound will not be of a practical use since there is no
straightforward easy way for calculating the right term in Eq.
(16). However, this bound clearly shows that the probability of an
error JDwJ2 higher than a given E increases with the margins f þi �

f�i . Therefore, one might need more training examples when the
features vary a lot from a state to another.
5. Analytical bootstrapping of apprenticeship learning

In this section, we show how one can avoid the use of the
empirical feature values in the loss functions of MMP and LPAL by
adopting modified loss functions.

5.1. Assumptions

We consider the standard assumptions of inverse reinforce-
ment learning: (i) the dynamics of the system is known, and (ii)
the expert is near-optimal [14]. The first assumption is funda-
mental since most of the algorithms in the literature are model-
based (exceptions include [7]). If the dynamics is unknown, then
one can apply system identification techniques to construct a
model by using the trajectories provided by the expert, or by
directly interacting with the system and collecting additional
trajectories [2]. However, inaccurate models will have an effect on
the learned reward that is comparable to using a Monte Carlo

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–96 87
estimator as discussed in the previous section. In this paper, we
only consider the case where the dynamics model is accurate.

The assumption regarding the optimality of the expert’s policy
is ill-defined, since any policy is optimal with respect to a certain
reward function. For instance, all the policies are optimal with
respect to a zero (or a constant) reward function. In fact, only the
reward features fi in Eq. (1) have a physical interpretation, the
reward weights wi reflect subjective preferences for certain
features. Therefore, the reward function cannot be measured by
using system identification methods. This problem can be
addressed only by incorporating prior knowledge in the loss
function. For example, the MMP algorithm returns a reward
function that maximizes the distance between the value of the
expert’s policy and the second best policy.

A better interpretation of the optimality assumption would be
that the expert is rational, i.e. the expert’s actions are chosen
according to Eqs. (1)–(3) for some unknown weights wi. Conse-
quently, the reward weights that explain the choice of actions in
some states can be used to predict the actions in other states.
Inverse reinforcement learning consists in learning weights wi

that make the expert’s policy optimal. If the expert’s choice of
actions is sub-optimal with respect to some ideal reward func-
tion, then the generalized policy also will be sub-optimal.

5.2. Bootstrapping maximum margin planning

The empirical feature error Dvp can be significantly reduced by
using the known transition function for calculating v̂pE and
solving the flow equation (5), instead of the Monte Carlo estima-
tor (Eq. (13)). However, this cannot be done unless the complete
expert’s policy pE is provided.

Assuming that the expert’s policy pE is optimal, the value
wT FmpE in Eq. (8) can be replaced by maxmAGpE

wT Fm, the value of
the optimal policy, according to the hypothesized reward weight
w, that selects the same actions as the expert in all the states that
occurred in the demonstration. The loss function of the boot-
strapped maximum margin planning becomes

cqðwÞ ¼ max
mAG
ðwT Fþ lÞm�max

m0AGpE

wT Fm0
� �q

þ
l
2
JwJ2, ð17Þ

where GpE is the set of vectors mp, subject to the following
modified Bellman-flow constraints

mpðsÞ ¼ aðsÞþg
P

s0ASE

mpðs0Þ
P

aAA
pEðs0,aÞTa

ðs0,sÞ

þg
P

s0AS\SE

P
aAA

mpðs0,aÞT
a
ðs0,sÞ,

mpðsÞ ¼
P

aAA
mpðs,aÞ,

mpðs,aÞZ0:

8>>>>>>>><
>>>>>>>>:

ð18Þ

SE is the set of states where the expert’s policy is known, i.e. the
set of states that appeared in the training examples.

Unfortunately, the new loss function (Eq. (17)) is not necessa-
rily convex. In fact, it corresponds to a margin between two
convex functions: the value of the bootstrapped expert’s policy
maxmAGpE

wT Fm and the value of the best alternative policy
maxmAGðwT Fþ lÞm. Yet, a local optimal solution of this modified
loss function can be found by using the same subgradient as in Eq.
(10), and replacing mpE by arg maxmAGpE

wT Fm. In practice, as we
will show in the experimental analysis, the solution returned by
the bootstrapped MMP outperforms the solution of MMP wherein
the feature values of the expert’s policy are calculated without
taking into account the known transition probabilities. This
improvement is particularly pronounced in highly stochastic
environments. The computational cost of minimizing this mod-
ified loss function is twice the one of MMP, since two optimal
policies are found at each iteration. The computational complex-
ity of calculating a subgradient of Eq. (17) is dominated by the
complexity of finding the vectors m and m0 that maximize the
corresponding reward functions, which can be casted as a linear
program and solved in Oðð9S99A9Þ3:5Þ. Therefore, the complexity of
calculating a subgradient of Eq. (17) is Oð2ð9S99A9Þ3:5Þ. One should
consider the trade-off between the quality of the learned reward
and the computational resources that are available in order to
choose between MMP and the bootstrapped MMP.

In the remainder of this subsection, we provide a theoretical
analysis of the new loss function (Eq. (17)). For the sack of
simplicity, we consider q¼1 and l¼ 0.

Theorem 4. The loss function cq, defined by Eq. (17), has at most

9A99S9=9A99S
E9

different local minima.

Proof. If q¼1 and l¼ 0, then the cost cq(w) corresponds to a
distance between the convex and piecewise linear functions
maxmAGðwT Fþ lÞm and maxmAGpE

wT Fm. Therefore, for any vector
m0AGpE , the function cq is monotone in the interval of w where m0
is optimal, i.e. where wT Fm0 ¼maxmAGpE

wT Fm. Consequently, the
number of local minima of the function cq is at most equal to the
number of optimal vectors m in GpE , which is upper bounded by
the number of deterministic policies defined on S\SE, i.e. by
9A99S9�9S

E9
. &

Consequently, the number of different local minima of the
function cq decreases as the number of states covered by the
demonstration increases. Ultimately, the function cq becomes
convex when the examples cover all the possible states.

Theorem 5. If there exists a reward weight vector wnARk, such that

the expert’s policy pE is the only optimal policy with wn, i.e.

arg maxmAGwnT Fm¼ fmpE g, then there exists a40 such that: (i) the

expert’s policy pE is the only optimal policy with awn, and (ii)
cqðawnÞ is a local minimum of the function cq, defined in Eq. (17).

Proof. The subgradients of the function cq at a point wARk

correspond to the vectors Fm0�Fm00, with m0Aarg maxmAG
ðwT Fþ lÞm,m00Aarg maxmAGpE

wT Fm. In order that cq(w) will be a
local minimum, it suffices to ensure that 0

!
ArwcqðwÞ, i.e.

