
Learning to Manipulate Unknown Objects in Clutter by Reinforcement

Abdeslam Boularias and J. Andrew Bagnell and Anthony Stentz
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 USA

{abdeslam, dbagnell, tony}@andrew.cmu.edu

Abstract

We present a fully autonomous robotic system for grasping
objects in dense clutter. The objects are unknown and have
arbitrary shapes. Therefore, we cannot rely on prior models.
Instead, the robot learns online, from scratch, to manipulate
the objects by trial and error. Grasping objects in clutter is
significantly harder than grasping isolated objects, because
the robot needs to push and move objects around in order to
create sufficient space for the fingers. These pre-grasping ac-
tions do not have an immediate utility, and may result in un-
necessary delays. The utility of a pre-grasping action can be
measured only by looking at the complete chain of consecu-
tive actions and effects. This is a sequential decision-making
problem that can be cast in the reinforcement learning frame-
work. We solve this problem by learning the stochastic transi-
tions between the observed states, using nonparametric den-
sity estimation. The learned transition function is used only
for re-calculating the values of the executed actions in the
observed states, with different policies. Values of new state-
actions are obtained by regressing the values of the executed
actions. The state of the system at a given time is a depth (3D)
image of the scene. We use spectral clustering for detecting
the different objects in the image. The performance of our
system is assessed on a robot with real-world objects.

1 Introduction
We propose an autonomous robotic system for rubble re-
moval. The robot can execute two types of actions: grasping
and pushing. The robot gets a reward for every successful
grasp. Pushing actions are used only to free space for future
grasping actions. Pushing actions and failed grasping actions
are not rewarded. The robot chooses a sequence of actions
that maximizes the expected sum of discounted rewards over
a given period of time. An depth image of the cluttered scene
is the only sensory input available for decision-making.

This seemingly simple task is one of the most challeng-
ing problems in autonomous robotics (Amor et al. 2013;
Bohg et al. 2013). First, the image needs to be segmented
into separate objects in order to predict, at least at some high
level, the effects of the pushing actions. Objects that are typi-
cally found in rubble, such as rocks and debris, are unknown
and have irregular shapes, they are also usually occluded.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This makes object detection particularly difficult. Image seg-
mentation is a core problem in computer vision, and the lit-
erature dedicated to it is abundant. Our contribution to solv-
ing this problem will be an integration of well-known tech-
niques. Namely, we use k-means for local clustering of vox-
els into supervoxels (Papon et al. 2013), mean-shift for fast
detection of homogeneous regions of supervoxels (Comani-
ciu and Meer 2002), and spectral clustering for regrouping
the regions into objects (von Luxburg 2007). This hierar-
chical approach is justified by the real-time requirements.
Low-level clustering reduces the input size of top-level tech-
niques, which are computationally more complex.

Second, the robot needs to learn grasp affordances from
the executed actions and their features (Detry et al. 2011).
In our case, the grasp affordances are the expected imme-
diate rewards, which can also be interpreted as probabilities
of succeeding the grasps. Despite the fact that a large body
of work was devoted to manipulation learning, e.g. (Sax-
ena, Driemeyer, and Ng 2008; Boularias, Kroemer, and Pe-
ters 2011), this problem remains largely unsolved, and rather
poorly understood. Besides, most of these methods either as-
sume that the objects are isolated, or rely on an accurate seg-
mentation for extracting the objects and computing their fea-
tures. In this work, we take an agnostic approach that does
not depend on segmentation for grasping. The features of a
grasp are simply all the 3D points of the scene that may col-
lide with the robotic hand during the action. We use kernel
density estimation for learning the expected reward function.
The only parameter is the kernel bandwidth, which is auto-
matically learned online by cross-validation.