(m0Aarg maxmAGðwT Fþ lÞm,(m00Aarg maxmAGpE
wT Fm such that

Fm0 ¼ Fm00. Let wnARk be a reward weight vector such that pE is
the only optimal policy, and let E¼wnT FmpE�wnT Fm0 where
m0Aarg maxmAG�fmpE gw

nT Fm. Then, 29SE9=ð1�gÞ ¼ awnT FmpE�awnT

Fm0, where a¼ 29SE9=Eð1�gÞ. Notice that by multiplying wn by
a40, pE remains the only optimal policy, i.e. arg maxmAGa
wnT Fm¼ fmpE g, and m0Aarg maxmAG�fmpE gawnT Fm. Therefore, it suf-
fices to show that mpE Aarg maxmAGða wnT Fþ lÞm. Indeed,
maxmAG�fpEgðawnT Fþ lÞmrmaxmAG�fpEgawnT FmþmaxmAG�fpEglmr
ðawnT FmpE�29SE9 =ð1�gÞÞþ9SE9=ð1�gÞrawnT FmpE�9SE9=ð1�gÞ.
Therefore, mpE Aarg maxmAGðawnT Fþ lÞm. &

Theorem 6. If F is an identity matrix, then all the local minima of

the cost function defined by Eq. (17) are equal to0.

Proof. If cq(w) is a local minimum, then 0
!

ArwcqðwÞ, where
rwcqðwÞ denotes the set of subgradients of the cost function at
point w, and 0

!
ARk is the zero vector. The subgradients corre-

spond to the vectors Fm0�Fm00, with m0Aarg maxmAGðwT Fþ lÞ

m,m00Aarg maxmAGpE
wT Fm. The condition 0

!
ArwcqðwÞ implies that

(m0Aarg maxmAGðwT Fþ lÞm, (m00Aarg maxmAGpE
wT Fm such that

Fm0 ¼ Fm00. Since F is an identity, then Fm0 ¼ m0 and Fm00 ¼ m00,
therefore m0 ¼ m00. Notice that since m0AGpE then lm0 ¼ 0 given
that l takes nonzero values only in the state–actions that are
different from pE. Consequently, ðwT Fþ lÞm0 ¼ ðwT FÞm0 and
cqðwÞ ¼ 0. &

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–9688
This last theorem shows that the nonconvexity of the modified
loss function is actually not a problem when there is a distinctive
feature for each state–action. In that case, all the local minima are
equal. However, this leads to a larger uncertainty regarding the
reward function used by the expert, since a large number of
reward vectors w will minimize the modified loss function.
Fig. 2. Example of a homomorphism of a Markov decision process.

5.3. Bootstrapping linear programming apprenticeship learning

As for MMP, the feature counts vi,pE in LPAL can be analytically
calculated only when a complete policy pE of the expert is
provided. Alternatively, the same error bound VðpÞZVðpEÞþv

can be guaranteed by ensuring that v¼mini ¼ 0,...,k�1minp0APE

½vi,p�vi,p0 �, where PE denotes the set of all the policies that select
the same actions as the expert in all the states that occurred in the
demonstration (in LPAL, the expert’s policy is not necessarily
optimal). Instead of enumerating all the policies of the set PE in
the constraints, note that

min
i ¼ 0,...,k�1

min
p0APE

½vi,p�vi,p0 �r min
i ¼ 0,...,k�1

½vi,p�max
p0APE

vi,p0 �: ð19Þ

Therefore, LPAL can be reformulated as maximizing
mini ¼ 0,...,k�1½vi,p�vE

i �, where vE
i ¼maxp0APE vi,p0 for each feature i.

The maximal margin is found by solving the following linear
program:

max
v,mp

v

subject to 8iAf0, . . . ,k�1g:

vr
X
sAS

X
aAA

mpðs,aÞf iðs,aÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vi,p

�
X
sAS

X
aAA

mi,p0 ðs,aÞf iðs,aÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vE

i

,

mpðsÞ ¼ aðsÞþg
X
s0AS

X
aAA

mpðs0,aÞTðs0,a,sÞ,

X
aAA

mpðs,aÞ ¼ mpðsÞ,mpðs,aÞZ0, ð20Þ

where the margins vi
E are found by solving k separate optimiza-

tion problems (k is the number of features). For each feature i, vi
E

is the value of the optimal policy in the set PE under the reward
weight w defined as wi¼1 and wj¼0, 8ja i.

The analytical bootstrapping methods that we described in
this section consist in modifying the loss function of two typical
apprenticeship learning algorithms. The expected feature values
of a hypothesized optimal policy are compared to the ones of the
best policy that chooses the same actions as the expert in all the
states that appeared in the examples. In the next section, we
describe a more explicit scheme for generalizing the examples by
using graph homomorphism.
6. Apprenticeship learning with graph homomorphism

In this section, we propose another solution for overcoming
the problems resulting from the empirical errors Dvp. We use a
transfer learning technique, known as soft homomorphism [21],
in order to generalize the expert’s actions to unvisited regions of
the state space. The generalized policy can then be used to
analytically calculate the expected values of the features.

This type of imitation learning techniques, called behavioral

cloning, does not make any assumption regarding the optimality,
or even the rationality, of the expert. If the expert’s examples are
sub-optimal, then the generalized policy will also be sub-optimal
as well.
6.1. Transfer learning through MDP homomorphism

Transfer learning refers to the problem of using a policy
learned for performing some task in order to perform a different,
but related, task. The related task may be defined in a new
domain, or in the same domain but in a different region of the
state space. This problem has been widely studied in the context
of reinforcement learning. An overview of the literature on
transfer learning is out of the scope of this paper, the interested
reader might find an extended overview in [24].

We will focus on a transfer method known as MDP homo-
morphism [19]. A homomorphism from an MDP M¼ ðS,A,T ,R,
a,gÞ to another MDPM0 ¼ ðS0,A,T 0,R0,a,gÞ is a surjective function f,
called the transfer function, defined as

f : S-S0

8sAS,s0AS0,8aAA : T 0ðf ðsÞ,a,s0Þ ¼
X
s00 A S

f ðs00 Þ ¼ s0

Tðs,a,s00Þ: ð21Þ

In other terms, a homomorphism can be seen as a transforma-
tion of an MDP that preserves its dynamics. Fig. 2 shows an
example of a homomorphism f from an MDP with four states
fs0,s1,s2,s3g to another one with three states fs00,s01,s02g, where
f ðs0Þ ¼ s00, f ðs1Þ ¼ s01, and f ðs2Þ ¼ f ðs3Þ ¼ s02. In order to make the
example simpler, we considered only one action a in this
example. Note that Tðs00,a,s01Þ ¼ Tðs0,a,s1Þ, Tðs01,a,s02Þ ¼ Tðs1,a,s2Þþ

Tðs1,a,s3Þ (both s2 and s3 have as image s02), and Tðs02,a,s02Þ ¼
Tðs2,a,s2ÞþTðs2,a,s3Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

0

¼ Tðs3,a,s3ÞþTðs3,a,s2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0

.