Third, pushing actions have long-term effects. The robot
should learn to predict the expected sum of future rewards
that result from a pushing action, given a policy. This is
an extremely difficult problem because of the unknown me-
chanical properties of the objects, as well as the complex-
ity of physical simulations. A physics-based simulation was
used by Dogar et al. (2012) for predicting the effects of
pushing actions, but the authors considered only flat, well-
separated, objects on a smooth surface. A nonparametric ap-
proach was used by Meriçli, Veloso, and Akin (2014) for
learning the outcome of pushing large objects (furniture).
Also, Scholz et al. (2014) used a Markov Decision Process
(MDP) for modeling interactions between objects. However,
only simulation results were reported in that work.

Get an image of

the scene from

an RGB-D sensor

Segment the scene

image into objects

Sample a number of

grasping and pushing

actions for each object

Extract the features of

each sampled action

Predict the value of each

sampled action using the

values of the actions

executed in previous states

Execute the action

with the highest Upper

Confidence Bound (UCB),

and obtain a binary

reward based on the joint

angles of the fingers

Re-compute the value

of every previous

state (scene) based on

the value of the best

action in the next state

Re-evaluate the actions

sampled in every state

Tune the hyper-parameters

(kernel bandwidths)

by cross-validation

Figure 1: Overview of the integrated system. The inner loop corresponds to policy iteration (evaluation and improvement).

In our application, pushing actions are used to facilitate
the grasping of nearby objects. Consequently, features of
a pushing action are simply the grasping features of the
pushed object’s neighbors, in addition to a patch of the depth
image in the pushing direction. These features are used in
a regression for predicting the expected future rewards of
a given pushing action. They are also used for learning a
stochastic transition function in the discrete state space that
corresponds to the list of collected observations (images).

Last, the robot needs to keep a balance between explor-
ing new actions and exploiting the learned skills. We use the
Upper Confidence Bound (UCB) method to solve this prob-
lem (Auer, Cesa-Bianchi, and Fischer 2002). We present
here a modified UCB algorithm for dealing with continuous
states and actions.

The integrated system is demonstrated on the task of
clearing a small confined clutter. The robot starts with no
prior knowledge of the objects or on how to manipulate
them. After a few dozens of trials and errors, and using only
depth images, the robot figures out how to push the objects
based on their surroundings, and also how to grasp each ob-
ject. For transparency, unedited videos of all the experiments
have been uploaded to http://goo.gl/ze1Sqq .

2 System Overview

Figure 1 shows the work-flow of our autonomous system.
First, an RGB-D image of the clutter scene is obtained from
a time-of-flight camera. The image, which describes the
state, is segmented into objects after removing the back-
ground and the support surface (Section 3). Various actions
for grasping and pushing each object are sampled. Features
of each action in the current state are extracted and inserted
in a space-partitioning tree to speed-up range search in-
quiries (Section 4). The value of every action is predicted
by a kernel regression (Section 5). The UCB technique is
used for choosing an action (Section 6). A reward of 1 is ob-
tained in case an object was successfully lifted. All the ac-
tions sampled in previous scenes are iteratively re-evaluated,
by selecting in each scene the action with the highest value
(Section 5). Finally, the kernel bandwidths are tuned in a
leave-one-sequence-out cross-validation (Section 7).

3 Segmentation
Scene segmentation refers here to the process of dividing
an image into spatially contiguous regions corresponding to
different objects. The most successful algorithms for seg-
menting images of unknown objects still require initial seeds
of points labeled by a human user (Rother, Kolmogorov,
and Blake 2004). This type of methods is unsuitable for au-
tonomous robots. Unknown objects cannot be detected with-
out prior models, examples, or assumptions on their shapes.
We make one assumption in this work: the surface of an
object is overall convex. Consequently, articulated objects
with more complex shapes will be divided into different con-
vex parts. However, over-segmentation affects only pushing
actions in certain situations. We enforce the convexity as-
sumption as a soft constraint in the spectral clustering al-
gorithm (Ng, Jordan, and Weiss 2001) by assigning smaller
weights to edges that connect concave surfaces.