Unfortunately, finding a homomorphism is an NP-complete
combinatory search problem. In this section, we will consider
another variant of this approach known as Soft MDP homomorph-
ism [21]. The core idea of this latter method consists in finding a
transfer function f that maps each state of an MDP model
M¼ ðS,A,T,R,a,gÞ to a probability distribution on the states of
another MDP model M0 ¼ ðS0,A,T 0,R0,a,gÞ. Additionally, the map-
ping between the states of S and S0 should preserve the transition
probabilities,

f : S � S0-½0,1�,8sAS,s0AS0,8aAA:X
s00AS

Tðs,a,s00Þf ðs00,s0Þ ¼
X

s00AS0
f ðs,s00ÞT 0ðs00,a,s0Þ: ð22Þ

The reward function also should be preserved, but we will not
consider this constraint since, in the context of this paper, the
reward function is unknown. Sorg and Singh [21] showed that
soft homomorphisms can be used to transfer the values of policies
from an MDP model to another. In the next section, we show how
to use soft homomorphisms in order to transfer actions from a
subset of a state space to another subset of the same space.

6.2. Generalizing policies with local homomorphisms

Given an MDP model without reward M¼ ðS,A,T ,a,gÞ and a
set of M trajectories provided by an expert, the state space S can
be divided into two subsets: SE, the set of states that appear in the

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–96 89
provided trajectories, and S\SE. For the states of SE, the expert’s
policy pE can be directly inferred from the trajectories if it is
deterministic, or estimated by calculating the frequencies of the
actions if it is stochastic. We consider the general case and use p̂E

to denote the estimated expert’s policy.
In order to generalize the policy p̂E to S\SE, we first create a

restrained MDP without a reward function ME
¼ ðSE,A,TE,a,gÞ,

where the transition function TE is defined as

8s,s0ASE
\fsg,8aAA :

TE
ðs,a,s0Þ ¼ Tðs,a,s0Þ,

TE
ðs,a,sÞ ¼ Tðs,a,sÞþ

P
s00AS\SE

Tðs,a,s00Þ:

8><
>:

This function ensures that all the transitions remain within the
states of SE by assuming that any action that leads to a state
outside of SE has no effect.

The next step consists in finding a lossy soft homomorphism
betweenM andME, where the objective function corresponds to
the error in preserving the transition probabilities. The transfer
function f of this homomorphism is found by solving a linear
program. Function f can be seen as a measure of similarity
between two states. One can use this measure in order to define
the generalized policy p̂E as follows:

8sAS\SE,8aAA : p̂E
ðs,aÞ ¼

X
s0ASE

f ðs,s0Þp̂E
ðs0,aÞ: ð23Þ

However, this method scales up poorly with respect to the number
of states visited by the expert and the number of states in the
corresponding domain. This is due to the fact that 9SE9� 9S9
variables are used in the linear program. To improve the computa-
tional efficiency of this approach, we redefine the function f as a
measure of local similarity between two states. We denote by sd

the set of states that can be reached from state s within a distance
of d time-steps, and by Ms,d

ðsd,A,Td
s ,a,gÞ the MDP\ R defined on

these states. The transition function Ts
d is then defined as

8s,s0Asd
\fsg,8aAA :

Td
s ðs,a,s0Þ ¼ Tðs,a,s0Þ,

Td
s ðs,a,sÞ ¼ Tðs,a,sÞþ

P
s00AS\sd

Tðs,a,s00Þ:

8><
>:

Given a distance d and a threshold E, two states s and s0 are
considered as locally similar if there exists a soft homomorphism
between Ms,d and Ms0 ,d with a transfer error not greater than E.
This property is checked by solving the following linear program:

min
f

e

subject to 8siAsd,skAs0d,8aAA:

X
sj A sd

Td
s ðsi,a,sjÞf ðsj,skÞ�

X
sj A s0d

f ðsi,sjÞT
d
s0 ðsj,a,skÞ

������
������re,

f ðsi,skÞZ0,
X

sk A s0d

f ðsi,skÞ ¼ 1: ð24Þ

The principal steps of our approach are summarized in
Algorithm 1, with a high-level view given in the diagram of Fig. 3.
For every state sAS\SE, we create the list st of neighbor states that
can be reached from s within t steps (steps 1–6). The distance t is
gradually increased until we find a state s0Ast \ SE that is locally
similar to s (step 7). If st ¼ st�1, i.e. all the states that can be reached
from s are already contained in st�1, and no one is locally similar to
s (step 8), then we set p̂E

ðs,aÞ to a uniform distribution (step 9), and
a stopping boolean variable c is set to true (step 21). Otherwise, for
each action a, p̂E

ðs,aÞ is proportional to the weighted votes for a of
the states that are locally similar to state s (steps 16 and 23). The
generalized policy p̂E can be either considered as the robot’s policy
or used to calculate the feature values v̂i,pE for an apprenticeship
learning algorithm.
Algorithm 1. Bootstrapping Apprenticeship Learning via Soft
Local Homomorphisms.
Input: An MDP model without reward ðS,A,T,a,gÞ, a set of
demonstration trajectories, an error threshold E, and a
similarity distance d;
1
 Let SE be the set of states contained in the demonstration
trajectories;
2
 Use the demonstration trajectories to estimate the policy p̂E

for the states of SE;

3
 Let st be the set of states that can be reached from a

state s within t steps, votes a vector containing the
number of votes per action, and c the stopping condition;
4
 foreach sAS\SE do

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
t’0,s0’fsg,votes’ð0, . . . ,0Þ,c’false;

repeat

t’tþ1;

if st ¼ st�1 then

9c’true,votes’ð1, . . . ,1Þ;

else

foreach s0Ast \ SE do
Let e be the error returned by the linear program ð24Þ on

ðMs,d,Ms0 ,d
Þ

if erE then
c’true;

foreach aAA do

9votesðaÞ’votesðaÞþ p̂E
ðs0,aÞ

end

���������
end

�������������������
end

������������������������
end

������������������������������������
until c¼ true;

foreach aAA do

9p̂E
ðs,aÞ ¼ votesðaÞP

a0 AAvotesða0 Þ
;

��

end
25
 end
Output A generalized policy p̂E;
Note that the proposed scheme is generic and other transfer\-

classification methods can also be used for generalizing the
provided examples. In the next section, we will show that
combining this particular transfer method with other apprentice-
ship algorithms leads to a significant improvement in the quality
of the learned policies.
7. Experimental results

To validate the proposed techniques, we performed experi-
ments on two simulated navigation domains. The first one is a
gridworld problem. While this is not meant to be a challenging
task, it allows us to compare our approach to other methods of
generalizing the expert’s policy when the number of demonstra-
tions is small. The second domain corresponds to a racetrack.