We start by detecting and removing the support surface
using the RANSAC algorithm (Fischler and Bolles 1981).
The complexity of spectral clustering is cubic in the number
of nodes, thus, it is important to reduce the number of voxels
without distorting the shapes of objects. We use the publicly
available implementation of the Voxel Cloud Connectivity
Segmentation (VCCS) (Papon et al. 2013) to pre-process
the image. VCCS clusters the voxels into supervoxels with
a fast, local, k-means based on depth and color properties.
Graphs of supervoxels are shown in Figures 2(b) and 3(b).

The next step consists in extracting facets, which are
mostly flat contiguous regions, using the Mean-Shift al-
gorithm (Comaniciu and Meer 2002). The mean surface
normal of each facet is iteratively estimated by averaging
the normal vectors of adjacent supervoxels. At each itera-
tion, the normal vector vi of a supervoxel i is updated by
vi = 1

η

∑
j∈N(i) exp

(
− αcos−1(vti .vj)

)
vj , where η =∑

j∈N(i) exp
(
− αcos−1(vti .vj)

)
, j is a supervoxel neigh-

boring i and vj is the normal vector of j. After many itera-
tions, adjacent supervoxels that have nearly similar normals
are clustered in the same facet. Figures 2(c) and 3(c) show
detected facets after applying Mean-Shift (with α = 10).

In the final step, facets are regrouped into objects us-
ing spectral clustering (Ng, Jordan, and Weiss 2001). The
graph of facets is obtained from the graph of supervox-
els; a facet is adjacent to another one if it contains a su-

(a) natural objects (rocks) (b) graph of supervoxels

(c) graph of detected facets (d) detected objects

Figure 2: Segmenting a clutter of unknown natural objects

pervoxel that is adjacent to another supervoxel in the other
facet. The graphs of facets are typically small, as illustrated
in Figures 2(c) and 3(c). An edge (i, j) is weighted with
wi,j = max{vti .(ci − cj), vtj .(cj − ci), 0}, where ci and cj
are the centers of adjacent facets i and j respectively, vi and
vj are their respective surface normals.wi,j is nonzero when
the shape formed by facets i and j is convex. We compute
the eigenvectors of the normalized Laplacian matrix of the
graph of facets. We retain only the eigenvectors with eigen-
values lower than a threshold ε. Finally, the objects are ob-
tained by clustering the facets according to their coordinates
in the retained eigenvectors, using the k-means algorithm.
Figures 2(d) and 3(d) show examples of objects detected us-
ing this method (with ε = 0.01).

4 States, Actions and Features
The state of the objects at a given time is a depth image.
We do not consider in this work latent variables, such as
occluded parts or mass distributions, as this will increase
the decision-making complexity. Actions are always defined
within a specific context, or state. In the following, we use
the term action to refer to a state-action. We consider two
categories of actions, grasping and pushing.

Grasping actions
Grasping is performed with two fingers and an opposite
thumb (Figure 4(a)). A grasping action is parameterized by:
the approaching direction of the hand (the surface normal of
the palm), the rotation angle of the wrist, the initial distance
between the tips of the two fingers and the thumb (the hand’s
initial opening), and the contact point, which corresponds
to the projection of the palm’s center on the surface of ob-
jects along the approaching direction. We sample a number

(a) artificial objects (b) graph of supervoxels

(c) graph of detected facets (d) detected objects

Figure 3: Segmenting a clutter of unknown regular objects

of grasping parameters in each image. An image and a sam-
pled parameter vector specify one grasping action. To reduce
the grasping space’s dimension, we limit the contact points
to the centers of objects, obtained from segmentation.

The success probability (or expected reward) of a sampled
grasping action is given as a function of its contextual geo-
metric features. These features are obtained by projecting a
3D model of the robotic hand onto the point cloud, and re-
taining all the points that may collide with the hand when it
is fully open (blue strips in Figures 4(a),4(c)). We call this
set a collision surface. The collision surface is translated into
the hand’s coordinate system, and discretized as a fixed-size
grid. The obtained elevation matrix (Figure 4(e)) is the fea-
ture vector used for learning and generalization.

Pushing actions
Pushing actions are defined by the same type of parame-
ters as the grasping actions, except that the three fingers are
aligned together (Figures 4(b),4(d)). Instead of closing the
fingers, the hand is moved horizontally along the detected
support surface, for a fixed short distance in the opposite di-
rection of the fingers. The pushing direction is calculated
from the approaching direction and the wrist rotation. A
number of pushing actions are sampled in each image.

Pushing features indicate how an object would move, and
how the move could affect the grasping of the pushed ob-
ject or of its neighbors. In principle, a sequence of pushing
actions could affect the graspability of objects far from the
first pushed one. One should then include features of all the
objects in the scene. However, this is unnecessary in clut-
ter clearing where pushing an object in the right direction is
often sufficient to free space for grasping an adjacent object.

(a) Grasp action (top view) (b) Push action (top view)

(c) Grasp action (side view) (d) Push action (side view)

(e) Grasp features (f) Push features

Figure 4: Examples of grasping and pushing actions in clut-
ters, and their corresponding contextual features. The fea-
tures of grasping actions have been presented in our previous
work (Boularias, Bagnell, and Stentz 2014).

We use two feature vectors for pushing. The first vector
contains features that predict the motion of the pushed ob-
ject, they correspond to the same part of the surface used in
the grasping features, but only the second half of the surface
in the pushing direction is considered here (blue strip on the
left in Figure 4(b)). The second vector is given by the grasp-
ing features of the nearest object behind the pushed one.
Here, we consider the second half of the collision surface
in the opposite direction of the pushing action (blue strip on
the right in Figure 4(b)). If segmentation did not detect any
object behind the pushed one, then a default value is used
for the second vector of features. The surface between the
two objects is ignored, because it would mostly be a free
space if the push succeeds. The first vector predicts whether
a pushed object would move or not, and how it would move.
For instance, the pipe in Figure 4(b) has pushing features
that indicate a cylindrical surface and an obstacle-free front,
which means that the object would most likely roll, while the
box would be blocked by the nearby wood stick, captured in
the staircase-like pushing features. The second vector pre-
dicts if a push would help grasping a nearby object. In our
example, the second vector of features related to pushing the
pipe forward indicates a shape (box) that can later be grasped
without being obstructed. The two vectors combined are the
feature vector of a push action (Figure 4(f)).

5 Learning
We start by formulating the clutter clearing task as a Markov
Decision Process (MDP). We define the state at a given time
as an RGB-D image of the scene, and denote the state space
by S. The action space, denoted by A, contains parameter

vectors of grasping and pushing actions. The type of an ac-
tion a ∈ A is given by type(a) ∈ {grasping, pushing}.
T denotes the stochastic transition function, defined as
T (s, a, s′) = p(st+1 = s′|st = s, at = a) wherein st
and at are respectively the state and action at time-step t.
R(s, a) ∈ {0, 1} is the reward obtained from executing ac-
tion a in state s. R(s, a) = 1 iff a is a successful grasping
action in s. A policy is a function π that returns an action
given a state. The state-action value of policy π is defined
as Qπ(s, a) = R(s, a) + γEs′∼T (s,a,.)Vπ(s

′), wherein the
state value function Vπ is defined as Vπ(s) = Qπ(s, π(s))
and γ is a discount factor (γ is set to 0.5 in our experiments).
Given data set Dt = {(si, ai, ri, si+1)|i ∈ [0, t[} of ob-
served states, executed actions, and received rewards up to
current time t, we search for a policy with maximum value.

Unlike the pushing actions, grasping is mostly chosen for
its immediate reward. Although, the order of the grasps also
can be important. To take into account long-term effects
of grasping, one should consider additional features, which
may slow down the learning process. Therefore, we consider
grasping as a terminal action that restarts the episode. Af-
ter executing a grasp in state si, next state si+1 is a ficti-
tious, final, state sF defined as: ∀a, T (sF , a, sF) = 1 and
T (sF , a, s) = 0,∀s 6= sF . The terminal state is used simply
to mark the end of a sequence of pushes. The robot continues
the task without any interruption, the next state following a
grasping action is seen as the initial state of a new episode
(or task) rather than as being caused by the grasping action.