7.1. Gridworld setting

We consider multiple x� x gridworld domains taken from [1],
with x taking the following values: 16, 24, 32, and 48. The state of
the robot corresponds to its position on the grid, therefore, the

Fig. 3. Bootstrapping apprenticeship learning via soft local homomorphisms. The resulting policy is used as a substitute to the demonstration.

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–9690
dimension 9S9 of the state space takes the values 256, 576, 1024,
and 2304. The robot has four actions for moving in one of the four
directions of the compass, but with a probability of 0.3 the action
fails and result is a random move. The initial state corresponds to
the position ð0,0Þ, and the discount factor g is set to 0.99. The
gridworld is divided into non-overlapping regions, and the
reward function varies depending on the region in which the
robot is located. For each region i, there is one feature fi, where
fi(s) indicates whether state s is in region i. The robot knows the
features fi, but not the weights wi defining the reward function of
the expert. The weights wi are randomly generated. They are set
to 0 with probability 0.9, and to a random value between 0 and
1 with probability 0.1.

The expert’s policy pE corresponds to the optimal determinis-
tic policy found by value iteration. Although pE was known for
every state in this problem, we limited the number of demonstra-
tion trajectories to only 10, which is a small number compared to
other methods (e.g., [13]). In fact, we are primarily interested in
simulating apprenticeship learning scenarios wherein the exam-
ples are provided by an expert human. The provided examples are
therefore costly and limited. The demonstration trajectories were
sampled using the expert’s policy, the length of each trajectory is
50 for the 16�16 and 24�24 grids, 100 for the 32�32 grid, and
200 for the 48�48 grid. The same trajectories were used for
training with different approaches.

7.2. Evaluating the homomorphism bootstrapping approach on the

gridworld problem

The robot is trained by using the LPAL algorithm. However, as
mentioned before, this algorithm requires the knowledge of the
feature counts vi,pE , which is not the case in our experiments since
the demonstration covers only a small number of states. Instead,
we used the following methods for learning a generalized policy
p̂E, and provided the feature values of p̂E to LPAL. Except for
Monte Carlo where the feature values are empirically calculated
using Eq. (13), all the following methods used the flow equation
(5) to calculate the feature values of p̂E.
�
 Complete policy: The complete expert’s policy pE is provided to
LPAL. The computational complexity of this method is Oð9S9Þ.

�
 Maximum entropy: The generalized policy p̂E is set to a

uniform distribution in the states that did not appear in the
demonstration. The computational complexity of this method
is Oð9S9Þ.

�
 Soft local homomorphism: The generalized policy p̂E is learned

by Algorithm 1, the threshold E is set to 0 and the distance d is
set to 1. The computational complexity of this method is
Oð9S92

n3:5Þ, where n is the maximum number of next states
with a nonzero probability. This corresponds to a worst-case
scenario where 9S92

linear programs are solved for measuring
the similarity between every couple of states. The computa-
tional complexity of each linear program is Oðn3:5Þ, using
Karmarkar’s algorithm for instance [11]. In our case, there
are four possible next states for every action, thus n¼4.

�
 Euclidean k-NN: The generalized policy p̂E is learned by the k-

nearest neighbors algorithm using the Euclidean distance. The
distance k is gradually increased until encountering at least
one state that appears in the demonstration trajectories, as
done in Algorithm 1. The computational complexity of this
method is Oð9S92

Þ.

�
 Manhattan k-NN: k-NN with a Manhattan distance, which

counts the minimum number of transitions between two
states. The computational complexity of this method is
Oð9S92

Þ.

�
 Nonlinear regression: The occupancy measure mp̂ is a linear

function of a polynomial kernel defined on the horizontal and
vertical coordinates of the robot’s position. In other terms, for
a state s¼ ðsi,sjÞ, we haveX
aAA

mpðs,aÞ ¼ a0þa1siþa2sjþa3s2
i þa4s2

j þa5sisjþEðsÞ:

We use a linear program to minimize the sum of the errorsP
s9EðsÞ9 under the Bellman flow constraints (Eq. (5)), while

the states that appear in the demonstration are constrained
to have the same action as the expert. Finally, p̂E is
extracted from mp according to Eq. (12). The computational
complexity of this method is Oð9S93:5

Þ.

�
 Monte Carlo: This is the method usually used in the literature,

the counts v̂i,pE are estimated directly from the trajectories,
according to Eq. (13). The computational complexity of this
method is Oð9SE9Þ.

Table 1 shows the average reward per time-step of the robot’s
policy, averaged over 103 independent trials of the same length as
the demonstration trajectories. Each trial starts with the same
initial state ð0,0Þ, the actions are sampled according to the policy
learned by one the methods described above. A different random
seed is used for each trial.

Our first observation is that the LPAL algorithm learned
policies just as good as the expert’s policy when the feature
values are calculated by using the expert’s complete policy, but
remarkably failed to do so when the feature values are learned
from the demonstration by using a Monte Carlo estimator. This is
due to the fact that we used a very small number of demonstra-
tions compared to the size of these problems. Second, LPAL
returns better policies when the values are analytically calculated

Table 1
Gridworld average rewards in the first experiment. The expert policy results are the optimal ones, the other results are found by combining different bootstrapping

methods with the LPAL algorithm.

Gridworld
size

Number of
regions

Expert
policy

Complete
policy

Soft local
homomorphism

Monte
Carlo

Maximum
entropy

Euclidian k-
NN

Regression Manhattan k-
NN

16�16 16 0.4672 0.4692 0.4663 0.0380 0.3825 0.4672 0.4370 0.4635

64 0.5281 0.5310 0.5210 0.0255 0.4607 0.5218 0.5038 0.5198

256 0.3988 0.4029 0.4053 0.0555 0.3672 0.3915 0.3180 0.4062

24�24 64 0.6407 0.6386 0.6394 0.0149 0.5855 0.6394 0.5530 0.6334

144 0.5916 0.5892 0.5827 0.0400 0.5206 0.5890 0.5069 0.5876

576 0.3568 0.3553 0.3489 0.0439 0.2814 0.3114 0.2701 0.2814

32�32 64 0.6204 0.6179 0.6188 0.0145 0.5694 0.6198 0.5735 0.6177

256 0.5773 0.5779 0.5726 0.0556 0.5118 0.5730 0.4372 0.5729

1024 0.4756 0.4778 0.4751 0.0394 0.4482 0.4751 0.4090 0.4706

48�48 64 0.6751 0.6751 0.6732 0.0141 0.6234 0.6732 0.6052 0.6653

256 0.6992 0.7006 0.6909 0.0603 0.6587 0.6999 0.6437 0.6997

2304 0.4950 0.4972 0.4876 0.0528 0.4640 0.4913 0.4437 0.4330

Table 2
Gridworld average rewards in the second experiment.