Learning the transition function is difficult, especially in
high-dimensional state spaces, such as images. Neverthe-
less, this problem can be partially relieved if the states are
limited to those in the finite data setDt. In fact, images of the
same clutter are not very different, because several actions
are needed before removing all the objects, and each im-
age contains mostly the same objects, in different positions.
Based on this observation, we propose to learn a transition
function that maps each state si in Dt and action a ∈ A to
a discrete probability distribution on the states in Dt. Note
that a could be an arbitrary hypothesized action, and it is not
necessarily ai, the action that was actually executed at time-
step i. The transition function predicts how similar the state
at i+ 1 would be to the state at j + 1, had the robot chosen
at i an action that is similar to the one that was executed at
j, wherein both i and j are past time-steps. These predic-
tions are used for improving past policies, in a kernel-based
reinforcement learning algorithm (Ormoneit and Sen 2002).

In the following, we first show how a value function V̂π
is generalized to new states and actions. We then show how
we compute value functions V̂π , and find the best policy π∗.

Given values V̂π(si), i < t, of policy π, we estimate value
Qπ(s, a) in new state s and action a using a local regression,

Q̂π(s, a) =

∑t−1
i=0K

(
(si, ai), (s, a)

)
V̂π(si)∑t−1

i=0K
(
(si, ai), (s, a)

) . (1)

K is a kernel that is chosen in our experiments as

K
(
(si, ai), (s, a)

)
=


1 if

(
type(a) = type(aj)

)
∧(

‖φ(si, ai)− φ(s, a)‖2 ≤ εtype(a)
)
,

0 else .

φ(s, a) are features of action a in state s (Figure 4). Thresh-
old εtype(a) depends on the type of a (grasping or pushing),
it is set by cross-validation (Section 7). Q̂π(s, a) is set to
0 when

∑t−1
i=0K

(
(si, ai), (s, a)

)
= 0. To speed up range

search queries, data set Dt is saved in a cover tree (Beygelz-
imer, Kakade, and Langford 2006), and updated online.

We consider the set Ut = {(si, aki), i ∈ [0, t[}, wherein si
is the observed state (RGB-D image) at the previous time-
step i and {aki } are all the actions that were sampled in
state si, including the executed one. The reward vector Rπ
of a policy π in Ut is defined as Rπ(si) = R(si, π(si)).
Similarly, the transition matrix Tπ of policy π is defined as
Tπ(si, sj) = T (si, π(si), sj) for i, j ∈ [0, t[. The Nadaraya-
Watson method provides consistent estimates of Rπ and Tπ:
R̂π = diag

(
Kπ1

)−1
KπR̂ and T̂π = diag

(
KπT̂1

)−1
KπT̂ ,

where Kπ(si, sj) = K
(
(si, π(si)), (sj , π(sj))

)
, 1 is a vec-

tor of ones, and R̂(si) = ri for i ∈ [0, t[. R̂(si) is the
reward obtained at time-step i. The sample transition ma-
trix T̂ is defined as follows. If ai was a push action, then
T̂ (si, si+1) = 1 and T̂ (si, sj) = 0 for j 6= i+1. If ai was a
grasp, then T̂ (si, sF) = 1 and T̂ (si, sj) = 0 for j 6= F .

The state-action space Ut, with the learned models R̂π
and T̂π , define a finite, discrete, MDP. Therefore, the value
function of a policy π defined on Ut is obtained by simply
solving the Bellman equation, i.e. V̂π =

(
I − γT̂π

)−1
R̂π , I

is the identity matrix. Moreover, it is well-known that stan-
dard policy iteration can be used in a finite MDP to find the
best policy π∗ for the provided model (Bertsekas and Tsit-
siklis 1996). Computed value function V̂π∗ of the best policy
π∗ is generalized to new states and actions using Equation 1.