Gridworld
size

Number
of
regions

Expert
policy

Euclidian
k-NN

Monte
Carlo
MMP

Analytically
bootstrapped
MMP

Monte
Carlo
LPAL

Analytically
bootstrapped
LPAL

16�16 16 0.4672 0.4635 0.0000 0.4678 0.0380 0.1572
16�16 64 0.5281 0.5198 0.0000 0.5252 0.0255 0.4351
16�16 256 0.3988 0.4062 0.0537 0.3828 0.0555 0.1706

24�24 64 0.5210 0.6334 0.0000 0.5217 0.0149 0.2767
24�24 144 0.5916 0.5876 0.0122 0.5252 0.0400 0.4432
24�24 576 0.3102 0.2814 0.0974 0.0514 0.0439 0.0349

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–96 91
by using the maximum entropy principle than when they are
estimated by Monte Carlo. This is because Monte Carlo estimates
the values for a finite horizon. Given that the expert’s actions
cannot be explained by only the vertical and horizontal coordi-
nates, the regression method also failed to outperform the
maximum entropy method. We also remark that Euclidian and
Manhattan k-NN performed similarly due to the similarity
between these two distances in the context of flat grids. They
both succeeded in learning policies with values close to the
optimal value.

The performance of the bootstrapping approach with soft local
homomorphisms is akin to k-NN in this experiment. In fact, the
bootstrapping approach uses the same principle of performing a
majority vote among neighboring states as in the k-NN method
(Fig. 3). The main difference between the two methods is the
metric used for measuring the similarity between states. The
bootstrapping approach takes into account the dynamics of the
system and uses the transfer error in Eq. (24) for deciding if two
states are locally similar, whereas k-NN considers any neighbor-
ing states as similar. In this particular experiment, the dynamics
of the system is nearly the same in most of the states since there
are no obstacles on the grid. Consequently, local homomorphisms
do not provide further information, except for the few states
juxtaposing a wall.

Given that k-NN and local homomorphisms achieve the same
performance in gridworlds, one should consider the computa-
tional time for deciding which method to use. The local homo-
morphism method has a higher computational complexity,
Oð9S92

n3:5Þ compared to Oð9S92
Þ for k-NN.

Table 3 shows the running times, in seconds, of the different
algorithms. As expected, the bootstrapping advantage over Monte
Carlo estimators comes with a high computational cost. This
is caused by the linear programs solved at each state for general-
izing the expert’s policy. However, these algorithms are used
typically offline, in simulation. Therefore, they are not limited by
the real-time constraints of a physical system.

7.3. Evaluating the analytical bootstrapping on the gridworld

problem

As in the previous experiment, we used only 10 demonstration
trajectories. Table 2 shows the average reward per step of the
agent’s policy, averaged over 103 independent trials of the same
length as the demonstration trajectories. Our first observation is
that the analytically bootstrapped MMP learned policies just as
good as the expert’s policy, while both MMP and LPAL using the
Monte Carlo (MC) estimator remarkably failed to collect any
reward. This is due to the fact that we used a very small number
of demonstrations (10�50 time-steps) compared to the size of
these domains. Note that this problem is not specific to MMP or
LPAL. In fact, any other algorithm using the same approximation
method would produce similar results. The second observation is
that the values of the policies learned by the analytically boot-
strapped LPAL were between the values of LPAL with Monte Carlo
and the optimal ones. In fact, the policy learned by the boot-
strapped LPAL is the one that minimizes the difference between
the expected value of a feature using this policy and the maximal
one among all the policies that resemble to the expert’s policy.
Therefore, the learned policy maximizes the value of a feature
that is not necessary a good one (with a high reward weight). We
also notice that the performance of all the tested algorithms was
low when 576 features were used. In this case, every feature takes
a nonnull weight in one state only. Therefore, the demonstrations
did not provide enough information about the rewards of the

Table 3
Gridworld learning times (in seconds) in the first experiment.

Gridworld
size

Number of
regions

Complete
policy

Soft local
homomorphism

Monte
Carlo

Maximum
entropy

Euclidian
k-NN

Regression Manhattan
k-NN

16�16 16 0.26 33.65 0.3 0.44 0.15 0.17 0.16

64 0.46 30.09 0.53 0.67 0.26 0.3 0.29

256 0.73 32.61 0.74 0.85 0.62 0.66 0.62

24�24 64 2.11 107.27 1.79 2.61 0.64 0.87 0.63

144 3.56 111.18 1.79 3.59 1.34 1.63 1.37

576 3.36 108.71 3.48 4.26 2.88 3.47 2.91

32�32 64 1.27 214.28 1.66 3.19 1.65 2.18 1.73

256 2.96 225.24 3.28 4.86 3.3 4.19 3.35

1024 11.97 226.46 11.84 13.7 13.15 12.55 11.97

48�48 64 3.24 577.67 6.21 27.55 6.21 7.63 6.3

256 9.45 590.41 13.06 58.89 12.37 13.7 12.39

2304 89.3 671.9 93.36 183.47 92.08 93.62 91.82

Table 4
Gridworld learning times (in seconds) in the second experiment.

Gridworld
size

Number
of regions

Euclidian
k-NN

Monte
Carlo MMP

Analytically
bootstrapped MMP

Monte Carlo
LPAL

Analytically
bootstrapped LPAL

16�16 16 0.15 15.7 44.89 0.31 13.35

16�16 64 0.26 18.75 40.48 0.54 35.8

16�16 256 0.62 21.74 41.51 0.75 127.37

24�24 16 0.22 38.04 102.47 2.55 45.72

24�24 64 0.64 46.71 100.72 1.81 168.16

24�24 256 0.22 51.52 98.05 3.13 455.05

Fig. 4. Racetrack configurations and a demonstration of the expert’s policy. In

racetrack (2), the car starts at a random position.

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–9692
states that were not visited by the expert. Finally, we remark that
k-NN performed as an expert in this experiment. In fact, since
there are no obstacles on the grid, neighboring states often tend
have similar optimal actions.

Table 4 shows the running times, in seconds, of the different
algorithms. Note that computational cost of the analytically
bootstrapped MMP is about only twice that of the Monte Carlo
MMP, since two optimal policies are found at each gradient-
descent step (Eq. (17)). The learning times of the bootstrapped
LPAL is, however, significantly higher than that of the Monte Carlo
LPAL. Arguably, this high computational effort is justified by the
tremendous performance improvement of bootstrapped LPAL
over Monte Carlo LPAL.

7.4. Racetrack setting

We implemented a simplified care race simulator, the corre-
sponding racetracks are showed in Fig. 4. The states correspond to
the position of the care in the racetrack and its velocity. We
considered two discretized velocities, low and high, in each
direction of the vertical and horizontal axes, in addition to the
zero velocity in each axis, leading to a total of 25 possible
combinations of velocities, 5900 states for racetrack (1), and
5100 states for racetrack (2). The car controller can accelerate or
decelerate in each axis, or do nothing. The controller cannot,
however, combine a horizontal and a vertical action, the number
of actions is then 5. When the velocity is low, acceleration\dece-
leration actions succeed with probability 0.9, and fail with
probability 0.1, leaving the velocity unchanged.