6 Exploration versus Exploitation
If the robot always executes the actions that maximize
Q̂π∗(s, a), then it will learn only about those actions. To
find the best policy, each action should be executed suffi-
ciently many times, until a certain confidence on its value
is attained. We solve this problem by using the Upper Con-
fidence Bound (UCB) technique (Auer, Cesa-Bianchi, and
Fischer 2002), a multi-armed bandit method with a logarith-
mic regret. To deal with continuous states and actions, we
propose a heuristic that uses kernel K for computing a con-
fidence on the value of a state-action. At a time-step t, we
sample a number of push and grasp actions, and execute the
one that maximizes

Q̂π∗(st, a) + α

√
2 ln t∑t−1

i=0K
(
(si, ai), (st, a)

) .
α is a constant, set to 0.1 in all our experiments. If∑t−1
i=0K

(
(si, ai), (st, a)

)
= 0, then (st, a) is considered as

completely new. The executed action is randomly selected
from the set of the completely new actions, whenever such
actions are encountered. This happens, for example, when
an object unlike the previous ones appears, when objects ap-
pear in novel orientations or contexts, when εtype(a) drops
low, or when the scene is segmented differently.

7 Bandwidth Learning
The two ranges εgrasp and εpush of the kernel K play a ma-
jor role in our system. The kernel function defines which
state-actions are similar, and is used for both learning and
maintaining the exploration-exploitation balance. εgrasp and
εpush are hyper-parameters that cannot be manually tuned or
fixed in advance because their optimal values depend on the
types of objects, which are unknown to the system, and on
the data set Dt, which increases at each time-step.

Bandwidth learning is a typical model selection prob-
lem (Farahmand and Szepesvári 2011). We propose a so-
lution based on leave-one-sequence-out cross-validation.
Given a data set Dt = {(si, ai, ri, si+1)|i ∈ [0, t[} at time
t, and a time interval [t1, t2[where 0 ≤ t1 < t2 ≤ t, we
estimate the Bellman error of a given ε = (εgrasp, εpush) as

B̂E(ε) =
1

t2 − t1

t2−1∑
i=t1

(
ri + γV̂ επ̂ (si+1)− Q̂επ̂(si, ai)

)2
,

where V̂ επ , Q̂επ and π̂ are respectively the state and state-
action value functions and the empirical policy (executed
actions), obtained by using a kernel with bandwidths
(εgrasp, εpush) and the data in Dt collected in the intervals
[0, t1[and [t1, t[. V̂ επ is obtained by solving the Bellman
equation using the learned model, while Q̂επ is obtained from
Equation 1. Finally, the overall average Bellman error is the
average of B̂E(ε) in different intervals [t1, t2[.

At each time-step t, we calculate ξgrasp (resp. ξpush), the
Euclidean distance between the most distant grasping (resp.
pushing) feature vectors in Dt. We set εpush to 0 and search
for ε∗grasp ∈ {ξgrasp/2

n}, n = 0, . . . , 10, that has the lowest
average Bellman error. The best threshold is further tuned by
performing a grid-search in the interval [ε∗grasp, 2ε

∗
grasp]. ε

∗
push

is obtained using a similar approach, with εgrasp set to ε∗grasp.

8 Experiments
We performed extensive tests of the presented system us-
ing a WAM robotic arm equipped with a Barrett hand and
a time-of-flight camera (Kinect). Figure 5 shows the robot
and objects used in the experiments. The CHOMP algo-
rithm (Ratliff et al. 2009) is used to generate arm trajectories,
and a library of compliant hand motions with force-feedback
is used to execute the grasping and pushing actions (Kazemi
et al. 2012). The robot should remove a box and a heavy
pipe from the table. However, the objects are too close to
each other, and none of them can be grasped unless one of
them is pushed away. To make the task even more challeng-
ing, the objects are surrounded by fixed obstacles, so that
they can move only when pushed in a particular direction.
To reduce the learning time, we limit the actions to the box
and the pipe by ignoring the actions on detected objects that
have a height smaller than a predefined threshold (3cm).

The system has no prior knowledge of any of the objects
present on the scene, or on how to grasp or push objects.
Based solely on depth images, and readings of the hand
joint angles that indicate successes and failures of executed
grasps, the robot learned to remove all the objects in less

Figure 5: The robotic setup used
in the experiments. The robot’s task
is to remove all the objects.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time−step

v
a
lu

e
 p

re
d
ic

ti
o
n
 e

rr
o
r

value prediction error

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

step

v
a
lu

e
 p

re
d
ic

ti
o
n
 e

rr
o
r

value prediction error

Figure 6: Prediction errors.

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time−step

M
o
v
in

g
 A

v
e
ra

g
e
 R

e
w

a
rd

 p
e
r

S
te

p

Reinforcement Learning with UCB

Value Regression with UCB

Maximum Average Reward per Step

Figure 7: Average reward per time-step and standard devi-
ation in the task illustrated in Figure 5. A reward of 1 is
given for each successful grasp. Average at time-step t is
computed using the rewards received between t− 20 and t.

than a hundred time-steps. Figure 7 shows the average re-
ward per time-step as a function of time. The averages are
computed from four consecutive repetitions of the same ex-
periment. An important factor that made the learning par-
ticularly difficult was the fact that the robot was learning
both pushing and grasping at the same time. Often, the robot
successfully pushes the objects, but then fails to grasp. Al-
though the robot tries several useless push actions between a
useful push and a good grasp, it always manages to discover
the relation between these actions. This is done in the policy
improvement by realizing that an object could have been im-
mediately grasped in the state that followed the useful push.

Using one CPU, the average time per decision was 0.89s.
This includes perception and learning times, but excludes
the time needed to plan trajectories and to execute the action.

Before starting the experiments, we thought that the opti-
mal strategy would be to roll the pipe forward, then to grasp
the pipe and the box. But it turned out that this action suc-
ceeds with only a small probability. Surprisingly, the robot
figured out a different trick for achieving the same result.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

time−step

A
v
e

ra
g

e
 R

e
g

re
t

Reinforcement Learning with UCB

Value Regression with UCB

Figure 8: The average regret at time-step t is the number of
grasps that the robot could have succeeded so far minus the
actual number of successful grasps, divided by t.

The learned strategy consists in pushing the pipe forward by
pushing the box behind it. This shows an advantage of rein-
forcement learning over handcrafted techniques.

We compared the presented approach to a value regres-
sion technique that uses directly the empirical values V̂π̂(si)
in Equation 1, instead of learning the transition function and
performing the policy evaluation and improvement. The rest
of the approach is kept identical. Figure 7 shows that with
this method, the performance falls down after an initial pe-
riod of extensive exploration. We noticed that ε∗push drops
drastically due to the high variance of empirical V̂π̂(si) for
push actions. Consequently, the robot goes into a long phase
of exploring only the pushing actions (Section 7).

We also report prediction errors, which are calculated as
the absolute difference between the predicted value of an ex-
ecuted action and its empirical value. The empirical values
are the discounted sums of the received rewards in a given
trial, while the predicted values are expectations, which ex-
plains why the errors are high in certain times. Figure 6
shows that the prediction errors decreases as more actions
are executed. The top figure corresponds to the robot exper-
iments. The bottom figure corresponds to a simulation using
the pile of rocks in Figure 2(a), where we simulated a num-
ber of random grasping actions, and labeled them based on
the final reached distance between the palm and the objects.

9 Conclusion
We showed how a robot can learn, by trial and error, to grasp
unknown objects in clutter. By reasoning about future states
and actions, the robot pushes objects to grasp them more
easily. The presented system integrates vision techniques for
object detection with reinforcement learning for control and
adaptation. To accelerate the online learning process, metric
learning should be considered in a future work as an alterna-
tive to the plain Euclidean distance used in this work.

Acknowledgment
This work was conducted through participation in the
Robotics Consortium sponsored by the U.S Army Research
Laboratory under the Collaborative Technology Alliance
Program, Cooperative Agreement W911NF-10-2-0016.