The success probability of the actions falls down to 0.5 when
the velocity is high, making the vehicle harder to control. When
the vehicle tries to move off-road, it remains in the same position
and its velocity is reset to zero. The car controller receives a
reward of 5 for each time-step except for off-roads, where it
receives 0, and for reaching the finish line, where the reward is
200. A discount factor of 0.99 is used in order to favor shorter
trajectories.

7.5. Evaluating the homomorphism bootstrapping approach on the

racetrack problem

In this experiment, we compared only the methods that
performed well in the gridworld domain, which are LPAL using
a complete policy, LPAL using soft local homomorphisms, and
LPAL with k-NN using the Manhattan distance, since the Eucli-
dean distance does not take into account the velocity of the
vehicle. We also compared k-NN and soft local homomorphisms
without LPAL.

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12

A
ve

ra
ge

 re
w

ar
d

pe
r s

te
p

Number of trajectories in the demonstration

Expert
LPAL with a complete expert policy

Soft Local Homomorphism
k−NN

LPAL with Soft Local Homomorphism
LPAL with k−NN

20

22

24

26

28

30

32

34

36

38

2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r o

f s
te

ps

Number of trajectories in the demonstration

Expert
LPAL with a complete expert policy

Soft Local Homomorphism
k−NN

LPAL with Soft Local Homomorphism
LPAL with k−NN

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r o

f h
itt

ed
 o

bs
ta

cl
es

 p
er

 s
te

p

Number of trajectories in the demonstration

Expert
LPAL with a complete expert policy

Soft Local Homomorphism
k−NN

LPAL with Soft Local Homomorphism
LPAL with k−NN

0

5

10

15

20

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 re
w

ar
d

pe
r s

te
p

Number of trajectories in the demonstration

Soft Local Homomorphism
Expert
k−NN

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 n
um

be
r o

f s
te

ps

Number of trajectories in the demonstration

Soft Local Homomorphism
Expert
k−NN

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 n
um

be
r o

f h
itt

ed
 o

bs
ta

cl
es

 p
er

 s
te

p

Number of trajectories in the demonstration

Soft Local Homomorphism
Expert
k−NN

Fig. 5. Racetrack results of the homomorphism bootstrapping approach: (a) average reward in racetrack 1, (b) average number of steps in racetrack 1, (c) average number

of off-roads, racetrack 1, (d) average reward in racetrack 2, (e) average number of steps in racetrack 2, (f) average number of off-roads, racetrack 2.

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–96 93
Fig. 5(a)–(f) shows the average reward per step of the robot’s
policy, the average number of off-roads per step, and the average
number of time-steps before reaching the finish line, as a function
of the number of trajectories in the demonstration. For racetrack
(1), the car always starts from the same initial position, and the
length of each demonstration trajectory is 20. For racetrack (2),
however, the car starts at a random position, and the length of
each trajectory is 40. The results are averaged over 1000 inde-
pendent trials of length 30 for racetrack (1) and 50 for racetrack
(2). Contrary to the gridworld experiments, LPAL achieved good
performances only when the features are calculated by using the
complete policy of the expert. For clarity, we removed the results
of LPAL with k-NN and with soft local homomorphisms, which
were below the performances of the other methods.

As expected, we notice the significant improvement of our
algorithm over k-NN in terms of average reward, average number
of off-roads per step, and average number of time-steps to the
finish line. This is due to the fact that, contrary to k-NN,
homomorphisms do take into account the dynamics of the
system. For example, when the care faces an obstacle, the local
MDP defined around its current position is similar to all the local
MDPs defined around the positions of facing an obstacle, the
deceleration actions can then be efficiently transferred, as
depicted in the example of Fig. 6.

Fig. 6. An example of two states that are locally similar by homomorphism.

Table 5
Racetrack learning times (in seconds) in the first experiment.

Method Problem

Racetrack 1 Racetrack 2

LPAL with complete policy 3.98 2.3

Local homomorphism 161.61 183.45

LPAL with homomorphism 163.2 188.05

k-NN 0.79 1.21

LPAL with k-NN 4.09 2.33

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–9694
Table 5 shows the running times, in seconds, of the different
algorithms. Here again, we note the high computational cost of
the homomorphism techniques compared to simple classifiers,
such as k-NN.

7.6. Evaluating the analytical bootstrapping techniques on the

racetrack problem

Fig. 7(a)–(f) shows the average reward per step of the learned
policies, the average proportion of off-road steps, and the average
number of steps before reaching the finish line, as a function of
the number of trajectories in the demonstration. We notice that
the LPAL algorithm with both the Monte Carlo estimation of the
expected feature values and the analytical bootstrapping failed to
achieve good results in racetracks (1) and (2). This is due to the
fact that LPAL tries to maximize the expected value of features
that are not necessarily associated to a high reward, such as
hitting obstacles. We also notice the nearly optimal performance
of the bootstrapped MMP algorithm, in both racetracks (1) and
(2). Table 6 shows the learning times in seconds. As in the
gridworlds experiment, the computational cost of the boot-
strapped MMP is only twice the cost of the Monte Carlo MMP.
8. Discussion

From the experimental analysis, we notice that the bootstrap-
ping approach using local homomorphisms achieves better
results in the gridworld domain, whereas the analytical boot-
strapping achieves better results in the racetrack domain. In
general, classification-based methods, a.k.a. direct imitation, per-
form better than IRL-based bootstrapping methods when a
correct similarity measure is provided. In a large gridworld, most
of the neighboring states are similar to each other and have the
same optimal action. Therefore, k-NN methods are expected to
outperform IRL-based methods in this type of problems. Our
experimental analysis shows that there is no significant differ-
ence, in terms of performance, between the different metrics of k-
NN (Euclidean, Manhattan, Homomorphism). However, the rela-
tively high computational complexity of verifying the existence of
a homomorphism between neighboring states leads to preferring
simpler metrics over the local homomorphisms.
IRL-based bootstrapping methods achieve a higher perfor-
mance in more complex goal-oriented problems. In the racetrack
problem for example, the analytically bootstrapped method was
able to learn an accurate reward function with only one demon-
stration trajectory. k-NN methods achieved lower performances
because the Euclidean and the Manhattan distances are not good
similarity measures in general MDPs. In fact, one should consider
all the possible successor states in order to decide whether two
states are similar or not. This problem can be alleviated by using
the homomorphism measure, but due to its computational cost,
one can only consider the immediate successor states. None-
theless, the homomorphism measure leads to a better perfor-
mance compared to the Euclidean or the Manhattan distances.

In both cases, the bootstrapping techniques proposed in this
paper significantly outperformed, in terms of average rewards,
the standard Monte Carlo estimator used in the apprenticeship
learning literature.