References
Amor, H. B.; Saxena, A.; Hudson, N.; and Peters, J., eds.
2013. Special Issue on Autonomous Grasping and Manipu-
lation. Springer: Autonomous Robots.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time Analysis of the Multiarmed Bandit Problem. Machine
Learning 47(2-3):235–256.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific, 1st edition.
Beygelzimer, A.; Kakade, S.; and Langford, J. 2006. Cover
Trees for Nearest Neighbor. In Proceedings of the 23rd In-
ternational Conference on Machine Learning, 97–104.
Bohg, J.; Morales, A.; Asfour, T.; and Kragic, D. 2013.
Data-Driven Grasp Synthesis - A Survey. IEEE Transac-
tions on Robotics 289–309.
Boularias, A.; Bagnell, J. A.; and Stentz, A. 2014. Effi-
cient Optimization for Autonomous Robotic Manipulation
of Natural Objects. In Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, 2520–2526.
Boularias, A.; Kroemer, O.; and Peters, J. 2011. Learn-
ing Robot Grasping from 3-D Images with Markov Random
Fields. In 2011 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 1548–1553.
Comaniciu, D., and Meer, P. 2002. Mean Shift: A Robust
Approach toward Feature Space Analysis. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 24:603–
619.
Detry, R.; Kraft, D.; Kroemer, O.; Peters, J.; Krüger, N.; and
Piater, J. 2011. Learning Grasp Affordance Densities. Jour-
nal of Behavioral Robotics 2(1):1–17.
Dogar, M.; Hsiao, K.; Ciocarlie, M.; and Srinivasa, S.
2012. Physics-Based Grasp Planning Through Clutter. In
Robotics: Science and Systems VIII.
Farahmand, A. M., and Szepesvári, C. 2011. Model
Selection in Reinforcement Learning. Machine Learning
85(3):299–332.
Fischler, M. A., and Bolles, R. C. 1981. Random Sample
Consensus: A Paradigm for Model Fitting with Applications
to Image Analysis and Automated Cartography. Communi-
cations of the ACM 24(6):381–395.
Kazemi, M.; Valois, J.-S.; Bagnell, J. A. D.; and Pollard,
N. 2012. Robust Object Grasping using Force Compliant
Motion Primitives. In Robotics: Science and Systems, 177–
184.
Meriçli, T.; Veloso, M.; and Akin, H. 2014. Push-
manipulation of Complex Passive Mobile Objects Using Ex-
perimentally Acquired Motion Models. Autonomous Robots
1–13.
Ng, A. Y.; Jordan, M. I.; and Weiss, Y. 2001. On Spec-
tral Clustering: Analysis and an Algorithm. In Advances in
Neural Information Processing Systems, 849–856.
Ormoneit, D., and Sen, S. 2002. Kernel-Based Reinforce-
ment Learning. Machine Learning 49(2-3):161–178.
Papon, J.; Abramov, A.; Schoeler, M.; and Worgotter, F.
2013. Voxel Cloud Connectivity Segmentation - Supervox-

els for Point Clouds. In Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR, 2027–2034.
Ratliff, N.; Zucker, M.; Bagnell, J. A. D.; and Srinivasa, S.
2009. CHOMP: Gradient Optimization Techniques for Ef-
ficient Motion Planning. In IEEE International Conference
on Robotics and Automation, 489–494.
Rother, C.; Kolmogorov, V.; and Blake, A. 2004. Grab-
Cut -Interactive Foreground Extraction using Iterated Graph
Cuts. ACM Transactions on Graphics (SIGGRAPH) 23(3).
Saxena, A.; Driemeyer, J.; and Ng, A. Y. 2008. Robotic
Grasping of Novel Objects using Vision. The International
Journal of Robotics Research 27:157–173.
Scholz, J.; Levihn, M.; Isbell, C. L.; and Wingate, D. 2014.
A Physics-Based Model Prior for Object-Oriented MDPs.
In Proceedings of the 31st International Conference on Ma-
chine Learning (ICML), 1089–1097.
von Luxburg, U. 2007. A Tutorial on Spectral Clustering.
Statistics and Computing 17(4):395–416.