However, the improved performance of the proposed boot-
strapping techniques comes with a computational cost. This cost
corresponds to the time that is needed for learning a generalized
expert policy. Our empirical evaluations show that the running
time of the analytically bootstrapped MMP is only twice that of
the original MMP algorithm. The running times of the other
bootstrapping methods are higher by orders of magnitude.

Nevertheless, once a generalized policy is found, the decision
for taking an action takes less than a millisecond on average. In
these experiments, learning and planning were all performed
offline, in simulation, while the tests were performed online.
Learning a reward function from examples may take as long as
10 min in some cases, but this is done by using only the dynamics
equations without actually executing any actions or interacting
with the physical system. Given the learned reward function, a
generalized policy is found, again in simulation. The policy is a
function that returns an action for every possible state. This policy
is then saved in a table, when the state space is discretized, and
used for testing on the physical system. During the tests, e.g. the
race, an action is found by simply searching for the current state
in the policy table and returning the corresponding action, which
typically takes less than a millisecond.

Consequently, the best option would be to run the three
bootstrapping algorithms in simulation using a dynamical model
(transition function), and choose the one that achieves the highest
performance. If the computational resources are not sufficient for
that, then one can consider only the analytically bootstrapped
MMP, which has shown to be a fast algorithm. In any case, the
time constraints of a physical system, e.g. the velocity of a car, do
not limit the applicability of these approaches, because the
system can be slowed down in simulation. The learned policy
can always be used in real-time on the real system.
9. Conclusion and future work

The main question addressed in imitation learning is how to
generalize the expert’s examples to states that have not been
encountered during the demonstration. Apprenticeship Learning
via Inverse Reinforcement Learning provides a simple and elegant
answer which consists in first learning a reward function that
explains the observed behavior, and then using it for finding an
optimal policy that generalizes the examples.

Apprenticeship learning relies on the assumption that the
reward function can be expressed in terms of state and action
features. The provided examples are used to estimate the average
value of each feature. The distance between these empirical
values and the feature values of an optimal policy is minimized
by a loss function, where the optimal policy is a function of the

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12

A
ve

ra
ge

 re
w

ar
d

pe
r s

te
p

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

20

22

24

26

28

30

32

34

2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r o

f s
te

ps

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12A
ve

ra
ge

 n
um

be
r o

f h
itt

ed
 o

bs
ta

cl
es

 p
er

 s
te

p

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

0

5

10

15

20

2 4 6 8 10 12

A
ve

ra
ge

 re
w

ar
d

pe
r s

te
p

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

20

30

40

50

60

2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r o

f s
te

ps

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12A
ve

ra
ge

 n
um

be
r o

f h
itt

ed
 o

bs
ta

cl
es

 p
er

 s
te

p

Number of trajectories in the demonstration

Expert
MMP + MC

MMP + Bootstrapping
LPAL + MC

LPAL + Bootstrapping
k−NN

Fig. 7. Racetrack results with the analytical bootstrapping: (a) average reward in racetrack 1, (b) average number of steps in racetrack 1, (c) average number of off-roads,

racetrack 1, (d) average reward in racetrack 2, (e) average number of steps in racetrack 2, (f) average number of off-roads, racetrack 2.

Table 6
Racetrack learning times (in seconds) in the second experiment.

Method Problem

Racetrack 1 Racetrack 2

Monte Carlo MMP 356.51 306.27

Analytically bootstrapped MMP 694.73 698.4

Monte Carlo LPAL 4.04 2.47

Analytically bootstrapped LPAL 59.57 62.81

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–96 95
unknown reward. Consequently, the learned rewards are sensi-
tive to the empirical error in estimating the average values of the
features. This problem becomes more evident when the number
of examples is small, as we showed in our experiments.

To overcome this problem, we introduced two bootstrapping
techniques for apprenticeship learning. The first one consists in
modifying the loss functions of well-known apprenticeship learning
algorithms, namely MMP and LPAL, by replacing the empirical terms
by the exact feature values of optimal policies that are consistent
with the provided examples. We also provided theoretical insights

A. Boularias, B. Chaib-draa / Neurocomputing 104 (2013) 83–9696
on the modified loss functions, showing that they admit the expert’s
true reward as a local optimum, under mild conditions. Although the
modified loss functions are nonconvex, an empirical analysis in
simulation confirmed the outperformance of bootstrapped appren-
ticeship learning algorithms, and MMP in particular. These promising
results push us to investigate further theoretical properties and
interpretations of the modified loss functions.

The second bootstrapping technique makes use of a direct
imitation learning method, based on local graph homomorphism,
for generalizing the provided examples. The generalized policy is
used along with the known system dynamics in order to analyti-
cally calculate the average feature values. This technique is inspired
from the fact that the states that are locally similar tend to have the
same optimal action in general. Unlike other methods, the graph
homomorphism approach considers the future possible states when
comparing two states, rather than just the immediate features. We
also showed that using homomorphisms leads to a significant
improvement in the quality of the learned policies. However, this
approach lacks a rigorous theoretical guarantee beyond the intui-
tion. In fact, most real-world tasks admit optimal policies that are
local and reactive in most states, such as avoiding obstacles during
a navigation task. However, there are critical states where the
optimal actions cannot be explained only by the local dynamics of
the system. Distinguishing between these states is crucial for
providing a theoretical guarantee of our approach in a future work.

In addition to solving the issues mentioned above, this work
can be extended in many ways. First, the proposed techniques can
be used as a general approach for bootstrapping other apprentice-
ship learning algorithms. Second, our approach requires that the
transition model is known, which is a strong assumption shared
with most apprenticeship learning algorithms. It would be inter-
esting to consider the case when no transition model is given.

We should mention that our formulation of the generalization
problem is limited in the sense that negative examples are not
taken into account. This can be a problem when a state can have
multiple optimal actions, and only one of them is selected by the
expert. This problem can be addressed by explicitly providing
sub-optimal actions and considering their votes in the algorithm.

Finally, this paper focuses on some algorithmic and theoretical
aspects of bootstrapping apprenticeship learning, an empirical
study on a real-world application would be an important exten-
sion of this work.

References

[1] P. Abbeel, A. Ng, Apprenticeship learning via inverse reinforcement learning,
in: Proceedings of the Twenty-first International Conference on Machine
Learning (ICML’04), 2004, pp. 1–8.

[2] P. Abbeel, A. Coates, A.Y. Ng, Autonomous helicopter aerobatics through
apprenticeship learning, Int. J. Robot. Res. 29 (13) (2010) 1608–1639.

[3] E.I. Barakova, T. Lourens, Mirror neuron framework yields representations for
robot interaction, Neurocomputing 72 (4–6) (2009) 895–900.

[4] A. Billard, Imitation: a review, in: Michael A. Arbib (Ed.), The Handbook of
Brain Theory and Neural Network, second ed. MIT Press, 2002, pp. 566–569.

[5] A. Boularias, B. Chaib-draa, Apprenticeship learning via soft local homo-
morphisms, in: 2010 IEEE International Conference on Robotics and Auto-
mation (ICRA’10), 2010, pp. 2971–2976.

[6] A. Boularias, B. Chaib-draa, Bootstrapping apprenticeship learning, in: Neural
Information Processing Systems 24 (NIPS’10), 2010, pp. 1–9.

[7] A. Boularias, J. Kober, J. Peters, Relative entropy inverse reinforcement
learning, J. Mach. Learn. Res. Proceed. Track 15 (2011) 182–189.

[8] A. Boularias, O. Kroemer, J. Peters, Learning robot grasping from 3-D images
with Markov random fields, in: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’11), 2011.

[9] E. Hourdakis, H.E. Savaki, P. Trahanias, Computational modeling of cortical
pathways involved in action execution and action observation, Neurocom-
puting 74 (7) (2011) 1135–1155.

[10] N. Jetchev, M. Toussaint, Task space retrieval using inverse feedback control,
in: Proceedings of the Twenty-eighth International Conference on Machine
Learning (ICML’11), 2011, pp. 449–456.
[11] N. Karmarkar, A new polynomial-time algorithm for linear programming, in:
Proceedings of the Sixteenth Annual ACM Symposium on Theory of Comput-
ing, ACM, STOC’84, 1984, pp. 302–311.

[12] Z. Kolter, P. Abbeel, A. Ng, Hierarchical apprenticeship learning with applica-
tion to quadruped locomotion, in: Neural Information Processing Systems
(NIPS’08), 2008, pp. 769–776.

[13] G. Neu, C. Szepesvri, Apprenticeship learning using inverse reinforcement
learning and gradient methods, in: Conference on Uncertainty in Artificial
Intelligence (UAI’07), 2007, pp 295–302.

[14] A. Ng, S. Russell, Algorithms for inverse reinforcement learning, in: Proceed-
ings of the Seventeenth International Conference on Machine Learning
(ICML’00), 2000, pp. 663–670.

[15] J. Peters, S. Schaal, Natural actor critic, Neurocomputing 71 (7–9) (2008)
1180–1190.

[16] D. Ramachandran, E. Amir, Bayesian inverse reinforcement learning, in:
Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07), 2007, pp. 2586–2591.

[17] N. Ratliff, J. Bagnell, M. Zinkevich, Maximum margin planning, in: Proceed-
ings of the Twenty-third International Conference on Machine Learning
(ICML’06), 2006, pp. 729–736.

[18] N. Ratliff, D. Silver, A. Bagnell, Learning to search: functional gradient
techniques for imitation learning, Autonomous Robots 27 (1) (2009) 25–53.

[19] B. Ravindran, An Algebraic Approach to Abstraction in Reinforcement Learn-
ing, Ph.D. Thesis, University of Massachusetts, Amherst, MA, 2004.

[20] S. Schaal, Is imitation learning the route to humanoid robots? Trends
Cognitive Sci. 3 (6) (1999) 233–242.

[21] J. Sorg, S. Singh, Transfer via soft homomorphisms, in: Proceedings of the
Eighth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’09), 2009, pp. 741–748.

[22] U. Syed, R. Schapire, A game-theoretic approach to apprenticeship learning,
in: Advances in Neural Information Processing Systems 20 (NIPS’08), 2008,
pp. 1449–1456.

[23] U. Syed, M. Bowling, R.E. Schapire, Apprenticeship learning using linear
programming, in: Proceedings of the Twenty-fifth International Conference
on Machine Learning (ICML’08), 2008, pp. 1032–1039.

[24] M.E. Taylor, P. Stone, Transfer learning for reinforcement learning domains: a
survey, J. Mach. Learn. Res. 10 (1) (2009) 1633–1685.

[25] B. Ziebart, Modeling Purposeful Adaptive Behavior with the Principle of
Maximum Causal Entropy, Ph.D. Thesis, Carnegie Mellon University, PA,
2010.
Abdeslam Boularias received an Engineering degree
in Computer Science from École nationale Supérieure
d’Informatique (ESI), Algeria, in October 2004, and a
Master degree in the same field from Paris-Sud Uni-
versity (Paris XI) in September 2005. During his
studies at Paris XI, he was a research assistant at the
INRIA Saclay Institute, where he worked on fault-
tolerance in Grid Computing. In January 2006, Abde-
slam joined the group of Dr. Brahim Chaib-draa at
Laval University, Canada, where he graduated with a
Ph.D. degree in July 2010. Since August 2010, he is a
research scientist at the Max Planck Institute for

Intelligent Systems in Tübingen, in the Machine Learn-

ing Department, led by Prof. Bernhard Schölkopf. His main research interests
include planning under uncertainty, reinforcement learning, imitation learning,
and multi-agent systems.
Brahim Chaib-draa received a Diploma in Computer
Engineering from École Supérieure d’Électricité (SUPE-
LEC), Paris, France, in 1978 and a Ph.D. degree in
Computer Science from the Université du Hainaut-
Cambrésis, Valenciennes, France, in 1990. In 1990, he
joined the Department of Computer Science and Soft-
ware Engineering at Laval University, Quebec, QC,
Canada, where he is a Professor and Group Leader of
the Decision for Agents and Multi-Agent Systems
(DAMAS) Group. His research interests include agent
and multiagent technologies, natural language for
interaction, formal systems for agents and multiagent

systems, distributed practical reasoning, and real-time

and distributed systems. He is the author of several technical publications in these
areas. He is on the Editorial Boards of IEEE Transactions on SMC, Computational
Intelligence and The International Journal of Grids and Multiagent Systems. Dr.
Chaib-draa is a member of ACM and AAAI and senior member of the IEEE
Computer Society.

	Apprenticeship learning with few examples
	Introduction
	Background
	Apprenticeship learning
	Overview
	Maximum margin planning (MMP)
	Linear programming apprenticeship learning (LPAL)
	Empirical estimation of the expected feature values

	Empirical error analysis
	A Hoeffding bound on the empirical estimation error
	An analysis of the reward error in maximum margin planning

	Analytical bootstrapping of apprenticeship learning
	Assumptions
	Bootstrapping maximum margin planning
	Bootstrapping linear programming apprenticeship learning

	Apprenticeship learning with graph homomorphism
	Transfer learning through MDP homomorphism
	Generalizing policies with local homomorphisms

	Experimental results
	Gridworld setting
	Evaluating the homomorphism bootstrapping approach on the gridworld problem
	Evaluating the analytical bootstrapping on the gridworld problem
	Racetrack setting
	Evaluating the homomorphism bootstrapping approach on the racetrack problem
	Evaluating the analytical bootstrapping techniques on the racetrack problem

	Discussion
	Conclusion and future work
	References

